IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :


Contact us :

En Fr

Enhancing Nuclear Safety



In-situ database toolbox for short-term dispersion model validation in macro-tidal seas, application for 2D-model

Continental Shelf Research / Volume 36, 15 March 2012, Pages 63–82

Document type > *Article de revue

Keywords >

Research Unit > IRSN/DEI/SECRE/LRC

Authors > BAILLY DU BOIS Pascal, DUMAS Franck, SOLIER Luc, VOISEUX Claire

Publication Date > 31/01/2012


Appropriate field data are required to check the reliability of hydrodynamic models simulating the dispersion of soluble substances in the marine environment. This study deals with the collection of physical measurements and soluble tracer data intended specifically for this kind of validation.


The intensity of currents as well as the complexity of topography and tides around the Cap de La Hague in the centre of the English Channel make it one of the most difficult areas to represent in terms of hydrodynamics and dispersion. Controlled releases of tritium—in the form of HTO—are carried out in this area by the AREVA-NC plant, providing an excellent soluble tracer. A total of 14,493 measurements were acquired to track dispersion in the hours and days following a release. These data, supplementing previously gathered data and physical measurements (bathymetry, water-surface levels, Eulerian and Lagrangian current studies) allow us to test dispersion models from the hour following release to periods of several years which are not accessible with dye experiments. The dispersion characteristics are described and methods are proposed for comparing models against measurements.


An application is proposed for a 2 dimensions high-resolution numerical model. It shows how an extensive dataset can be used to build, calibrate and validate several aspects of the model in a highly dynamic and macrotidal area: tidal cycle timing, tidal amplitude, fixed-point current data, hodographs.


This study presents results concerning the model's ability to reproduce residual Lagrangian currents, along with a comparison between simulation and high-frequency measurements of tracer dispersion.

Send Print

Full text

Involved IRSN laboratory



Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?