The work described in this manuscript is part of a research program on the aging of nuclear infrastructures launched by the IRSN (Institute for Radiological Protection and Nuclear Safety) within the project aiming to extend the lifespan of the French nuclear power plants. The goal is to contribute to the knowledge of aging mechanisms touching the constituents of non-replaceable structures of a nuclear power plant, such as the containment building. Matter of fact, the behavior of such structures is an important point for the safety assessment of nuclear installations because they represent the third and last barrier against the dispersion of radioactive particles in the environment.
Among the phenomena involved in aging mechanisms, internal swellings reactions (ISR) are pathologies that can degrade concrete by causing swelling, cracking and major disorders in the affected structures. Internal swelling reactions (ISW) include the delayed ettringite formation (DEF), the alkali-aggregate reaction (AAR) and the concomitance of the two. These pathologies are endogenous reactions, occurring as a result of the interaction between the initial components of the material. These interactions take place following the use of reactive aggregates in case of AAR and/or following a significant warm-up at the concrete’s early age in case of DEF. In nuclear facilities, the possibility of these phenomena cannot be ruled out. Matter of fact, they include massive reinforced concrete elements for which a significant heating could have occurred at the early age. Moreover, reactive aggregates may have been used during the construction phase. Therefore those risks ought to be studied especially if the extension of the lifespan of these installations is envisaged.
However, the kinetics of these reactions are generally slow and it can take for up to a few decades for disorders to appear in the structure. Among the solutions used in research laboratories, one is to use accelerated test methods developed on small specimens.
The research work carried out in this context includes three major axis: the development of an experimental protocol to accelerate internal swelling reactions of concrete on a massive structure scale, multi-scale analysis of the phenomena involved and the development of innovative instrumentation adapted to this problem. The purpose is to allow better observation and understanding of swelling reactions at such scale. Hence, three representative massive concrete mock-ups whose dimensions are 2,4 x 1,4 x 1 m3 were realized under controlled and optimized conditions for the development of delayed ettringite formation (DEF), alkali silica reaction (ASR) and the concomitant ASR-DEF case respectively.
An innovative instrumentation method using optical fibers is also developed thus allowing the monitoring of the pathologies in the massive structures and the tracking of the respective deformation fields in several two-dimensional plans of interest. The measurements are to finely describe and help in understanding the evolutionary mechanisms of structural degradation and can be used subsequently as a reference for numerical simulations.
The scale effect on swelling kinetics is demonstrated by an experimental study comparing the evolution of swelling reaction in the massive samples with the evolution in reconstituted concrete laboratory specimens as well as coring specimens.