SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

Seismic Detection and Characterization of the Altiplano-Puna Magma Body, Central Andes.

GEORGE ZANDT, MARK LEIDIG, JOSEF CHMIELOWSKI,

DAVID BAUMONT and XIAOHUI YUAN

Pure appl. geophys. 160, 789-807 . 0033-4553/03/040789-19

Document type > *Article de revue

Keywords > earthquakes

Research Unit > IRSN/DEI/SARG/BERSSIN

Authors > BAUMONT David

Publication Date > 01/06/2003

Summary

The Altiplano-Puna Volcanic Complex (APVC) in the central Andes is the product of an ignimbrite "flare-up" of world class proportions (DE SILVA, 1989). The region has been the site of large-scale silicic magmatism since 10 Ma, producing 10 major eruptive calderas and edifices, some of which are multiple­ eruption resurgent complexes as large as the Yellowstone or Long Valley caldera. Seven PASSCAL broadband seismic stations were operated in the Bolivian portion of the APVC from October 1996 to September 1997 and recorded teleseismic earthquakes and local intermediate-depth events in the subducting Nazca plate. Both teleseismic and local receiver functions were used to delineate the latéral extent of a regionally pervasive ~20-km-deep, very low-velocity layer (VLVL) associated with the APVC. Data from several stations that sample different parts of the northern APVC show large amplitude Ps phases from a low­ velocity layer with Vs £ 1.0 km/s and a thickness of ~1 km. We believe the crustal VLVL is a regional sill-like magma body, named the Altiplano-Puna magma body (APMB), and is associated with the source region of the Altiplano-Puna Volcanic Complex ignimbrites (CHMIELOWSKI et al., 1999).

Large-amplitude P-SH conversions in both the teleseismic and local data appear to originate from the top of the APMB. Using the programs of LEVIN and PARK (1998), we computed synthetic receiver functions for several models of simple layered anisotropic media. Upper-crustal, tilted-axis anisotropy involving both Vp and Vs can generate a "split Ps" phase that, in addition to the Ps phase from thé bottom of a thin isotropic VLVL, produces an interference waveform that varies with backazimuth. We have forward modeled such an interference pattern at one station with an anisotropy of 15%-20% that dips 45° within a 20-km-thick upper crust. We develop a hypothesis that the crust above the "magma body" is characterized by a strong, tilted­ axis, hexagonally symmetric anisotropy. We speculate that the anisotropy is due to aligned, fluid-filled cracks induced by a "normal-faulting" extensional strain field associated with the high elevations of the Andean Puna.

Send Print

More information


Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok