SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

Experimental study and modelling of pressure drops when reflooding a debris bed

​Rémi Clavier has defended his thesis on 6th November 2015 at INSTN Cadarache (France).

Document type > *Mémoire/HDR/Thesis

Keywords >

Research Unit > IRSN/DPAM/SEREM/LE2M

Authors > CLAVIER Rémi

Publication Date > 06/11/2015

Summary

This work deals with single and two-phase flow pressure losses in porous media. The aim is to improve understanding and modeling of momentum transfer inside particle beds, in relation with nuclear safety issues concerning the reflooding of debris beds during severe nuclear accidents. Indeed, the degradation of the core during such accidents can lead to the collapse of the fuel assemblies, and to the formation of a debris bed, which can be described as a hot porous medium. This thesis is included in a nuclear safety research project on coolability of debris beds during reflooding sequences.

An experimental study of single and two-phase cold-flow pressure losses in particle beds is proposed. The geometrical characteristics of the debris and the hydrodynamic conditions are representative of the real case, in terms of granulometry, particle shapes, and flow velocities. The new data constitute an important contribution. In particular, they contain pressure losses and void fraction measurements in two-phase air-water flows with non-zero liquid Reynolds numbers, which did not exist before.

Predictive models for pressure losses in single and two-phase flow through particle beds have been established from experimental data. Their structures are based on macroscopic equations obtained from the volume averaging of local conservation equations. Single-phase flow pressure losses can be described by a Darcy- Forchheimer law with a quadratic correction, in terms of filtration velocity, with a better-than-10 % precision. Numerical study of single-phase flows through porous media shows that this correlation is valid for disordered smooth particle beds. Twophase flow pressure losses are described using a generalized Darcy-Forchheimer structure, involving inertial and cross flow terms. A new model is proposed and compared to the experimental data and to the usual models used in severe accident simulation codes.

Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok