SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

A finite element penalty-projection method for incompressible flows


Journal title : Journal of Computational Physics
Volume : 217
Issue : 2
Pagination : 502-518 
Publication date : 20/09/2006

Summary

The penalty-projection method for the solution of Navier-Stokes equations may be viewed as a projection scheme where an augmentation term is added in the first stage, namely the solution of the momentum balance equation, to constrain the divergence of the predicted velocity field. After a presentation of the scheme in the time semi-discrete formulation, then in fully discrete form for a finite element discretization, we assess its behaviour against a set of benchmark tests, including in particular prescribed velocity and open boundary conditions. The results demonstrate that the augmentation always produces beneficial effects. As soon as the augmentation parameter takes a significant value, the projection method splitting error is reduced, pressure boundary layers are suppressed and the loss of spatial convergence of the incremental projection scheme in case of open boundary conditions does not occur anymore. For high values of the augmentation parameter, the results of coupled solvers are recovered. Consequently, in contrast with standard penalty methods, there is no need for a dependence of the augmentation parameter with the time step, and this latter can be kept to reasonable values, to avoid to degrade too severely the conditioning of the linear operator associated to the velocity prediction step.

Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok