SharePoint
Aide
Faire avancer la sûreté nucléaire

La Recherchev2

Publications

Echanges de masse et de chaleur entre deux phases liquides stratifiées dans un écoulement à bulles.


Fermer

Authentification

Email :

Mot de passe :

Céline LAPUERTA, thèse de doctorat de l'Université Aix-Marseille I, discipline: mathématiques appliquées, 216 p, soutenue le 5 octobre 2006

Résumé

Lors d'un hypothétique accident majeur dans un réacteur à eau sous pression, la dégradation du cœur peut produire un bain stratifié, traversé par un flux de bulles. Ce dernier influence grandement les transferts thermiques, dont l'intensité est déterminante dans le déroulement de l'accident. Dans ce contexte, ce travail porte sur une modélisation de type interface diffuse pour l'étude d'écoulements incompressibles, anisothermes, composés de trois constituants non miscibles, sans changement de phase. Dans les méthodes à interface diffuse, l'évolution du système est décrite à travers la minimisation d'une énergie libre. L'originalité de notre approche, inspirée du modèle de Cahn-Hilliard, réside dans la forme particulière de l'énergie que nous proposons, qui permet d'avoir un modèle algébriquement et dynamiquement consistant, au sens suivant : d'une part, l'énergie libre triphasique coïncide exactement avec celle du modèle de Cahn-Hilliard diphasique quand seulement deux des phases sont présentes ; d'autre part, si une phase est initialement absente alors elle n'apparaîtra pas au cours du temps, cette dernière propriété étant stable vis à vis des erreurs numériques. L'existence et l'unicité des solutions faibles et fortes sont démontrées en dimension 2 et 3 ainsi qu'un résultat de stabilité pour les états métastables.

La modélisation d'un système ternaire en écoulement anisotherme est ensuite poursuivie par couplage des équations de Cahn-Hilliard avec celles du bilan d'énergie et de Navier-Stokes où les contraintes surfaciques sont prises en compte à travers des forces volumiques capillaires. L'ensemble est discrétisé en temps et en espace de façon à préserver les propriétés du problème continu (conservation du volume, estimation d'énergie). Différents résultats numériques sont présentés, depuis le cas de validation de l'étalement d'une lentille entre deux phases jusqu'à l'étude des transferts de masse et de chaleur à travers une interface liquide/liquide traversée par une bulle ou un train de bulles.