Didier Jacquemain, Coordinator

Nuclear Power Reactor
Core Melt Accidents

Current State of Knowledge
Nuclear Power Reactor Core Melt Accidents

Current State of Knowledge

Ahmed Bentaïb, Hervé Bonneville, Gérard Cénérino, Bernard Clément, François Corenwindner, Michel Cranga, Gérard Ducros, Florian Fichot, Didier Jacquemain, Christophe Journeau, Vincent Koundy, Denis Leteinturier, Daniel Magallon, Renaud Meignen, Frédérique Monroig, Georges Nahas, Frédérique Pichereau, Emmanuel Raimond, Jean-Marie Seiler, Bruno Tourniaire, Jean-Pierre Van-Dorsselaere

Didier Jacquemain, Coordinator
Cover illustration: Radiographic image of Phebus FP test devices and an artist’s impression of the TMI-2 reactor core after fuel melt.

All rights reserved for all countries. This document may not be translated, adapted or reproduced by any means without permission. Pursuant to paragraphs 2 and 3 of Article 41 of the Act of 11 March 1957 only “copies or reproductions strictly reserved for the copyist’s private use and not intended for collective use” are authorised. Regarding analyses and brief quotations intended as examples and illustrations, paragraph 1 of Article 40 of the same Act stipulates that “any representation, in whole or in part, made without the consent of the author or his/her successors or assignees is illicit.” Such representation or reproduction, made by whatever means, therefore constitutes an infringement punishable under Articles 425 et seq. of the French Penal Code.

© IRSN 2015
This new publication on what are referred to as “severe” core melt accidents, which may occur in pressurised light-water reactors, is the result of one of the most comprehensive surveys ever conducted on this subject. The knowledge it contains is presented with a strong educational focus. I would like to take this opportunity to thank all those mentioned in the foreword who contributed to this vast project, with a special mention for its coordinator D. Jacquemain.

Although the project was not yet completed, considerable headway had already been made when the Fukushima Daiichi disaster struck. This was the world’s third severe accident and resulted in the destruction of three nuclear power reactors and the release of large quantities of radioactive material to the sea and atmosphere. It raised the question as to whether the project should be postponed to take into account feedback from these major events. It was however decided to complete the book as soon as possible as it would be several years before any detailed scientific information from the Fukushima Daiichi accident became available. Furthermore, the knowledge and models already available within IRSN on the phenomenology of this type of accident had enabled the Institute to carry out valuable real-time assessments of changes in the state of the reactors.

For more than thirty years, IRSN has been carrying out experimental studies on the phenomena that lead to reactor core melt and those induced by this type of event. Back in the 1960s when the first nuclear power reactors were designed, a core melt was considered impossible because of the design measures taken to prevent it, such as design margins and redundant safety systems to halt the chain reaction and remove the heat generated in the reactor core. Consequently, no measures were included in reactor design to mitigate the impact of this type of event. This approach had to be rethought following the accident at the Three Mile Island nuclear power plant in the United States in 1979. It was then necessary to determine how fuel could be damaged in a reactor core and, more especially to understand the melting process induced by a loss of cooling that
could ultimately lead to failure of the reactor coolant system – and the reactor vessel in particular. The next step was to grasp how chemical or radiolytic reactions could induce a significant release of hydrogen and many fission products exhibiting varying degrees of volatility and toxicity.

An experimental programme unlike any other in the world was then launched using Phebus, a reactor built by the CEA at Cadarache in the south of France. As part of the programme, fuel melt tests were performed on a reduced scale, representative of the actual operating conditions in a pressurised water reactor. New knowledge was to emerge from this impressive programme, including some surprises that called into question certain theoretical predictions. Models aimed at simulating these extreme phenomena in a full-scale reactor were then developed and incorporated in computer tools and validated during these tests.

As knowledge of severe accidents grew over the years, some countries took concrete steps to improve the safety of power reactors – whether existing or planned. SARNET, an international network of experts and researchers led by IRSN from 2004 to 2013, coordinated continuous improvement of knowledge and the standards of models used to simulate severe accident phenomena in various types of reactor. This collaboration is being continued as part of the European NUGENIA association. Further experiments are needed, however, to reduce uncertainty on various phenomena with a significant impact on the consequences (especially for health) of a severe accident, although, based on data from the Phebus programme, such experiments are now designed as analytical tests, known as separate-effect tests. These are designed to target individual phenomena for which greater knowledge is required: what happens if an attempt is made to “reflood” a severely damaged, partially melted reactor core? What happens to the corium – the chemically and thermally aggressive mixture of fuel and molten metal – once it is released from the reactor core? Another question, of prime importance for radiation protection, concerns the behaviour of the different chemical species of radioactive iodine and ruthenium which are produced in large quantities inside the reactor containment, with varying degrees of volatility.

