SharePoint
Aide
Faire avancer la sûreté nucléaire

La Recherchev2

Publications

Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes


Fermer

Authentification

Email :

Mot de passe :

Titre de la revue : SIAM Journal on Numerical Analysis Volume : 45 N° : 1 Pagination : 1-36 Date de publication : 01/02/2007

Type de document > *Article de revue

Mots clés >

Unité de recherche > IRSN/DPAM/SEMIC

Auteurs > EYMARD Robert, GALLOUËT Thierry, HERBIN Raphaèle, LATCHE Jean-Claude

Date de publication > 01/02/2007

Résumé

We study a colocated cell-centered finite volume method for the approximation of the incompressible Navier-Stokes equations posed on a 2D or 3D finite domain. The discrete unknowns are the components of the velocity and the pressure, all of them colocated at the center of the cells of a unique mesh; such a configuration is known to lead to stability problems, hence the need for a stabilization technique, which we choose of the Brezzi-Pitkäranta type. The scheme features two essential properties: the discrete gradient is the transpose of the divergence terms, and the discrete trilinear form associated to nonlinear advective terms vanishes on discrete divergence free velocity fields. As a consequence, the scheme is proved to be unconditionally stable and convergent for the Stokes problem and for the transient and the steady Navier-Stokes equations. In this latter case, for a given sequence of approximate solutions computed on meshes the size of which tends to zero, we prove, up to a subsequence, the L2-convergence of the components of the velocity, and, in the steady case, the weak L2-convergence of the pressure. The proof relies on the study of space and time translates of approximate solutions, which allows the application of Kolmogorov's theorem. The limit of this subsequence is then shown to be a weak solution of the Navier-Stokes equations. Numerical examples are performed to obtain numerical convergence rates in both the linear and nonlinear cases.