Faire avancer la sûreté nucléaire

La Recherchev2


Study of a predictive methodology for quantification and mapping of the radon-222 exhalation rate.



Email :

Mot de passe :

G. Ielsch, C. Ferry, G. Tymen, M-C. Robé JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 63 : (1) 15-33.

Type de document > *Article de revue

Mots clés > études environnementales radon, géologie, radon, sol

Unité de recherche > IRSN/DEI/SARG/LERAR

Auteurs > IELSCH Géraldine, ROBE Marie-Christine

Date de publication > 15/09/2002


We propose a new methodology for predicting areas with a strong potential for radon (222Rn) exhalation at the soil surface. This methodology is based on the Rn exhalation rate quantification, starting from a precise characterisation of the main local geological and pedological parameters that control the radon source and its transport to the soil/atmosphere interface. It combines a cross mapping analysis of these parameters into a geographic information system with a model of the Rn vertical transport by diffusion in the soil. The rock and soil chemical and physical properties define the entry parameters of this code (named TRACHGEO) which calculates the radon flux density at the surface. This methodology is validated from in situ measurements of radon levels at the soil/atmosphere interface and in dwellings. We apply this approach to an area located in western France and characterised by a basement displaying a heterogeneous radon source potential, as previously demonstrated by Ielsch et al. (J. Environ. Radioactivity 53, (1), (2001), 75). The new results obtained show that spatial heterogeneity of pedological characteristics-in addition to basement geochemistry-must be taken into account to improve the mapping resolution. The TRACHGEO forecasts explain the Rn exhalation variability on a larger scale and in general correlate well with in situ observations. Moreover, the radon-prone sectors identified by this approach generally correspond to the location of the dwellings showing the highest radon concentrations.