IRSN and its national and international research partners will continue to devote considerable resources in these areas over the coming years. For the past fifteen years, the Institute has never lost sight of the fact that severe accident research is vital. Unfortunately, the accident at Fukushima proved it right. The knowledge already acquired, as well as that yet to come, should be used not only to go on improving existing reactors wherever possible, but also to ensure that in the future, the nuclear industry at last develops reactors that no longer expose countries opting for nuclear energy to the risk of accidents, and the ensuing radioactive contamination of potentially large areas, that most human societies consider unacceptable. I hope that this publication helps to disseminate existing knowledge on this crucial topic as the new generation of nuclear engineers takes over from the old. I also hope it serves to illustrate how important it is to continue research and industrial innovation, without which no essential progress can be made in the field of nuclear safety.

Jacques Repussard
IRSN Director-General
Institutions
AEAT: Atomic Energy Authority Technology, UK (AEC Technology plc)
AECL: Atomic Energy of Canada Limited, a nuclear science and technology research institute
AEKI: Atomic Energy Research Institute, Budapest, Hungary
ANCCLI: Association nationale des comités et commissions locales d’information (French National Association of Local Information Commissions and Committees)
ANL: Argonne National Laboratory, USA
ANR: Agence nationale de la recherche (National Research Agency, France)
ASN: Autorité de sûreté nucléaire (Nuclear Safety Authority, France)
AVN: Association Vinçotte nucléaire (Vinçotte Nuclear Association, Belgium)
BARC: Bhabha Atomic Research Centre, India
BNL: Brookhaven National Laboratory, USA
CEA: Commissariat à l’énergie atomique et aux énergies alternatives (Alternative Energies and Atomic Energy Commission, France)
CLI: Commission locale d’information (French Local Information Commission)
CNL (formerly AECL): Canadian Nuclear Laboratories
CNRS: Centre national de la recherche scientifique (French National Centre for Scientific Research)
CSNI: Committee on the Safety of Nuclear Installations, OECD
EDF: Électricité de France (French power utility)
EPRI: Electric Power Research Institute, USA
FAI: Fauske & Associates, Inc., USA
FzD: Forschungszentrum Dresden-Rossendorf (research laboratory in Dresden, Germany)
FzK: Forschungszentrum Karlsruhe (Karlsruhe Institute of Technology, Germany)
GRS: Gesellschaft für Anlagen – und Reaktorsicherheit, (reactor safety organisation in Germany)
IAEA: International Atomic Energy Agency, Vienna, Austria
IBRAE: Nuclear Safety Institute of Russian Academy of Sciences
ICRP: International Commission on Radiological Protection
IKE: Institut für Kernenergetik und Energiesysteme, Universität Stuttgart (Institute for Nuclear Technology and Energy Systems, University of Stuttgart, Germany)
INEL: Idaho National Engineering Laboratories, Idaho, USA
INL: Idaho National Laboratory, USA
INSA: Institut national des sciences appliquées (National Institute of Applied Science, France)
IPSN: Institut de protection et de sûreté nucléaire (Institute for Nuclear Safety and Protection, France)
IREX: Institut pour la recherche appliquée et l’expérimentation en génie civil (Institute for Applied Research and Experimentation in Civil Engineering, France)
IRSN: Institut de radioprotection et de sûreté nucléaire (Institute for Radiological Protection and Nuclear Safety, France)
ISS: Innovative Systems Software, USA
ISTC: International Science and Technology Centre, EC
JAEA: Japan Atomic Energy Agency
JAERI: Japan Atomic Energy Research Institute
JNES: Japan Nuclear Energy Safety
JRC: Joint Research Centre, EC
JSI: Jožef Stefan Institute, Slovenia
KAERI: Korea Atomic Energy Research Institute, South Korea
KAIST: Korea Advanced Institute of Science and Technology, South Korea
KINS: Korea Institute of Nuclear Safety, South Korea
KIT (ex-FzK): Karlsruher Institut für Technologie (Karlsruhe Institute of Technology, Germany)
KTH, see RIT
LUCH: Scientific Manufacturer Centre, Russia
MIT: Massachusetts Institute of Technology, USA
NEA: Nuclear Energy Agency, OECD
NIAR: Scientific Research Institute of Atomic Reactors, Russia
NIITI: Aleksandrov Scientific Research Technological Institute, Saint Petersburg, Russia
NRC-KI (formerly RRC-KI): National Research Centre Kurchatov Institute, Moscow, Russia
NUPEC: Nuclear Power Engineering Corporation, Japan
OECD: Organisation for Economic Co-operation and Development
ORNL: Oak Ridge National Laboratory, USA
PSI: Paul Scherrer Institute, Switzerland
RIT (formerly KTH): Royal Institute of Technology, Stockholm, Sweden
SKI: Swedish Nuclear Power Inspectorate
SNL: Sandia National Laboratory, USA
UCLA: University of California, Los Angeles, USA
UCSB: University of California, Santa Barbara, USA
UJV: Nuclear Research Institute Rez, Czech Republic
US NRC: United States Nuclear Regulatory Commission, USA
VTT: Technical Research Centre, Finland

Technical abbreviations
Ag-In-Cd: Silver-Indium-Cadmium
AICC: Adiabatic Isochoric Complete Combustion
ARTIST: Aerosol Trapping in a Steam Generator (experimental programme carried out by the Paul Scherrer Institute [PSI])
ATWS: Anticipated Transient Without Scram (automatic reactor shutdown without insertion of control rods or transients with failure of the automatic reactor shutdown system – also known as ATWR for anticipated transient without (reactor) trip)
AVS: Annulus Ventilation System (1300 MWe, 1450 MWe reactors and EPR)
BIP: Behaviour of Iodine Project (international programme on iodine behaviour under the auspices of the OECD)
BL: Electrical Building
BWR: Boiling Water Reactor
CANDU: CANada Deuterium Uranium reactor (a heavy-water reactor)
CCWS: Component Cooling Water System
CFD: Computational Fluid Dynamics
CHF: Critical Heat Flux
CHRS: Containment Heat Removal System (a reactor spraying system in the EPR designed for use in severe accidents)
CODIR-PA: French Post-accident Management Steering Committee
CRP: Coordinated Research Programme on Severe Accident Analysis, IAEA
CSA: Complementary Safety Assessment
CSARP: Cooperative Severe Accident Research Programme (coordinated by the US NRC)
CSD: Severely Degraded Fuel
CSS: Containment Spraying System
CVCS: Chemical and Volume Control System
DAC: Facility construction licence
DCH: Direct Containment Heating (of gases)
DDT: Deflagration-Detonation Transition
E3B: Extension of the third containment barrier
EEE: Containment annulus (1300 MWe, 1450 MWe reactors and EPR)
EFWS: Emergency Feedwater System
ENACEEF: Flame acceleration facility, an experimental installation of the CNRS/ICARE in Orleans, France
EPR: European Pressurised Water Reactor
EPS: Emergency Power Supply
ESWS: Essential Service Water System
ETY: Hydrogen Reduction and Measurement System
FB: Fuel Building
FNR: Fast Neutron Reactor
FP: Fission Products
FP + number: European Commission Framework Programme for research and technological development (e.g., FP6, FP7 for the sixth and seventh framework programmes)
FPCPS: Fuel Pool Cooling and Purification System
FWLB: Feedwater Line Break
GAEC: Assistance Guide for Emergency Response Teams
GCR: Gas-Cooled, Graphite-Moderated Reactor
GIAG: Severe Accident Operating Guidelines
HHSI: High Head Safety Injection
HRA: Human Reliability Analysis
HTR: High Temperature Reactor
IRWST: In-containment Refuelling Water Storage Tank (borated water tank located inside the EPR containment building)
ISP: International Standard Problem
ISTP: International Source Term Programme
LHF: Lower Head Failure (failure in the lower part of the reactor vessel)
LHSI: Low Head Safety Injection (or Low Head Safety Injection System according to context)
LOCA: Loss-of-Coolant Accident
LUHS (H1): Loss of Ultimate Heat Sink (H1 in France)
MCCI: Molten Core-Concrete Interaction
MFWS: Main Feedwater System
MHPE: Maximum Historically Probable Earthquake
MHSI: Medium Head Safety Injection
MOX: Mixed Oxide Fuel (fuel composed of a mixture of UO2 + PuO2)
MPL: Maximum Permissible Level (of radioactivity)
NAB: Nuclear Auxiliary Buildings
OLHF: OECD Lower Head Failure (OECD research programme on failure in the lower part of the reactor vessel)
ORSEC: French emergency response plan
PBMR: Pebble Bed Modular Reactor (a type of high-temperature reactor or HTR)
PDS: Plant Damage State
PHWR: Pressurised Heavy Water Reactor
PPI: Off-site Emergency Plan
PRT: Pressuriser Relief Tank
PSA: Probabilistic Safety Assessment
PUI: On-site Emergency Plan
PWR: Pressurised Water Reactor
RB: Reactor Building
RBMK: Reactor Bolshoy Moshchnosty Kanalny (high-power Russian reactor with pressure tubes)
RCS (transients): Transients on the Reactor Coolant System
RCS: Reactor Coolant System
RFS: Basic Safety Rule
RHRS: Residual Heat Removal System
SAB: Safeguard Auxiliary Buildings
SARNET: Severe Accident Research NETwork of excellence, a European research project to study core melt accidents in water reactors
SBO (H3): Station Blackout
SERENA: Steam Explosion REsolution for Nuclear Applications (an OECD research programme)
SG: Steam Generator
SGTR: Steam Generator Tube Rupture
SI: Safety Injection
SIS: Safety Injection System
SLB: Steam Line Break
SME: Seismic Margin Earthquake
SOAR: State-of-the-Art Report
TAM: Equipment hatch
TGT: Thermal Gradient Tube
TGTA-H2: Accident with total loss of steam generator feedwater supply and failure of “feed and bleed” operating mode (or transients on the secondary system)
TMI: Three Mile Island, USA
TMI-2: Reactor 2 at the Three Mile Island NPP, USA
VCI: Pre-service Inspection
VD: Ten-Yearly Outage Programme
V-LOCA: Loss of Coolant Accident (containment bypass accidents or loss-of-coolant accidents outside the containment building)
VVER: Vodo-Vodyanoi Energetichesky Reaktor (Russian water-cooled, water-moderated nuclear power reactor)
ZPP: Population Protection Zone
ZST: Reinforced Environmental Monitoring Zone
This summary of knowledge on core melt accidents is a collective work written for the most part by authors from the \textit{Institut de Radioprotection et de Sûreté Nucléaire} (French Institute for Radiological Protection and Nuclear Safety or IRSN). Some sections include contributions from authors from the \textit{Commissariat à l’énergie atomique et aux énergies alternatives} (French Alternative Energies and Atomic Energy Commission or CEA). Experts from both these organisations and from EDF, a French power utility, also took part in carefully proofreading various chapters. We would like to express our thanks to all those who contributed in one way or another to this publication.

