

Évaluation des doses dues au ¹⁴C, depuis la fin des années 1950, en France métropolitaine

S. Roussel-Debet

DIRECTION DE L'ENVIRONNEMENT ET DE L'INTERVENTION

SERVICE D'ÉTUDE ET DE SURVEILLANCE DE LA RADIOACTIVITÉ DANS L'ENVIRONNEMENT

DIRECTION DE L'ENVIRONNEMENT ET DE L'INTERVENTION

SESURE/LERCM

Bât 153, Cadarache BP 3, 13115 Saint-Paul-lez-Durance cedex

De	emandeur				
Référenc	e de la demande				
Numéro de	la fiche programme				
		•			
É۱	valuation des	: doses d	ues au ¹⁴ C <i>i</i>	depuis la fin	des
-			France mét		465
	Laboratoir	e d'Étude	Radioécologiq	ue du milieu	
			ental et Marin		
	Ĵ	Rapport DEI/	SESURE n° 2006 -	09	
					
	Réservé à I	'unité		Visas pour diffusion	
	Auteur(s)	Vérificateur*	Chef du SESURE	Directeur DEI	Directeur Général de l'IRSN
Noms	S. Roussel-Debet	P. Renaud	N. Lemaitre	D. Champion	J. REPUSSARD
D	3/5/06	09 106/01	16/05/06	19/05/06	/
Dates	3/3/00	0) 10) 706	10(0)(0)	1) =	
Signatures	BRITUM	18	11.	1 America	

* rapport sous assurance de la qualité

HISTORIQUE DES MODIFICATIONS

Version	Date	Auteur	Description ou commentaires
V0	27/01/06	S. Roussel-Debet	Version initiale
V1	31/01/06	S. Roussel-Debet	Prise en compte des remarques de P. Renaud
V2	09/05/06	S. Roussel-Debet	Prise en compte des remarques de N. Lemaitre (ajout des mesures de plateaux-repas du Vésinet).

PARTICIPANTS A CETTE ETUDE

Nom		Organisme	
Sylvie Roussel-Debet	Rédaction	IRSN/DEI/SESURE/LERCM	

LISTE DE DIFFUSION

Nom	Organisme
J. REPUSSARD	IRSN/DIR
M. BRIERE	IRSN/DIR
M. BOUVET	IRSN/DSDRE
J. LEWI	IRSN/DESTQ
MP. BIGOT	IRSN/COM
F. SOULET	DESTQ/DISCT/CRIS
D. CHAMPION	DEI/DIR
D. BOULAUD	DEI/DIR
B. DUFER	DEI/DIR
J.M. PERES	DEI/SARG
JC. GARIEL	DEI/SECRE
P. DUBIAU	DEI/SESUC
J.P. MAIGNE	DEI/SIAR
M.C. ROBE	DEI/STEME
B. DESCAMPS	DEI/SESURE/LESE
P. CUENDET	DEI/SESURE/LVRE
P. RENAUD	DEI/SESURE/LERCM

1	INTRODUCTION	7
2	MODELISATION DU TRANSFERT DU CARBONE 14 ET DE L'EXPOSITION	7
	2.1 FONDEMENT DES MODELES	. 7
	2.2 ACTIVITE SPECIFIQUE DE L'ATMOSPHERE	8
	2.2.1 Valeurs de la littérature	8
	2.2.2 Valeurs retenues pour les évaluations de dose	. 11
	2.3 VOIES D'ATTEINTE CONSIDEREES - METHODE DE CALCUL	. 12
	2.3.1 Équations de calcul de la dose par ingestion	. 12
	2.3.2 Valeurs et origine des paramètres	. 13
	2.3.3 Formulation simplifiée du calcul de dose par ingestion	. 17
	2.3.4 Estimation des doses par inhalation	. 17
	2.3.4.1 Évaluation de l'activité volumique de l'air	. 17
	2.3.4.2 Dose par inhalation, pour l'adulte	. 19
3	RESULTATS ET DISCUSSION	19
	3.1 DOSE EFFICACE ANNUELLE	. 19
	3.2 COMPARAISON AVEC LES DONNEES DE L'UNSCEAR	. 22
	3.3 DOSE EFFICACE CUMULEE	. 23
4	CONCLUSION	24
5	BIBLIOGRAPHIE	25
6	ANNEXE	27
	6.1 FRACTIONNEMENT ISOTOPIQUE	. 27
	(2 UNITED ACCOCITED	28

Tableaux

Tableau 1 : Activité spécifique du ¹⁴ C (Bq.kg ⁻¹) dans l'environnement terrestre selon diverses sources bibliographiques
Tableau 2 : Valeurs de l'activité spécifique du ¹⁴ C (Bq.kg ⁻¹) retenues pour les évaluations de dose
Tableau 3: Facteurs de dose efficace du ¹⁴ C par ingestion
Tableau 4 : Quantités d'aliments ingérées annuellement
Tableau 5 : Fraction de carbone des aliments
Tableau 6 : Masse totale de carbone ingérée annuellement
Tableau 7 : Facteur de conversion $\mathrm{FD}_{\mathrm{ing,a}} \times \sum_{i} \mathrm{R}_{i,a} \times \mathrm{f}_{\mathrm{c},i}$ (Sv.an ⁻¹ par Bq.kg ⁻¹)
Tableau 8 : Résumé des valeurs de dose efficace annuelle par ingestion (μSv.an ⁻¹) par tranches d'âge
Figures
Figure 1 : Évolution de l'activité spécifique du ¹⁴ C (Bq.kg ⁻¹) dans l'environnement terrestre en fonction du temps. 8
Figure 2: Matrice globale d'interactions relative au ¹⁴ C
Figure 3 : Proportion de carbone ingéré avec les différents composants de la ration (en % du carbone total ingéré
annuellement)
Figure 4: Évolution de la concentration du CO ₂ de l'atmosphère (Keeling et Whorf, 2001)
Figure 4. Evolution de la concentration du Co ₂ de l'atmosphere (necting et Whorf, 2007)
Figure 5: Estimation de l'évolution de l'activité volumique de l'atmosphère en ¹⁴ C
Figure 6 : Dose annuelle liée à l'ingestion de carbone 14, par tranches d'âge
Figure 7 : Dose efficace par ingestion, pour l'adulte calculées selon la méthode simplifiée de l'AIEA (2001) 21
Figure 8: Dose efficace par inhalation, pour l'adulte
Figure 9 : Comparaison de la dose efficace par ingestion pour l'adulte estimée dans la présente étude avec les
résultats de l'UNSCEAR (2000)

1 Introduction

Une estimation des conséquences dosimétriques en France, entre 1961 et 1978, des retombées des essais aériens d'armes a été réalisée par Vray et Renaud (2005). Cette estimation, basée sur les résultats de mesure des produits de fission et d'activation dans l'environnement, est complétée par la présente étude, plus théorique, qui prend en compte le carbone 14.

Le carbone a deux isotopes stables : le carbone 12 et le carbone 13, d'abondances respectives 98,93 % et 1,07 %. Le carbone 14, radio-isotope de période 5 730 \pm 40 ans, est émetteur β (Emax \cong 156,5 keV) et n'est présent qu'en quantités infinitésimales (l'activité spécifique de l'isotope 14 est d'environ 1,65 \times 10⁻¹¹ Bq.g⁻¹).

Le ¹⁴C est produit naturellement dans la haute atmosphère à partir de l'azote ¹⁴N. L'UNSCEAR (2000) évalue que cette production cosmogénique est d'environ 1,54 PBq.an⁻¹ (¹) pour un inventaire mondial estimé à 230 PBq ; à ce radiocarbone naturel, se sont ajoutés de l'ordre de 213 PBq émis lors des essais nucléaires atmosphériques ; en outre, les centrales électronucléaires et les usines de retraitement ont produit de l'ordre de 2,8 PBq de ¹⁴C entre les années 1950 et 1997 (UNSCEAR, 2000).

2 Modélisation du transfert du carbone 14 et de l'exposition

2.1 Fondement des modèles

L'évaluation des transferts du carbone 14 entre deux compartiments de la biosphère est basée sur l'hypothèse consensuelle que :

- □ le radiocarbone atmosphérique se trouve sous forme de ¹⁴CO₂ car les rejets sont supposés se trouver sous cette forme et, dans tous les cas, l'oxydation des autres composés carbonés aboutit en quelques années à cette forme (UNSCEAR, 2000);
- □ l'activité spécifique du carbone des végétaux (Becquerels de ¹⁴C par unité de masse de carbone) est la même que celle de l'atmosphère (incorporation par photosynthèse);
- cet équilibre isotopique est conservé dans tous les compartiments de la chaîne trophique.

Tous les modèles explicites ou agrégés (e.g., Le Dizés, 2005; AIEA, 2001; Sheppard et al., 1994; AIEA, 1982 et 1985; OMS, 1987...) reposent sur ce postulat classique dont l'expression générale est la suivante :

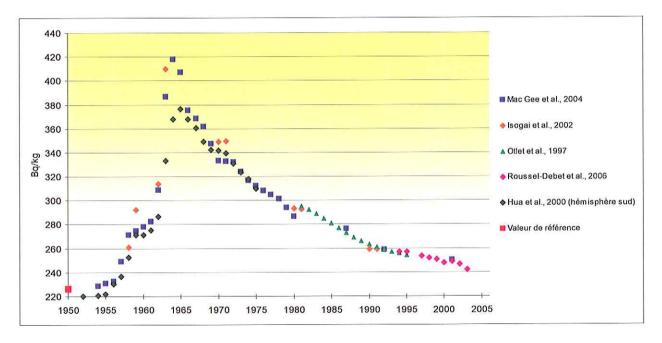
$$\frac{{}^{14}C_{\text{organisme}}}{C_{\text{organisme}}} = \frac{{}^{14}C_{\text{milieu}}}{C_{\text{milieu}}}$$
 (Équation 1)

$${\rm ^{14}C_{organisme}} \qquad {\rm Activit\acute{e}\ massique\ du\ ^{14}C\ dans\ l'organisme\ (Bq.kg\ ^{-1})}$$

$${\rm ^{14}C_{organisme}} \qquad {\rm Concentration\ en\ carbone\ dans\ l'organisme\ (kg\ de\ C\ .kg\ ^{-1})}$$

$${\rm ^{14}C_{milieu}} \qquad {\rm Activit\acute{e}\ massique\ du\ ^{14}C\ dans\ le\ milieu\ contaminant\ (Bq.kg\ ^{-1})}$$

$${\rm ^{C}_{milieu}} \qquad {\rm ^{Concentration\ en\ carbone\ dans\ le\ milieu\ contaminant\ (kg\ de\ C.kg\ ^{-1})}$$


 $^{^{1}}$ 1 PBq = 10^{15} Bq

Cette modélisation néglige la discrimination isotopique qui se produit lors de la photosynthèse, ce qui est majorant d'environ 5 % (cf. annexe).

2.2 Activité spécifique de l'atmosphère

2.2.1 Valeurs de la littérature

Il est communément admis qu'il est possible de déterminer l'activité spécifique du carbone atmosphérique par l'intermédiaire de celle des végétaux en équilibre avec l'atmosphère (e.g., Daillant et al., 2004; McGee et al., 2004; Isogai et al., 2002; Muraki et al., 2001; Mc Namara et Mc Cartney, 1998). C'est cette hypothèse qui a permis de reconstruire l'évolution de l'activité spécifique de l'atmosphère à partir de mesures de végétaux pérennes (cernes de bois en particulier). De nombreuses références permettent ainsi d'estimer cette activité spécifique en fonction du temps, dans différentes zone du globe. Un certain nombre de ces valeurs est reporté tableau 1 et représenté figure 1. Dans les publications, les valeurs sont présentées soit sous forme d'activité spécifique, soit de PCM (Pourcentage de carbone moderne) soit de Δ^{14} C; dans ce cas, les conversions ont été réalisées selon les formulations rappelées en annexe 1, afin de présenter l'ensemble des données sous la forme d'activités spécifiques.

Les données figurées sont relatives à l'hémisphère nord, sauf celles de Hua et al., 2000 (moyenne Tasmanie et Thaïlande). Figure 1 : Évolution de l'activité spécifique du ¹⁴C (Bq.kg⁻¹) dans l'environnement terrestre en fonction du temps.

Dans l'hémisphère nord, l'activité spécifique du 14 C augmente à partir de la valeur de référence A_0 = 226 Bq.kg $^{-1}$ en 1950, année de référence du carbone « moderne » (Stuiver et Polach, 1977), jusqu'à une valeur maximale proche de 420 Bq.kg $^{-1}$ en 1964. Après cette date, l'activité spécifique du 14 C diminue jusqu'à une valeur de l'ordre de 240 Bq.kg $^{-1}$ en 2003, encore supérieure à sa valeur initiale. Dans l'hémisphère sud, l'évolution est similaire, cependant, le niveau initial (années 1950), comme la valeur maximale, environ 376 Bq.kg $^{-1}$ en 1965, sont légèrement inférieurs à ceux de l'hémisphère nord.

Tableau 1 : Activité spécifique du 14C (Bq.kg²) dans l'environnement terrestre selon diverses sources bibliographiques

Référence	Mc Gee et al. 2004	Isogai et al., 2002	al., 2002	Mc Namara et Mc Cartney, 1998	et 998	Otlet al., 1997	1997	Roussel-Debet et al., 2006	Ĭ	Hua et al., 2000	0
Origine des valeurs	Valeurs dérivées (cernes d'arbre: Pinus Sylvestris) Avec correction isotopique Station non influencée par Sellafield Basé sur l'estimation:	Valeurs dérivées (cernes d'arbre : Orme) Avec correction isotopique Station non influencée par Sellafield		Valeurs dérivées (cernes d'arbre : Mélèze). Sans correction isotopique Station influencée par Sellafield	es	Valeurs dérivées (végétaux, produits agricoles) Sans correction isotopique Stations diverses, non influencées		Valeurs dérivées (végétaux, produits agricoles) Sans correction isotopique Stations diverses, non influencées	Valeurs dérivées (cernes d' Avec correction isotopique Hémisphère sud Basé sur l'estimation :	Valeurs dérivées (cernes d'arbre : Pin) Avec correction isotopique Hémisphère sud Basé sur l'estimation :	ore: Pin)
	PCM = 100 % en 1950 $(A_0 = 226 Bq.kg^{-1})$		J. 17	influencée obtenues par différence entre l'activité spécifique totale et celle imputée aux rejets de Sellafield	s par ctivité celle de				$A_{SN} = \Delta^{14}$	$A_{SN} = \Delta^{14} C / (1000 \times A_0 + A_0)$	0 + A0)
Région	Irlande	Angleterre	terre	Angleterre	41	Angleterre	rre	France		Thailande	Tasmanie
1952									1952	220	220
1953				1950-1959	232				1953	215	222
1954	1954-1955 228								1954	217	224
1955						=			1955	222	221
1956	1956 233								1956	230	230
1957	1958 249								1957	234	239
1958	1958-1959 271	1958	261						1958	255	250
1959		1959	292						1959	277	266
1960	1960 278			1960-1969	361				1960	272	270
1961	1961 283								1961	277	273
1962	1962 308	1962	314						1962	292	281
1963	1963 386	1963	410						1963	348	318
1964	1964 418								1964	379	357
1965	1965 407								1965	383	370
1966	1966-1967 375								1966	373	362
1967									1967	363	357
1968	1968-1969 362								1968	351	347

Référence MC	Mc Gee et al. 2004	al. 2004	Isogai et al., 2002	al., 2002	Mc Namara et Mc Cartney, 1998	ara et y, 1998	Otlet a	Otlet al., 1997	Roussel-Debet et al., 2006	et et al.,	Ĭ	Hua et al., 2000	00
											1969	344	340
1970	1970-1971	333	1970	348,8	1970-1979	321					1970	341	343
			1971	349,7							1971	345	334
1972	1972-1973	332									1972	330	332
											1973	324	323
1974	1974-1975	316									1974	319	317
											1975	310	6ÒE
1976	1976-1977	308											:
1978	1978-1979	301											
1980	1980-1984	287	1980	293,2	1980	267							
			1981	292,5	1981	384	1981	295					
					1982	280	1982	292					
					1983	277	1983	289					
					1984	275	1984	285					
1985	1985-1989	266			1985	270	1985	281					
					1986	267	1986	277					
					1987	597	1987	273					
					1988	264	1988	269					
					1989	262	1989	266					
1990	1990-1994	252	1990	259,3	1990	259	1990	263					
			1991	259,1	1991-1992	256	1991	261					
					12		1992	259					
					1993	251	1993	257					
							1994	256	1994	257			
1995	1995-2001	250					1995	254	1995	257			
									1997	253			
									1998	252			
									1999	251			
									2000	248			
									2001	249			
									2002	247			
									2003	242			

2.2.2 Valeurs retenues pour les évaluations de dose

Les données sélectionnées pour une reconstitution des doses annuelles en France ont été sélectionnées sur les bases suivantes : les données de Mc Namara et Mc Cartney (1998) qui dérivent déjà d'une estimation par différence entre les niveaux observés et ceux imputés théoriquement à Sellafield ont été écartées. De même, ne sont pas considérés les résultats de Hua et al. (2000), relatifs à l'hémisphère sud. Enfin, lorsque 2 valeurs (ou plus) étaient citées pour une même année, la moyenne arithmétique de ces valeurs a été faite.

Les valeurs retenues pour les évaluations de dose sont reportées tableau 2. On utilisera la <u>valeur de référence</u> de 226 Bq.kg⁻¹ en 1950 comme base pour en déduire l'excédent d'activité imputable aux retombées des tirs. Ceci constitue une approximation, probablement légèrement minorante, en raison de l'augmentation constante du CO₂ de l'atmosphère qui s'appauvrit naturellement en ¹⁴C du fait de l'utilisation des combustibles fossiles (cf. Prentice et al., 2001). En outre, les valeurs retenues intègrent la production de ¹⁴C par les usines du cycle du nucléaire qui, sur les 50 dernières années, représente environ 1 % de l'activité émise par les tirs. En raison de la complexité du cycle du carbone à l'échelle globale, il n'est pas possible d'avoir, de façon simple, une meilleure évaluation de l'excédent d'activité imputable aux retombées des tirs.

Tableau 2 : Valeurs de l'activité spécifique du 14C (Bq.kg-1) retenues pour les évaluations de dose

Année	Total Bq.kg ⁻¹	Excès (²) Bq.kg ⁻¹	Année	Total Bq.kg ⁻¹	Excès Bq.kg ⁻¹	Année	Total Bq.kg ⁻¹	Excès Bq.kg
1950	226	0	1970	341	115	1987	275	49
1954	228	2	1971	341	115	1988	269	43
1955	231	5	1972	332	106	1989	266	40
1956	233	7	1973	324	98	1990	261	35
1957	249	23	1974	316	90	1991	260	34
1958	266	40	1975	312	86	1992	259	33
1959	283	57	1976	308	82	1993	258	32
1960	278	52	1977	305	79	1994	257	31
1961	283	57	1978	301	75	1995	256	30
1962	311	85	1979	294	68	1996	255	29
1963	398	172	1980	290	64	1997	254	28
1964	418	192	1981	294	68	1998	252	26
1965	407	181	1982	292	66	1999	251	25
1966	375	149	1983	289	63	2000	248	22
1967	368	142	1984	285	59	2001	249	23
1968	362	136	1985	281	55	2002	247	21
1969	347	121	1986	277	51	2003	242	16

² Le terme « excès » est employé au sens de « excédent imputable aux tirs et autres rejets anthropiques».

2.3 Voies d'atteinte considérées - méthode de calcul.

Le carbone 14 n'occasionne pas d'irradiation externe (émetteur β pur de faible énergie). En ce qui concerne l'irradiation interne, l'incorporation du carbone dans l'organisme humain est essentiellement liée à l'ingestion (figure 2). On admet pour l'adulte une ingestion de l'ordre de 250 à 300 g.j⁻¹ de carbone d'origine alimentaire, quasi-entièrement absorbé contre 3 g.j⁻¹ de carbone inhalé dont seul 1 % est fixé dans l'organisme (CIPR, 1974). En conséquence, les évaluations reviennent à prendre en compte uniquement les voies de transfert liées à la chaîne alimentaire. Une estimation de la dose liée à l'inhalation sera néanmoins effectuée, à titre de comparaison. Étant donnée la période physique du carbone 14, il n'est pas nécessaire de tenir compte de sa décroissance radioactive (il est notamment inutile de prendre en compte un délai de stockage des produits alimentaires). D'autre part, l'élément fils étant stable, l'irradiation par les produits de filiation n'est pas à considérer.

Pour le carbone 14 d'origine atmosphérique, les modèles de calcul de dose prennent en compte la conservation du rapport isotopique depuis l'atmosphère jusque dans l'organisme humain, soit de façon agrégée (ingestion totale du carbone), soit via une évaluation pas - à - pas de l'activité massique des aliments en carbone 14, suivie du cumul des activités ingérées en fonction de la ration alimentaire.

On considérera que l'activité spécifique de l'atmosphère est constante par année calendaire, car nous ne disposons pas de mesures permettant d'utiliser un pas de temps plus resserré. Par ailleurs, l'activité spécifique de l'atmosphère sera considérée comme homogène au niveau européen.

ATMOSPHÈRE	Photosynthèse			Inhalation
Respiration	VÉGÉTAUX	Ingestion	Résidus végétaux	Ingestion
Respiration		ANIMAUX	Fèces	Ingestion
Respiration			SOL	Ingestion
				INDIVIDU

Cette matrice explicite les COMPOSANTES (éléments diagonaux) et les *processus de transfert* du ¹⁴C (éléments hors diagonale) entre compartiments. Certaines interactions sont négligées (notées en gris).

Figure 2 : Matrice globale d'interactions relative au ¹⁴C

2.3.1 Équations de calcul de la dose par ingestion

Le type de modèle le plus détaillé fait référence aux quantités de carbone ingérées par l'homme par les différents produits composant son régime alimentaire (e.g., Simmonds et al., 1995 ; Zach et Scheppard, 1992 ; USNRC, 1977). Cette formulation, qui nécessite une évaluation de l'activité en carbone 14 de chaque produit, permet de mieux prendre en compte les particularités concernant la ration alimentaire.

La dose efficace par ingestion s'exprime selon l'équation :

$$D_{a} = FD_{ing,a} \times \sum_{i} R_{i,a} \times^{14} C_{i} \qquad (\textit{Equation 2})$$

D_a Dose efficace pour l'individu d'âge a (Sv.an⁻¹)

R: Masse d'aliment i consommée annuellement par l'individu d'âge a (kg.an⁻¹)

 $^{14}\mathrm{C_{i}}$ Activité du carbone 14 par unité de masse de l'aliment i (Bq.kg $^{-1}$)

Les activités massiques des produits végétaux ou animaux sont calculées par :

$$^{14}C_i = f_{c,i} \times A_{air}$$
 (Équation 3)

14 C. Activité massique du produit frais i (Bq.kg⁻¹ frais)

f_{c.i} Fraction de carbone stable dans le produit frais i (kg C.kg⁻¹ frais)

A_{air} Activité spécifique du carbone, supposé sous forme de CO₂, dans l'atmosphère (Bq.kg⁻¹ C)

 $A_{air} = {}^{14}C_{air} / {}^{12}C_{air}$

Remarque

L'expression globale de la dose efficace par ingestion peut s'écrire (en combinant les 2 équations précédentes):

$$D_{a} = A_{air} \times \left[FD_{ing,a} \times \sum_{i} R_{i,a} \times f_{c,i} \right] \qquad \textit{(Équation 4)}$$

Pour une classe d'âge et pour une année fixée, la dose est donc directement proportionnelle à l'activité spécifique de l'atmosphère. Par ailleurs le produit inclus dans la somme est égal à la quantité annuelle de carbone alimentaire ingéré.

2.3.2 Valeurs et origine des paramètres

Les facteurs de dose et les paramètres relatifs à la ration alimentaire et à la teneur en carbone des aliments sont reportées aux tableaux 3 à 5. Nous décrivons ci-après leur origine.

$\hfill \Box$ Facteurs de dose efficace $FD_{ing,a}$

Ces facteurs sont tirés de la base ECRIN de l'IRSN et proviennent de Euratom (1996). Ils sont relatifs à une durée d'intégration de 70 ans. Compte tenu des classes d'âge considérées pour la ration alimentaire et des valeurs très proches des facteurs de dose pour les catégories « 12 à 17 ans » et « > 17 ans », on affectera le même facteur de dose de 5.8×10^{-10} Sv.Bq⁻¹ à la catégorie « > 12 ans ».

\square Ration alimentaire $R_{i,a}$

La ration est directement issue de l'étude de Vray et Renaud (2005), avec les mêmes hypothèses de représentativité des groupes d'aliments et de distribution dans les mêmes classes d'âge. Toutefois, une simplification a été apportée en regroupant les produits frais et conservés d'un même aliment dans une même catégorie, puisque pour le ¹⁴C il est inutile de considérer une décroissance radioactive. Cette ration

est relative aux « poids bruts » des aliments, ce qui, en termes de concentration ne change pas l'activité massique du ¹⁴C.

Par ailleurs, compte-tenu de l'importance de la consommation des catégories « sucre » et « huiles végétales » dans l'incorporation alimentaire du carbone, ces produits ont été ajoutés à la ration présentée par Vray et Renaud (2005). Il est supposé que ces produits sont contaminés en ¹⁴C quelle que soit leur origine (métropolitaine ou non), ce qui se justifie par la dispersion du ¹⁴C à l'échelle du globe. La ration de ces produits est issue du rapport bibliographique de Garnier-Laplace et al. (1994) pour l'adulte (ici considéré comme individu d'âge supérieur à 12 ans) ; pour les tranches d'âge inférieures, la ration adulte a été « ventilée » au prorata de la masse totale d'aliments ingérés, exception faite du nourrisson pour lequel ces deux produits n'ont pas été considérés.

Enfin, la ration ne tient pas compte de l'ingestion de poissons (eaux douces et marines) dont la contamination en ¹⁴C peut être supposée négligeable au regard de celle des produits agricoles.

\Box Fraction de carbone des aliments $f_{c,i}$

Les valeurs proviennent du rapport bibliographique de Garnier-Laplace et al. (1994). Pour que les catégories d'aliments soient « superposables » à celles de la ration alimentaire considérée, on a utilisé la valeur « pommes de terre » pour la catégorie « légumes-racine hors pommes de terre ».

La combinaison de ces deux derniers paramètres permet d'évaluer la masse totale de carbone ingérée par l'individu (tableau 6). Pour l'adulte, l'ingestion journalière totale de carbone est $251 \, \mathrm{g.j^{-1}}$. Cette valeur est plus faible que les $300 \, \mathrm{g.j^{-1}}$ indiqués par défaut pour l'adulte « standard » (CIPR, 1974), néanmoins, elle correspond correctement à la valeur de $255 \, \mathrm{g.j^{-1}}$ de carbone annoncée par Charles et Jones (2005) lors d'évaluations faites par le modèle PC-CREAM du NRPB au Royaume Uni. En outre, cette valeur correspond bien aux résultats de mesure réalisés sur les plateaux-repas des établissements scolaires du Vésinet³ : la ration moyenne en carbone mesurée est de $255 \pm 13 \, \mathrm{g.j^{-1}}$, compte tenu d'une ration journalière de 510 grammes de matière sèche comportant $50,1 \, \%$ de carbone. Nous conserverons donc la ration en carbone indiquée au tableau 6 ce qui permet, en outre, de présenter des données cohérentes avec le rapport de Vray et Renaud (2005).

Remarque.

À partir des résultats de mesure de 14 C effectuées sur les plateaux-repas des établissements scolaires du Vésinet, l'activité spécifique du 14 C de la ration alimentaire de ces prélèvements peut être évaluée. Le calcul, effectué avec les résultats des mesures réalisées de 2002 à 2005, aboutit à une activité spécifique de 373 ± 50 Bq.kg $^{-1}$ C, donc supérieure d'environ 50 % aux valeurs de la littérature pour cette même période (environ 240 Bq.kg $^{-1}$ C, cf. tableau 1) et proche des valeurs observées dans les années 1965. Une explication pourrait être que les denrées composant la ration des plateaux-repas proviendraient, au moins en partie, d'une zone relativement contaminée en 14 C. Des compléments d'investigations sont donc prévus afin d'expliquer cette anomalie apparente.

14/28

³ Station de référence du Laboratoire de Veille Radiologique de l'Environnement (IRSN/DEI/SESURE).

Tableau 3 : Facteurs de dose efficace du ¹⁴C par ingestion.

			$\mathrm{FD}_{ing,a}$	(Sv.Bq ⁻¹)		
Tranche d'âge de l'individu	0 à 1 an	1 à 2 ans	2 à 7 ans	7 à 12 ans	12 à 17 ans	> 17 ans
Facteur de dose efficace	1,4 × 10 ⁻⁹	$1,6 \times 10^{-9}$	$9,9 \times 10^{-10}$	$8,0 \times 10^{-10}$	$5,7 \times 10^{-10}$	$5,8 \times 10^{-10}$

Tableau 4 : Quantités d'aliments ingérées annuellement.

		R	_{i,a} (kg frais.a	n ⁻¹)	
Tranche d'âge de l'individu	0 à 1 an	1 à 2 ans	2 à 7 ans	7 à 12 ans	> 12 ans (adulte)
Légumes-feuilles		3	26	29	40
Légumes-fruits + fruits		40	73	84	113
Légumes-racine hors pommes de terre		13	13	15	26
Pommes de terre		18	22	33	29
Dérivés céréaliers		9	51	73	73
Lait et dérivés (équivalent lait)	292	146	204	175	146
Viande (équivalent bœuf)		11	51	69	84
Sucre		15	28	31	33
Huile végétale		4	7	7	8

Tableau 5 : Fraction de carbone des aliments.

	$f_{c,i}$ (kg C.kg $^{-1}$ frais)
Légumes-feuilles	0,050
Autres légumes + fruits	0,050
Légumes-racine hors pommes de terre	0,095
Céréales	0,950
Pommes de terre	0,360
Lait et dérivés	0,067
Viande	0,265
Sucre	0,438
Huile végétale	0,750

Tableau 6 : Masse totale de carbone ingérée annuellement.

	0 à 1 an	1 à 2 ans	2 à 7 ans	7 à 12 ans	> 12 ans
kg.an ⁻¹	20	31	71	85	92
g.jour ⁻¹	54	84	195	234	251

La contribution de chacun des produits alimentaires à l'ingestion de carbone (et donc, in fine, à la dose par ingestion) est représentée figure 3. Très logiquement, ce sont les produits les plus riches en carbone et les plus consommés qui contribuent le plus à l'incorporation de carbone. Pour l'adulte, par exemple, l'ensemble sucre + céréales + viande représente 60 % de l'ingestion de carbone.

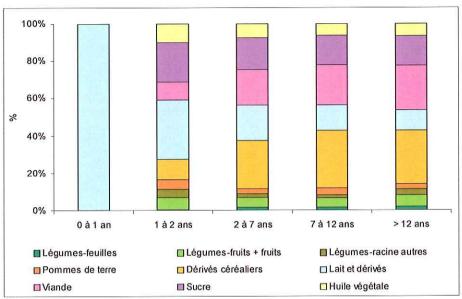


Figure 3 : Proportion de carbone ingéré avec les différents composants de la ration (en % du carbone total ingéré annuellement).

L'application de l'équation 4 permet de calculer le facteur $\mathrm{FD}_{\mathrm{ing,a}} \times \sum_{i} R_{i,a} \times f_{c,i}$ par tranche d'âge (tableau 7).

Il suffit ensuite de multiplier ce facteur par l'activité spécifique annuelle du ¹⁴C de l'air (cf. tableau 2, § 2.2.2) pour en déduire la dose efficace annuelle. Ce tableau montre d'ores et déjà que pour une même activité spécifique de l'air, les enfants de 2 à 7 ans et ceux de 7 à 12 ans auront une dose supérieure à celle des autres tranches d'âge, les nourrissons étant les moins exposés.

 $\label{eq:tableau7} \textit{Tableau 7}: \textit{Facteur de conversion } FD_{ing,a} \times \sum_{i} R_{i,a} \times f_{c,i} \ \ \textit{(Sv.an-1 par Bq.kg-1)}.$

0 à 1 an	1 à 2 ans	2 à 7 ans	7 à 12 ans	> 12 ans
$2,8 \times 10^{-8}$	$5,0 \times 10^{-8}$	7.0×10^{-8}	6.8×10^{-8}	$5,3 \times 10^{-8}$

2.3.3 Formulation simplifiée du calcul de dose par ingestion

À titre de comparaison, nous évaluons également les doses par ingestion pour l'adulte selon la formulation simplifiée présentée par l'AIEA (2001) :

$$D_a = g_{ing} \times A \times f$$
 (Équation 5)

D_a	Dose efficace pour l'individu d'âge a (Sv.an ⁻¹)
ging	Facteur de dose efficace « agrégé » 4 (Sv.an $^{-1}$ par Bq.g $^{-1}$) pour l'adulte, égal à 5,6 × 10 $^{-5}$
A	Activité spécifique de l'alimentation (Bq.g·¹), prise ici égale à la valeur moyenne de l'activité spécifique du carbone dans l'atmosphère, à la conversion d'unité près, soit $1\times 10^{-3} \times A_{air}$
f	fraction de carbone alimentaire provenant de la production locale (-), ici pris égal à 1

2.3.4 Estimation des doses par inhalation

Cette évaluation est faite uniquement pour l'adulte, dans le but de donner l'ordre de grandeur de la dose par inhalation, supposée a priori négligeable par rapport à l'ingestion.

2.3.4.1 Évaluation de l'activité volumique de l'air

L'activité volumique en ¹⁴C de l'atmosphère (⁵) peut être estimée par :

$$C_{air}=f_{air}\times C_{CO_2}\times A_{air}$$
 (Équation 6)
 C_{air} Activité volumique en ¹⁴C de l'atmosphère (Bq.m $^{-3}$ air)

 f_{air} Proportion (volume/volume) du CO_2 dans l'air (m³ CO_2 .m⁻³ air)

 C_{CO_2} Concentration (masse/volume) du carbone dans le CO_2 (kg $C.m^{-3}$ CO_2)

 A_{air} Activité spécifique du carbone dans l'atmosphère (Bq.kg $^{-1}$ C)

Les valeurs de f_{air} sont mesurées en permanence à l'observatoire international de référence de Mauna Loa (Keeling et Whorf, 2001), cf. figure 4. Depuis les années 1950, la proportion volumique du CO_2 dans l'atmosphère ($m^3 CO_2 . m^{-3}$ air) est passée de 315×10^{-6} à plus de 375×10^{-6} en 2003.

La concentration du carbone dans le CO₂ (kg C.m⁻³ CO₂) est estimée à partir de la masse molaire du carbone (12 g.mol⁻¹) et du volume molaire des gaz parfaits à la pression atmosphérique (22,4 l.mol⁻¹), soit environ 0,537 kg C.m⁻³ CO₂. En 2003, la concentration du carbone dans l'air serait ainsi de l'ordre de 0,2 g C.m⁻³ air.

L'activité spécifique retenue est celle qui a été reportée au tableau 2, § 2.2.2.

17/28

⁴ Cette formulation sous entend, en réalité, une ingestion de carbone d'environ 265 g.j⁻¹ (estimée par g_{ing}/FD_{ing}).

⁵ Contrairement à l'usage, par souci de clarté, nous détaillons ici les unités, en précisant « air », « CO₂ »... dans leur intitulé.

En appliquant l'équation 6 et les paramètres décrits, on obtient une estimation de l'évolution de l'activité moyenne globale de l'air en ¹⁴C, représentée figure 5. Celle-ci a augmenté à partir de sa valeur initiale, i.e., 0,07 Bq.m⁻³ en 1950 jusqu'à un maximum de 0,13 Bq.m⁻³ en 1964 pour redescendre actuellement à une valeur de l'ordre de 0,09 Bq.m⁻³. L'excédent de ¹⁴C attribuable aux tirs atmosphériques et autres rejets anthropiques a été au maximum de 0,06 Bq.m⁻³ en 1964.

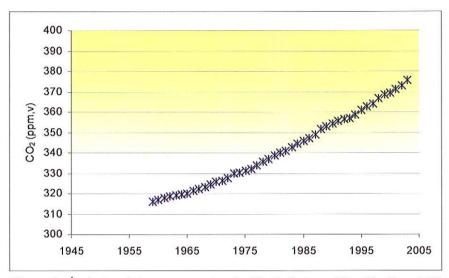
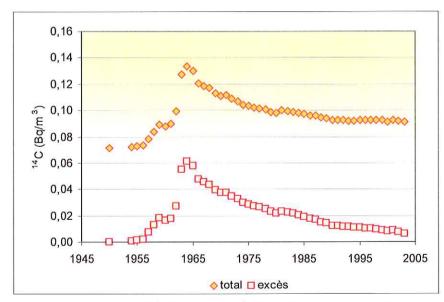



Figure 4 : Évolution de la concentration du CO₂ de l'atmosphère (Keeling et Whorf, 2001).

Le terme « excès » est employé au sens de « excédent imputable aux tirs et autres rejets anthropiques». Figure 5 : Estimation de l'évolution de l'activité volumique de l'atmosphère en ¹⁴C.

2.3.4.2 Dose par inhalation, pour l'adulte

La dose efficace par inhalation s'exprime selon l'équation :

D _{inh}	Dose efficace par inhalation (Sv.an ⁻¹)
FD _{inh}	Facteur de dose efficace par inhalation du carbone 14 sous forme de CO_2 (Sv.Bq ⁻¹) soit 6.2×10^{-12} selon les données de la base ECRIN, pour l'adulte et pour la forme CO_2
	soit 6,2 × 10 - seton les données de la base ECRIN, pour l'adulte et pour la forme CO ₂
Cair	Activité volumique en ¹⁴ C de l'atmosphère (Bq.m ⁻³ air), calculée précédemment
T _{inh}	Quantité moyenne annuelle inhalée par l'adulte (m³.an¹1), soit, 8 400 m³.an¹1 (AIEA, 2001)

 $D_{inh} = FD_{inh} \times C_{air} \times T_{inh}$

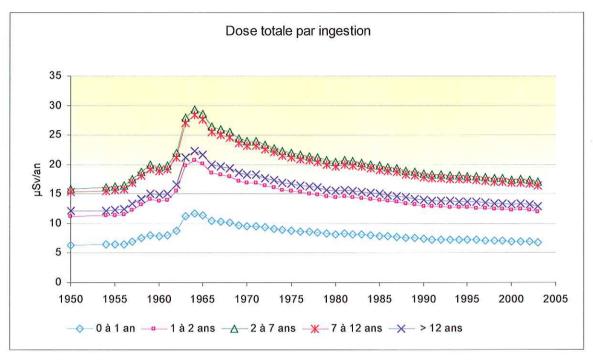
(Équation 7)

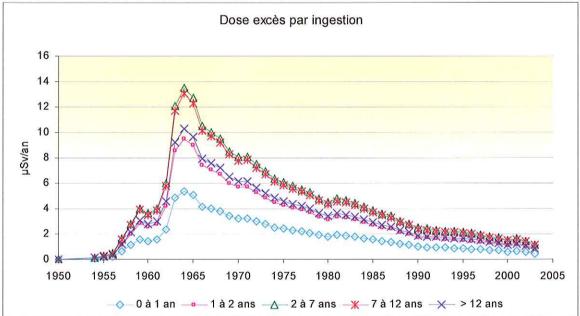
3 Résultats et discussion

3.1 Dose efficace annuelle

La figure 6 représente la dose annuelle par tranche d'âge liée à l'ingestion du ¹⁴C, calculée selon les équations présentées au § 2.3.1, en distinguant la dose totale et l'excédent de dose imputable aux retombées des tirs. Un résumé des valeurs est présenté tableau 8.

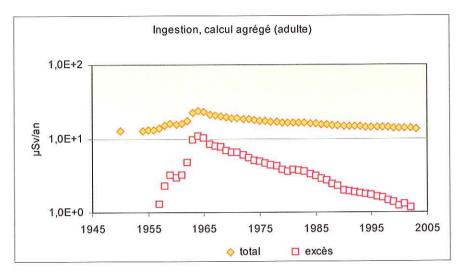
Tableau 8 : Résumé des valeurs de dose efficace annuelle par ingestion (μSv.an¹) par tranches d'âge.


Les données résultent du mode de calcul présenté au § 2.3.1, sauf la dernière colonne qui présente les doses obtenues pour l'adulte avec la méthode agrégée décrite au § 2.3.3.

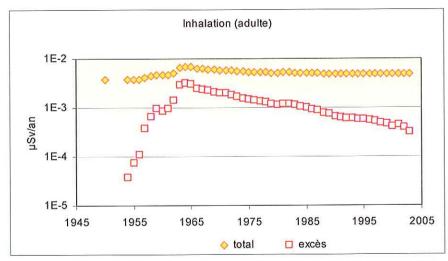

		0 à 1 an	1 à 2 ans	2 à 7 ans	7 à 12 ans	> 12 ans	Adulte (AIEA, 2001)
	Bruit de fond (1950)	6,3	11,2	15,9	15,4	12,1	12,7
Total	Maximum (1964)	11,7	20,7	29,4	28,4	22,3	23,4
	Actuel (2003)	6,8	12,0	17,0	16,5	12,9	13,6
Excès	Maximum (1964)	5,384	9,53	13,50	13,06	10,25	10,76
	Actuel (2003)	0,46	0,82	1,16	1,12	0,88	0,92

Pour l'adulte, la dose efficace est passée depuis les années 1950 de 12,1 μSv.an⁻¹ à un maximum de l'ordre de 22,3 μSv.an⁻¹ en 1964 pour redescendre ensuite à un niveau de 12,9 μSv.an⁻¹ très légèrement supérieur à sa valeur initiale. L'excédent de dose a atteint une dizaine de μSv.an⁻¹.

Les valeurs obtenues sont plus élevées pour l'enfant de 2 à 7 ans et de 7 à 12 ans que pour l'adulte, les nourrissons étant environ 2 fois moins exposés que les adultes, comme cela avait été signalé (cf. § 2.3.2).


Par ailleurs la comparaison, pour l'adulte, des doses ainsi calculées avec les valeurs obtenues selon la méthode simplifiée de l'AIEA (2001) présentée au § 2.3.3 montre que cette dernière méthode fournit des résultats remarquablement concordants (supérieurs de 5 %) avec ceux obtenus par la méthode détaillée (cf. figure 7).

Le terme « excès » est employé au sens de « excédent imputable aux tirs et autres rejets anthropiques ».

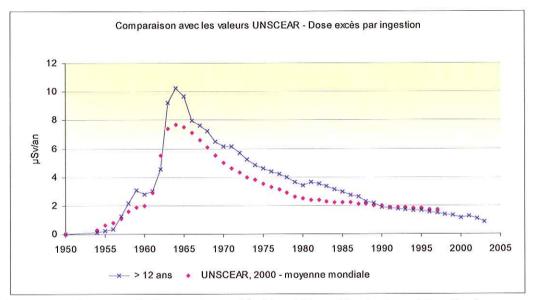

Figure 6 : Dose annuelle liée à l'ingestion de carbone 14, par tranches d'âge.

Le terme « excès » est employé au sens de « excédent imputable aux tirs et autres rejets anthropiques ».

Figure 7 : Dose efficace par ingestion, pour l'adulte calculées selon la méthode simplifiée de l'AIEA (2001).

D'autre part, l'estimation des doses par inhalation réalisée selon la méthode présentée au § 2.3.4 confirme que cette voie d'atteinte est négligeable comparativement à l'ingestion, avec une dose totale inférieure à $0.01 \, \mu \text{Sv.an}^{-1}$ en 1964 et de l'ordre de $0.005 \, \mu \text{Sv.an}^{-1}$ actuellement, soit 4 pour dix mille fois la dose par ingestion.

Le terme « excès » est employé au sens de « excédent imputable aux tirs et autres rejets anthropiques ».


Figure 8 : Dose efficace par inhalation, pour l'adulte.

21/28

3.2 Comparaison avec les données de l'UNSCEAR

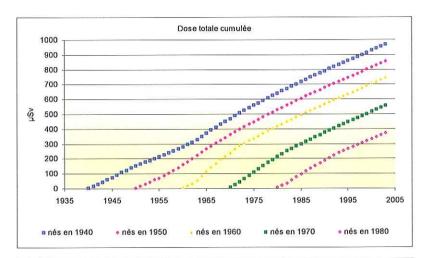
En ce qui concerne les valeurs de dose pour l'adulte imputables au bruit de fond en 14 C, les résultats de la présente étude : 12,1 μ Sv.an⁻¹, et ceux présentés par l'UNSCEAR (2000) : 12 μ Sv.an⁻¹, sont remarquablement proches et n'appellent aucun commentaire particulier.

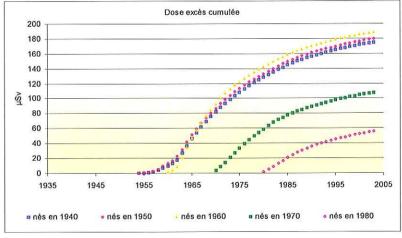
En ce qui concerne l'excédent de dose liée aux tirs nucléaires, la comparaison des résultats obtenus dans la présente étude avec les valeurs estimées par l'UNSCEAR (2000) est présentée figure 9 pour l'adulte. Cette comparaison met en évidence une différence qui atteint 2,6 μSv.an⁻¹ au maximum en 1964 (soit 25 %), les doses évaluées par l'UNSCEAR étant plus faibles.

Le terme « excès » est employé au sens de « excédent imputable aux tirs et autres rejets anthropiques ».

Figure 9 : Comparaison de la dose efficace par ingestion pour l'adulte estimée dans la présente étude avec les résultats de l'UNSCEAR (2000).

Les données de l'UNSCEAR sont des valeurs moyennes sur l'ensemble du globe (essentiellement destinées à une évaluation de dose collective). La modélisation comporte une succession de calculs des activités spécifiques du ¹⁴C dans l'atmosphère puis dans les compartiments de la biosphère et des océans, à partir des estimations des rejets imputables aux tirs. Les paramètres du modèle sont ajustés pour être cohérents avec les mesures d'activité spécifique disponibles. Outre l'incertitude liée au modèle de l'UNSCEAR (18 compartiments sont pris en compte), la différence entre les résultats de l'UNSCEAR et ceux de la présente étude peut s'expliquer, en partie, par les valeurs de l'activité spécifique prises en compte, puisque dans la présente étude l'activité spécifique considérée est relative à la zone européenne. Or, l'activité spécifique du carbone est supérieure dans l'hémisphère nord par rapport à l'hémisphère sud (cf. figure 1 et tableau 1) : en 1964 par exemple, cette différence est de l'ordre de 60 Bq.kg⁻¹. Cette différence correspond à un écart⁶ de l'ordre de 3 µSv.an⁻¹ sur la dose par ingestion pour l'adulte. Par ailleurs, la présente étude intègre l'ensemble des rejets de carbone 14 (tirs atmosphériques et autres rejets anthropiques) alors que l'UNSCEAR prend en compte uniquement les tirs sous forme d'un terme source, ce qui va également dans le sens d'un écart entre les résultats.


En définitive, si l'on compare une modélisation des « transferts » d'activité spécifique du carbone dans tous les compartiments et in fine dans les végétaux et les productions animales à la mesure des végétaux eux-mêmes, cette dernière est probablement plus juste puisqu'elle donne directement l'activité spécifique de la biosphère. Ceci, à la condition de supposer une excellente représentativité des cernes d'arbres vis à vis de l'activité spécifique du carbone, ce qui est admis par la communauté scientifique.


⁶ Calculé avec l'équation 4.

Par ailleurs, la cohérence des valeurs relatives au bruit de fond montre que pour une source « connue » et parfaitement en équilibre au niveau mondial (i.e., production naturelle du ¹⁴C), les résultats des estimations sont similaires, ce qui tend à conforter la présente étude (notamment en termes de ration alimentaire considérée). Nous considérerons donc que l'excès de ¹⁴C imputable aux tirs (et autres rejets anthropiques) aboutit, pour l'adulte, à une dose efficace d'au maximum de 10 μSv en 1964 et que cette dose a décru d'un facteur 10 en 2004. Pour ce qui concerne les tranches d'âge inférieures à 12 ans, l'incertitude est essentiellement liée à celle relative la ration alimentaire; les valeurs du tableau 8, pour ces tranches d'âge, sont donc à considérer avec précaution.

