Fontenay-aux-Roses, le 2 octobre 2017

Monsieur le Préfet de l’Aude

Avis IRSN/2017-00305

Objet : Acceptabilité de l’impact sanitaire lié au projet TDN - Site de Malvési

2. AREVA NC, Dossier de demande d’autorisation d’exploiter - ICPE TDN, Volume 2, chapitres 4 et 5

A cet égard vous avez demandé à l’Institut d’examiner notamment les hypothèses prises en compte (quantités rejetées ou « terme source », dispersion atmosphérique, groupes de référence de la population et voies d’exposition) et la méthode d’évaluation de l’impact dosimétrique, qui sont présentées dans le dossier AREVA NC cité en seconde référence.

Concernant le terme source, l’IRSN rappelle que les niveaux et la composition des rejets à la cheminée sont instruits par ailleurs par un expert mandaté par vos services. L’IRSN a donc concentré son analyse sur les aspects relatifs à l’impact sanitaire des rejets tels qu’ils sont présentés dans le dossier transmis par AREVA NC. