SharePoint
Aide
Faire avancer la sûreté nucléaire

La Recherchev2

Publications

Development of a non-denaturing 2D gel electrophoresis protocol for screening in vivo uranium-protein targets in Procambarus clarkii with laser ablation ICP MS followed by protein identification by HPLC–Orbitrap MS


Fermer

Authentification

Email :

Mot de passe :

​Talanta / numéro 128, octobre 2014, pages 187-195

Type de document > *Article de revue

Mots clés >

Unité de recherche > IRSN/PRP-ENV/SERIS/L2BT

Auteurs > XU Ming, FRELON Sandrine, SIMON Olivier, LOBINSKI Ryszard, MOUNICOU Sandra

Date de publication > 01/10/2014

Résumé

​Limited knowledge about in vivo non-covalent uranium (U)-protein complexes is largely due to the lack of appropriate analytical methodology. Here, a method for screening and identifying the molecular targets of U was developed. The approach was based on non-denaturing 1D and 2D gel electrophoresis (ND-PAGE and ND-2D-PAGE (using ND-IEF as first dimension previously described)) in conjunction with laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS) for the detection of U-containing proteins. The proteins were then identified by µbore HPLC–Orbitrap MS/MS. The method was applied to the analysis of cytosol of hepatopancreas (HP) of a model U-bioaccumulating organism (Procambarus clarkii). The imaging of uranium in 2D gels revealed the presence of 11 U-containing protein spots. Six protein candidates (i.e. ferritin, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, cytosolic manganese superoxide dismutase (Mn-SOD), glutathione S transferase D1 and H3 histone family protein) were then identified by matching with the data base of crustacea Decapoda species (e.g. crayfish). Among them, ferritin was the most important one. This strategy is expected to provide an insight into U toxicology and metabolism.