SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

On the flame height definition for upward flame spread


Journal title : Fire Safety Journal
Volume : 42
Issue : 5
Publication date : 01/07/2007

Document type > *Article de revue

Keywords > flame height definition, numerical model

Research Unit > IRSN/DPAM/SEMIC/LIMSI

Authors > CONSALVI Jean-Louis, PIZZO Yannick, PORTERIE Bernard, TORERO Jose Luis

Publication Date > 01/07/2007

Summary

Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be defined by a threshold value on the wall heat flux. From steady wall flame measurements, three definitions of flame height from wall heat flux are retained: the first is based on the continuous flame while the two others are based on threshold values of 4 kW/m2 and 10 kW/m2. These definitions are applied to determine flame heights from a two-dimensional time-dependent CFD model used to describe flame spread on a vertical slab of PMMA. Results show that the predicted flame heights are consistent with the available data of the literature. Defining flame height by threshold values on the wall heat flux of 4 and 10 kW/m2 allows the correlation of the wall heat flux in terms of (x-xp)/(xfl-xp), which is the dimensionless characteristic length scale for upward flame spread. It is also found that the continuous flame is not a characteristic length for the heat transfer to the unburnt fuel and is not really appropriate to define flame height in upward flame spread.

Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok