SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

Determinations of H*(10) and its dose components onnboard aircraft


Congress title :NEUDOS 10 
Congress town :Uppsala
Congress date :12/06/2006
Journal title : Radiation Protection Dosimetry 126 issue 1-4 Pages 577-580

Summary

Aircrew is in general receiving a higher average annual dose than other occupationally exposed personnel, and about half of the effective dose is deposited by high-LET neutron secondaries. A recent investigation of the cancer incidence following the atomic bombs at Hiroshima and Nagasaki has put forward the possibility that the relative biological efficiency for neutrons could be underestimated. If so, the effective dose to aircrew from this component would increase and the estimation of this component will become even more important. Different ambient dose equivalent measurement techniques and calculation methods have recently been compared on a dedicated flight. The experimental results are compared with calculations made with the codes EPCARD 3.2 and an updated version of FLUKA and different galactic proton spectra. The aircraft circulated within the target areas at two constant altitudes with a flight route variation of only about 1° in longitude and latitude to reduce the influence from variations in atmospheric and geomagnetic shielding. The instrumentation consisted of tissue-equivalent proportional counters (TEPC) and a silicon diode spectrometer. Measurements were performed for 2 h to reduce the statistical uncertainties in the results. The TEPCs were evaluated either according to single-event analysis techniques or the variance–covariance method. Besides the total ambient dose equivalent, the instruments can be evaluated to reveal the low- and high-LET components. The EPCARD and FLUKA simulations can determine the contribution from each type of particle directly. The ratio between the calculated and the measured average value of the ambient dose equivalent rate was 1.00 ± 0.08 with all instruments included for EPCARD and 0.97 ± 0.07 when FLUKA was used. The measured high-LET component and the calculated neutron component are not quite identical, but should be similar. The agreement was always within 20%. The high-LET component contributed with about 57% at N57 E8 and 48% at N42 E12.

Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok