La radiothérapie stéréotaxique est une technique de radiothérapie qui emploie de nombreux faisceaux convergents de petites dimensions (diamètre ou côté du champ inférieur à 3 cm) afin d’irradier de façon très selective un volume cible de petite taille (de l’ordre du cm³), avec une précision millimétrique. Les traitements peuvent s’effectuer en une seule séance (on parle alors de radiochirurgie) ou être fractionnés en plusieurs séances.

La grande majorité des traitements s’effectue au moyen de faisceaux de photons issus de multiples sources de cobalt 60 placées de façon concentrique ou d’un accélérateur de particules émettant des rayons X de haute énergie et tournant autour de la cible à traiter (Figure 1).

*Figure 1 :* Schéma d’un traitement par radiothérapie stéréotaxique d’une malformation artério-veineuse du cerveau, au moyen d’un accélérateur de particules. La rotation de l’accélérateur permet de décrire un arc autour de la cible. La rotation de la table de traitement permet de positionner le patient de manière à délivrer successivement différents arcs concentriques. Les pastilles collées sur la tête du modèle anthropomorphe matérialisent les points d’entrée successifs du faisceau.

Les faisceaux de petites dimensions sont obtenus au moyen de systèmes de collimation adaptés qui sont soit intégrés dans un appareil dédié soit ajoutés en sortie de faisceau d’un appareil de radiothérapie conventionnel.

Ces systèmes peuvent être un jeu de collimateurs coniques décrivant des faisceaux circulaires de diamètre variable ou un collimateur fait de multiples lames adjacentes de faible largeur décrivant des faisceaux de forme quelconque (collimateur micro multilames) (Figure 2). Les petits faisceaux issus de ces systèmes sont appelés micro faisceaux ou mini faisceaux.
Figure 2 : Systèmes de collimation adaptés à la radiothérapie stéréotaxique : jeu de collimateurs coniques (à gauche) et collimateur micromultilames (au centre et à droite).

Afin d’augmenter encore la précision de l’irradiation, les patients sont immobilisés par des systèmes de contention très précis (précision de l’ordre du millimètre) et les volumes cibles sont repérés au moment du traitement par des dispositifs d’imagerie performants.

Jusqu’il y a quelques années, la radiothérapie stéréotaxique n’était applicable qu’au traitement de lésions situées dans le crâne (radiothérapie stéréotaxique intracrânienne), le cerveau étant immobile dans la boîte crânienne qui est elle-même rigide. Cependant, les récentes avancées technologiques, en robotique et en imagerie, ont permis de généraliser son utilisation au reste du corps (radiothérapie stéréotaxique extracrânienne), y compris dans les régions où les organes sont en mouvement (à cause de la respiration par exemple).

En effet, des images radiologiques prises en cours de traitement permettent de suivre le volume cible et d’asservir l’appareil d’irradiation de manière à viser le volume en mouvement.

Grâce à cette technique d’irradiation de haute précision, il est possible de traiter de façon non invasive (sans acte chirurgical) des tumeurs malignes situées dans ou à proximité d’organes critiques (cerveau, moelle épinière, poumons...) mais également d’autres types de lésions comme des tumeurs non cancéreuses, des malformations artério-veineuses, des nerfs responsables de névralgies (Figure 3).

Sur les quelques 200 000 traitements par irradiation réalisés chaque année en France, environ 2 000 le sont en conditions stéréotaxiques.

Figure 3. Traitement d’une tumeur cérébrale par radiothérapie stéréotaxique.