3.3 Dose efficace cumulée

Pour estimer la dose efficace cumulée, nous avons considéré des cohortes de générations nées tous les 10 ans de 1940 à 1980 et additionné les doses annuelles, compte-tenu de l'âge atteint chaque année par chaque cohorte. La figure 10 présente respectivement la dose totale (incluant le bruit de fond) et l'excédent de dose en fonction de l'année et de la génération considérée.

Le terme « excès » est employé au sens de « excédent imputable aux tirs et autres rejets anthropiques ». Figure 10 : Dose cumulée liée à l'ingestion de carbone 14, par générations.

En termes de dose totale, la génération 1940 a reçu la dose la plus élevée : près de 1 mSv après une soixantaine d'années, ce qui reste faible eu égard à la dose « naturelle » totale (de l'ordre du millisievert par an). Les générations suivantes ont reçu des doses plus faibles.

L'excès de dose imputable aux tirs et autres rejets anthropiques est maximal et quasi identique en 2003 pour les générations nées en 1940, 1950 et 1960 : 180 μ Sv en 2003. Les générations plus jeunes se situent loin derrière avec des excès de dose de l'ordre de 50 à 100 μ Sv au total.

4 Conclusion

En complément du calcul des conséquences dosimétriques en France, entre 1961 et 1978 des retombées de produits de fission et d'activation liées aux essais aériens d'armes (Vray et Renaud, 2005), une évaluation similaire est faite pour le carbone 14, pour l'exposition par ingestion. Les calculs sont basés sur l'hypothèse consensuelle de l'équilibre isotopique du radiocarbone et du carbone stable, composant majeur de la matière organique. L'activité spécifique du carbone 14 dans la biosphère, nécessaire aux calculs, est estimée à partir de mesures faites en Europe disponibles dans la littérature scientifique récente ; la ration alimentaire est directement dérivée de celle établie par Vray et Renaud (2005).

Les résultats comparables (i.e., doses efficaces pour l'adulte) de la présente étude et publiés par ailleurs sont cohérents. En termes de méthodologie, ils montrent qu'une modélisation simple est appropriée à l'échelle locale, en dépit du comportement très complexe du carbone dans l'environnement : le fait d'estimer l'activité spécifique du carbone ingéré en la supposant égale à celle mesurée dans les végétaux (présente étude) permet de court-circuiter les sources d'incertitude liées à des modèles compartimentaux, dévolus préférentiellement à une détermination à l'échelle du globe (modèle UNSCEAR, 2000). Un modèle totalement agrégé (modèle AIEA, 2001), qui ne détaille même pas la ration alimentaire mais envisage une consommation globale de carbone (sous-jacente à l'utilisation d'un facteur de dose agrégé), se révèle tout aussi adéquat.

Malgré la persistance prolongée du ¹⁴C dans l'environnement (pas de décroissance physique significative et modalités de « transfert » très particulières), la dose efficace maximale imputable au ¹⁴C des rejets anthropiques est relativement modeste : 10 μSv.an⁻¹ en 1964, comparés à 270 μSv.an⁻¹ en 1961 pour le ¹³⁷Cs et le ⁹⁰Sr des tirs (Vray et Renaud, 2005). L'excès de ¹⁴C dans les années 1960, dû en quasi-totalité aux tirs, a presque doublé l'exposition liée au ¹⁴C d'origine naturelle. L'exposition au ¹⁴C est maintenant revenue à un niveau faiblement supérieur à sa valeur initiale en 1950, de l'ordre de la dizaine de microsieverts par an.

IRSI 2006 - 09 24/28

5 Bibliographie

AIEA (1982). Generic models and parameters for assessing the environmental transfer of radionuclides from routine releases. Agence Internationale de l'Énergie Atomique, Safety series n° 57.

AIEA (1985). The radiological impact of radionuclides dispersed on a regional and global scale: methods for assessment and their application. Agence Internationale de l'Énergie Atomique, Technical report series n° 250.

AIEA (2001). Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment. Agence Internationale de l'Énergie Atomique, Safety series n° 19.

Charles K et Jones S (2005). Disaggregation and valuation of collective dose and global circulation dose. *Journal of Radiological Protection* 25(277-288).

CIPR (1974). Report of the task group on Reference Man. International Commission on Radiological Protection, n° 23.

Daillant O, Kirchner G, Pigree G et Porstendorfer J (2004). Lichens as indicators of tritium and radiocarbon contamination. *Science of The Total Environment* 323(1-3): 253-262.

Ehleringer JR, Helliker BR et Cerling TE (1997). C4 photosynthesis, atmospheric CO₂ and climate. *Oecologia*: 285-299.

Euratom (1996). Directive 96/29/Euratom du Conseil du 13 mai 1996, fixant les normes de base relatives à la protection sanitaire de la population et des travailleurs contre les dangers des rayonnements ionisants. *Journal officiel des Communautés européennes*, 29 juin 1996.

Gao Q, Zhang X, Huang Y et Xu H (2004). A comparative analysis of four models of photosynthesis for 11 plant species in the Loess Plateau. *Agricultural and Forest Meteorology* 126(3-4): 203-222.

Garnier-Laplace J, Roussel-Debet S et Calmon P (1994). Modélisation des transferts du carbone 14 émis par les réacteurs à eau pressurisée en fonctionnement normal, dans l'environnement proche du site, dans les milieux aquatique d'eau douce et terrestre. Rapport IPSN/SERE 98-07.

Hua Q, Barbetti M, Jacobsen G.E, U Z et Lawson E (2000). Bomb radiocarbon in annual tree rings from Thailand and Australia. *Nuclear Instruments and Methods in Physics Research B* 172(359-365).

Isogai K, Cook GT et Anderson R (2002). Reconstructing the history of ¹⁴C discharges from Sellafield: Part 1-atmospheric discharges. *Journal of Environmental Radioactivity* 59(2): 207-222.

Keeling CD et Whorf TP (2001). Atmospheric Carbon Dioxide Record from Mauna. In Trends Online: a Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, at http://cdiac.esd.ornl.gov. Scripps Institution of Oceanography (SIO) University of California, La Jolla, California, USA.

Le Dizès S (2004). Modélisation du transfert de Carbone 14 dans l'environnement. Implémentation au formalisme SYMBIOSE. Rapport IRSN/DEI/SECRE/2004-029.

Mc Namara N et McCartney M (1998). A New Estimate of Atmospheric ¹⁴C Discharges from Sellafield. *Journal of Environmental Radioactivity* 41(1): 1-10.

McGee EJ, Gallagher D, Mitchell PI, Baillie M, Brown D et Keogh SM (2004). Recent chronologies for tree rings and terrestrial archives using ¹⁴C bomb fallout history. *Geochimica et Cosmochimica Acta* 68(11): 2509-2516.

Muraki Y, Masuda K, Arslanov KA, Toyoizumi H, Kato M, Naruse Y, Murata T et Nishiyama T (2001). Measurement of radiocarbon content in leaves from some japanese sites. *Radiocarbon* 43(2): 695-701.

NCRP (1996). Screening models for releases of radionuclides to atmosphere, surface water and ground. National Council on Radiation Protection and Measurements. NCRP report 123.

OMS (1987). Critères d'hygiène de l'environnement. Quelques radionucléides. Tritium, carbone 14, krypton 85, strontium 90, jode, césium 137, radon, plutonium. Organisation Mondiale de la Santé, Genève.

Otlet RL, Walker AJ, Fulker MJ et Collins C (1997). Bakground carbon-14 levels in UK foodstuffs, 1981-1995, based upon a 1992 survey. *Journal of Environmental radioactivity* 34(1): 91-101.

Prentice I, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Quéré C, Le Scholes RJ et Wallace DWR (2001). *The Carbon Cycle and Atmospheric Carbon Dioxide*, In: IPPC 2001. *Climate Change 2001: The Scientific Basis*. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University press, NY, USA, 881 p., p.191-199.

Redondo R et Yelamos JG (2005). Determination of CO_2 origin (natural or industrial) in sparkling bottled waters by 13 C/ 12 C isotope ratio analysis. Food Chemistry In Press, Corrected Proof.

Roussel-Debet S, Gontier G, Siclet F et Fournier M (2006). Distribution of Carbon 14 in the terrestrial environment close to French nuclear power plants. *Journal of Environmental Radioactivity* sous PRESSE: 1-14.

