SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

METAL-PHYTOPLANKTON INTERACTIONS: MODELING THE EFFECT OF COMPETING IONS (H+, Ca², AND Mg²) ON URANIUM UPTAKE


Journal title: Environmental Toxicology and Chemistry
Volume : 26
Issue : 2
Pagination : 242-248
Publication date : 01/02/2007

Document type > *Article de revue

Keywords > pH, phytoplancton, uranium

Research Unit > IRSN/DEI/SECRE/LRE

Authors > DENISON Francis H., FORTIN Claude, GARNIER-LAPLACE Jacqueline

Publication Date > 01/02/2007

Summary

The influence of pH and hardness cation concentrations on uranium uptake by a green alga, Chlamydomonas reinhardtii, was investigated through short-term exposure experiments. Uranium uptake at pH 5 and at pH 7 was measured over a large concentration range (0.020-2.0 M 233U), and the effects of hardness cations were studied over environmentally pertinent concentration ranges (0.05-2 mM) at a constant uranium concentration (0.25 M). Calcium and magnesium inhibited uranyl uptake, but the influence of pH was more complex than anticipated. The equilibrium biotic ligand paradigm of metal bioavailability predicts that two distinct phenomena of antipathetic effect will influence uranium availability as pH is varied. Increasing pH reduces the concentration of protons, thus reducing competition for the physiologically active sites, whereas the concomitant complexation by carbonates and hydroxides reduces the free uranyl activity. Maximum uranium uptake rates observed at pH 7, however, were far greater than those observed at pH 5, suggesting a noncompetitive inhibition of metal transport by protons. Modeling on the basis of our results strongly suggests that cells grown and exposed at pH 7 have either a greater internalization rate of uranyl or a higher number of transport sites compared with cells grown and exposed at pH 5.We thus conclude that the simple proton-metal competition described by the biotic ligand model cannot successfully depict uranium-algae interactions. The development of an appropriate model incorporating the influence of protons to predict metal uptake and toxicity will be more challenging than anticipated.

Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok