IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :


Contact us :

En Fr

Enhancing Nuclear Safety



Consequences of the Rhône River floods on 137Cs, 238Pu and 239+240Pu fluxes towards the Mediterranean Sea

Congress title :11th International Symposium on the Interactions between Sediments and Water
Congress town :Esperance
Congress date :17/02/2008

Document type > *Congrès/colloque

Keywords > 137Cs, 238Pu, 239+240Pu, floods, flux, plutonium isotopes, sediments


Authors > EYROLLE Frédérique, GURRIARAN Rodolfo, ROLLAND Benoît

Publication Date > 22/02/2008


The continental shelf of the Gulf of Lion (NW Mediterranean Sea) is one of the largest in the Mediterranean Sea and is characterised by large amounts of terrestrial material inputs and high rates of biological productivity. Sediment inputs to this environment are dominated by those from the Rhône River. The major role played by floods in annual sediment budgets is generally known and has been demonstrated in various case studies. For the North Western part of Mediterranean Sea, floods of the Rhône River are considered to be key moments for sedimentary fluxes. Important industrial and agricultural activities in the river basin result in strong nutrient and pollutant fluxes to the Rhône, an anthropogenic impact that also affects the marine system, since the Rhône inputs play a leading role in the functioning of the whole Gulf of Lion. Almost twenty nuclear reactors are located along the Rhône valley, representing Europe's biggest concentration of nuclear power plants. Until its closure in 1997, the Marcoule reprocessing plant of spent nuclear fuel released most of the liquid radioactive wastes to the river. Radioactive isotopes observed in the Rhône also originate from the weathering of the catchment basin contaminated by the global atmospheric fallout from the past nuclear tests carried out between 1945 and 1980 and the atmospheric fallout from the Chernobyl accident in 1986. These primary radioactive inputs are today several orders of magnitude lower than those observed at the beginning of the 90s. Nevertheless, floods strongly act on the reuptake of contaminated sediment accumulated over the past 40 years of nuclear production/reprocessing. This particularly concerns long-lived particle reactive artificial radionuclides such as 137Cs, 238Pu and 239+240Pu. Our studies conducted from 2002 to 2004 show that more than 50% of caesium and plutonium annual fluxes are driven to the marine environment during floods that occurs only 10 to 20 days per year. 30% to 90% of these fluxes originate from the remobilisation of sedimentary storages.


Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?