SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

Impact of oxygen starvation on operation and potential gas-phase ignition of passive auto-catalytic recombiners

​Combustion and Flame / Volume 161, Issue 8, Pages 2192-2202, August 2014

Document type > *Article de revue

Keywords >

Research Unit > IRSN/PSN-RES/SAG/B2EGR

Authors > MEYNET Nicolas, BENTAIB Ahmed, GIOVANGIGLI Vincent

Publication Date > 01/08/2014

Summary

​A large amount of hydrogen can be released into the containment of light water reactors during a severe accident. Passive Auto-catalytic Recombiners (PARs) aim to avoid flame acceleration and excessive pressure loads on the containment in case of hydrogen combustion. Their operation is based on the catalytic recombination of hydrogen into steam in the presence of oxygen. Thus, the recombiners reduce the hydrogen but also the oxygen content in the containment atmosphere. As a consequence, the oxygen/nitrogen ratio diverts more and more from the standard 21 vol.% in air. This decreasing ratio may impact on the PAR efficiency. Additionally, the exothermic surface chemical mechanism leads to the overheating of the catalytic plates and activates the natural convection inside the recombiners. This heat source can also create local conditions for hydrogen combustion in the gas phase, as igniters do. Hence, the oxygen/nitrogen ratio may also determine the conditions for the gas-phase ignition inside PARs. This study deals with the numerical simulation of the impact of the oxygen starvation (i.e. low oxygen/nitrogen ratio) on the PAR efficiency and on the PAR gas-phase ignition limit. Calculations are performed with a dedicated CFD code named SPARK. We focus on the interaction of recombiners with any H2/O2/N2/H2O mixtures and thus establish a quite complete understanding of PAR operation. Calculations confirm the experimental oxygen surplus (i.e. twice more oxygen than stoichiometry) necessary to ensure an optimal PAR efficiency (XO2≈XH2) independently of the steam content. The PAR gas-phase ignition limit is then determined numerically in the classical H2/Air/H2O ternary diagram with a very good agreement with the available experimental database. It points out the importance of catalyst heat radiation, and more secondarily of species thermal diffusion (i.e. Soret effect). Finally, the PAR gas-phase ignition limit is determined for all oxygen/nitrogen ratios. The ignition domain appears to strongly contract when the oxygen content decreases, so that the steam threshold for inertization of the containment with respect to the recombiners ignition becomes very low.

Send Print

Involved IRSN laboratory

Severe Accidents and Radioactive Release Study & Analysis Section (B2EGR)

Contact


Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok