SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

Development of electron paramagnetic resonance (EPR) spectroscopy on human fingernails for biodosimetry of radiological accidents

​Nicolas Tkatchenko has defended his thesis on September 14th 2018 at Fontenay-aux-Roses, France

Document type > *Mémoire/HDR/Thesis

Keywords >

Research Unit > IRSN/PRP-HOM/SDE/LDRI

Authors > TKATCHENKO Nicolas

Publication Date > 14/09/2018

Summary

​The purpose of this work is to assist in the management of emergency situations following accidental exposition to ionizing radiation. The earlier absorbed doses are quantified following exposure, the more efficient the medical team will be able to handle and treat the victims. In most of radiological accidents, irradiation is localized and especially to the hands. Up to now, no techniques exist to estimate these doses with sufficient accuracy. IRSN is implementing a dosimetry technique based on the quantification of radiation induced free radicals using Electron Paramagnetic Resonance (EPR) spectroscopy in fragments human nails. However, the analysis of irradiated nails by EPR spectroscopy remains extremely complicated. A first step was to characterize the nature of radicals at the origin of the endogenous and radio-induced signals and to study their physicochemical properties. We also study the variability of these signals, and we identified a stable UV-induced signal that definitely contributes to the endogenous signal. Two approaches to measure low doses have been proposed: one is based on the behavior of radiation-induced signals with the microwave radiation power; the other is based on the selective regrowth of the radio-induced signal after its total elimination by means of chemical treatment. We have also raised the issue of spectral analyses that is operator-dependent. To avoid manual adjustements, we proposed a uniform EPR data processing approach. Traditional EPR procedures have been vastly improved through simple, repeatable and automatic functional processing of EPR spectra.

Send Print

Involved IRSN laboratory

Contact


Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok