IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :


Contact us :

En Fr

All our expertise to protect you



Mechanistic study of the toxicity of ionizing radiation in Daphnia magna

Florian Parisot​ has defended his thesis on 15th December 2015 at CEA Cadarache.

Document type > *Mémoire/HDR/Thesis

Keywords >


Authors > PARISOT Florian

Publication Date > 15/12/2015


Anthropogenic activities related to the nuclear industry contribute to continuous discharges of radionuclides into terrestrial and aquatic ecosystems. Over the past decades, the ecological risk of ionizing radiation has become a growing public, regulatory and scientific concern for ecosystems protection. Until recently, only few studies focus on exposure situations at low doses of irradiation, although these situations are representative of realistic environmental conditions. Understanding how ionizing radiation affects species over several generations and at various levels of biological organization is a major research goal in radioecology. The aim of this PhD was to bring new knowledge on the effects of ionizing radiation during a multigenerational expose of the aquatic invertebrate, Daphnia magna. A two-step strategy was implemented. First, an external gamma radiation at environmentally relevant dose rates was performed on D. magna over three successive generations (F0, F1 and F2). The objective of this experiment was to examine whether low dose rates of radiation induced increasing effects on survival, growth and reproduction of daphnids over generations and to test a possible accumulation and transmission of DNA alterations from adults to offspring. Results showed an accumulation and a transmission of DNA alterations over generations, together with an increase in effect severity on growth and reproduction from generation F0 to generation F2. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in generation F1. Second, data from the external gamma irradiation and those from an earlier study of internal alpha contamination were analyzed with DEBtox models (Dynamic Energy Budget applied to toxicology), to identify and compare the causes of the transgenerational increase in effect severity between the two types of radiation. In each case, two distinct metabolic modes of action were necessary to explain effects on size and reproduction of D. magna across generations. Modelling results suggested that alpha and gamma radiation acted on different combinations of modes of action, illustrating the complexity of biological processes. This research contributed to bring significant knowledge on chronic effects of ionizing radiation and clearly indicated the importance, in the future, of further studying and understanding transgenerational effects induced by low doses of radiation.


Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?