Sheppard SC, Amiro BD, Sheppard MI, Stephenson M, Zach R et Bird GA (1994). Carbon-14 in the biosphere: Modeling and porting research for the Canadian Nuclear Fuel Waste Management program. *Waste Management* 14(5): 445-456.

Simmonds JR, Lawson G et Mayall A (1995). *Methodology for assessing the radiological consequences of routine releases of radionuclides to the environment*. National Radiological Protection Board, Institut de Protection et de Sureté Nucléaire, Centro de Investigationes Energeticas Spain, Consejo de Seguridad Nuclear Spain. CCE contract 91-ET-021. Report EUR 15760.

Stuiver M et Polach HA (1977). Reporting of ¹⁴C data. Radiocarbon 19(3): 355-363.

UNSCEAR (2000). Report to the General Assembly, Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation.

US-NRC (1977). Calculation of annual doses to man from routine releases of reactor effluents for the purpose of evaluating compliance with 10 CFR part 50, appendix 1. United States Nuclear Regulatory Commission. Regulatory guide 1-109 revision 1.

Vray F et Renaud P (2005). Conséquences dosimétriques des essais aériens d'armes nucléaires en France métropolitaine. Période 1961-1978. Rapport DEI/SESURE n° 2005-17.

Waller S et Mewis J (1979). Occurrence of C3 and C4 photosynthetic pathways in North American grasses. *Journal of Range management* 32(1): 12-28.

Wang WW, B; Zhang, SZ; Shan, XQ et Hsieh Y (2002). Uncertainties and novel prospects in the study of the soil carbon dynamics. *Chemosphere* 49: 791-804.

Zach R et Sheppard S (1992). The food chain and dose sub-model CALDOS for the assessment of Canada's fuel waste management concept. Rapport Atomic Energy Canada Limited, AECL 10165.

6 Annexe

6.1 Fractionnement isotopique

Lors de la photosynthèse, il se produit une discrimination isotopique : les rapports 13 C/ 12 C et 14 C/ 12 C sont plus faibles dans les tissus végétaux que dans le CO₂ atmosphérique (dont le δ^{13} C est voisin de - 8 0 /₀₀).

À l'équilibre le fractionnement sur le ¹⁴C est presque égal à deux fois le fractionnement sur le ¹³C.

Conventionnellement, cette discrimination est exprimée par $\delta^{13}C$ ($^{0}/_{00}$) qui représente le rapport isotopique $^{13}C/^{12}C$ l'échantillon par rapport à la référence absolue conventionnelle PDB (Bélemnite de la formation PeeDee, Crétacé, Caroline du Sud, USA) dont le $\delta^{13}C$ est égal à 0 par définition.

$$\mbox{Ainsi,} \ \, \delta^{13} C = \frac{^{13} \, C/^{12} C_{\mbox{\scriptsize \'echantillon}} - ^{13} \, C/^{12} C_{\mbox{\scriptsize \'eférence}}}{^{13} \, C/^{12} C_{\mbox{\scriptsize \'eférence}}} \times 1000 \, .$$

Ce fractionnement dépend des espèces selon leur cycle photosynthétique dominant (e.g., Waller et Mewis, 1979; Ehleringer et al., 1997; Wang et Hsieh 2002; Gao et al., 2004; Redondo et Yelamos, 2005).

Pour la majorité des végétaux i.e., arbres et la plupart des plantes spontanées des zones tempérées ou froides, le fractionnement isotopique est maximal. Ces végétaux sont dits « C3 » car, lors de la photosynthèse, l'assimilation du CO_2 passe par la formation de composés possédant 3 atomes de carbone Cette phase est catalysée par une enzyme, la Rubisco (ribusole biphosphate carboxylase oxygénase) qui représente 50 % de l'ensemble des protéines des feuilles photosynthétiquement actives et qui est la protéine la plus abondante au monde. Les végétaux C3 sont moyennement efficients en ce qui concerne la fixation du CO_2 (environ 8 g de C fixé par jour et m^2 de feuille) et ils ont normalement un δ^{13} C qui varie de -20 à -35 $^0/_{00}$ avec une moyenne de -27 $^0/_{00}$.

Les plantes les moins abondantes sont dites « C4 » ; elles forment, au cours de la photosynthèse, une molécule à 4 atomes de carbone (réaction catalysée par la PEP : phosphophénol pyruvate carboxylase); ce sont pour l'essentiel, des graminées tropicales, certaines halophytes – plantes adaptées aux sols salés – ainsi que le maïs et le sorgho. Elles sont très efficaces pour la fixation du CO_2 (environ 19 g de C fixé par jour et par m² de feuille); leur δ^{13} C est en moyenne de – 13 0 / $_{00}$ et varie de – 9 à –17 0 / $_{00}$ (Wang et Hsieh, 2002; Redondo et Yelamos, 2005). Quelques espèces (e.g. cactus) qui utilisent les cycles photosynthétiques C3 et C4 ont un δ^{13} C intermédiaire.

6.2 Unités associées

Pour le 14 C, il est tenu compte de ce fractionnement par l'utilisation du DELTA Δ^{14} C (0 / $_{00}$), qui représente l'enrichissement (Δ^{14} C > 0) ou la diminution (Δ^{14} C < 0) de l'activité spécifique du 14 C, normalisée par rapport à celle du carbone moderne de référence, après correction de la discrimination isotopique 14 C/ 12 C, elle-même déduite de la mesure du δ^{13} C (Stuiver et Polach, 1977):

$$\Delta^{14}C = \left\{ \frac{A_{SN} \cdot e^{-\lambda(t-t_0)}}{A_0} - 1 \right\} \times 1000 \text{ avec } A_{SN} = A \left\{ 1 - \frac{2 \cdot (\delta^{13}C_{PDB} + 25)}{1000} \right\}$$

 $\Delta^{14}C\,(^{0}/_{00}) \qquad \text{enrichissement ou diminution de l'activit\'e sp\'ecifique du} \ ^{14}C\ de l'\'echantillon, normalis\'ee par rapport au carbone moderne de référence et corrigée (s'il y a lieu) pour la décroissance radioactive; <math display="block">\delta^{13}C\,(^{0}/_{00}) \qquad \text{activit\'e sp\'ecifique du} \ ^{13}C\ de l'\'echantillon par rapport à la référence absolue PDB; \\ A_{SN}\,(Bq.kg^{-1}\,C) \qquad \text{activit\'e sp\'ecifique du} \ ^{14}C\ de l'\'echantillon, normalis\'ee par son $\delta^{13}C$; \\ A_{0}\,(Bq.kg^{-1}\,C) \qquad \text{activit\'e sp\'ecifique du} \ ^{14}C\ de l'\'echantillon non corrigée; \\ A_{0}\,(Bq.kg^{-1}\,C) \qquad \text{activit\'e sp\'ecifique du} \ ^{14}C\ de l'\'echantillon non corrigée; \\ \lambda_{0}\,(an^{-1}) \qquad \text{constante de d\'ecroissance radioactive, } \lambda = Ln2/5568, 5568 \ ans \'etant la p\'eriode radioactive conventionnelle du \ ^{14}C \ ; \\ année du pr\'elèvement; \\ t_{0} \qquad \text{année de r\'ef\'erence, } t_{0} = 1950.$

Dans cette formulation, la valeur 2 traduit le fait que la discrimination du ^{14}C par rapport à ^{12}C est environ le double de la discrimination ^{13}C par rapport à ^{12}C . Par convention, la valeur 25 a été choisie de façon que $\Delta^{14}\text{C} = \delta^{14}\text{C}$ lorsque $\delta^{13}\text{C} = -25\,^0/_{00}$ (les laboratoires utilisant comme standard ^{14}C , une référence acide oxalique dont le $\delta^{13}\text{C}$ est ramené à $-25\,^0/_{00}$). L'exponentielle n'est utile qu'en datation, en raison de la décroissance très lente du ^{14}C .

Une autre expression est fréquemment utilisée : PMC (Percent of Modern Carbon) $PMC = A_{SN}/100$ (%).

Ces expressions servent en datation, en particulier en dendrochronologie ; une application dérivée est l'estimation de la contamination de l'environnement en fonction du temps par l'analyse du carbone 14 des cernes d'arbres. La prise en compte du fractionnement dans ce cas garantit un suivi plus fin des données acquises.