Didier Jacquemain from IRSN, who was the project coordinator.

Contributions were made by the following authors:

- Chapters 1, 2, 3 and 9: Didier Jacquemain;
- Chapter 4: Gérard Cénérino, François Corenwinder, Didier Jacquemain and Emmanuel Raimond from IRSN;
- Chapter 5: Ahmed Bentaïb from IRSN (Section 5.2.2), Hervé Bonneville from IRSN (Section 5.1.4), Bernard Clément from IRSN (Section 5.5), Michel Cranga from IRSN (Sections 5.3, 5.4.2 and 5.4.3), Gérard Ducros from CEA (Section 5.5), Florian Fichot from IRSN (Sections 5.1.1, 5.1.2 and 5.4.1), Christophe Journeau from CEA (Section 5.4.3), Vincent Koundy from IRSN (Section 5.1.3), Daniel Magallon from CEA (Section 5.2.3), Renaud Meignen from IRSN (Sections 5.2.1 and 5.2.3), Jean-Marie Seiler from CEA (Section 5.4.1) and Bruno Tourniaire from CEA (Sections 5.3 and 5.4.2);
- Chapter 6: François Corenwinder, Denis Leteinturier, Frédérique Monroig, Georges Nahas and Frédérique Pichereau from IRSN;
– Chapter 7: Bernard Clément (Section 7.3) and Didier Jacquemain (Sections 7.1 and 7.2);
– Chapter 8: Jean-Pierre Van-Dorsselaere from IRSN.

The following experts were involved in proofreading in their specialist fields:
– for IRSN: Jean Couturier, Cécile Debaudringhien, Anna Duprat, Patricia Dupuy, Jean-Michel Evrard and Grégory Nicaise;
– for CEA: Georges Berthoud and Étienne Studer;
– for EDF: François Andréo, Kresna Atkhen, Thierry Dagusé, Alain Dubreuil-Chambardel, François Kappler, Gérard Labadie and Andreas Schumm.

Randall O. Gauntt from the US Nuclear Regulatory Commission (USA) and Jonathan Birchley from the Paul Scherrer Institute (Switzerland) approved the section on the MELCOR computer code in Chapter 8.

Denis Boulaud, Bernard Chaumont, Bernard Clément, Richard Gonzalez, Didier Jacquemain, Daniel Quéniart, Jean Peltier, Frédérique Pichereau from IRSN and Michel Durin from CEA proofread the whole work several times to ensure consistency.

Georges Goué, Odile Lefèvre and Sandrine Marano from IRSN prepared the work for publication.

Lastly, this work would not have been possible without the active participation of IRSN’s Scientific Directors Jean-Dominique Gobin and Michel Schwarz, and its Director-General Jacques Repussard.

Tim Haste from IRSN largely contributed to improve the quality of the present English version by proof-reading minutely many chapters.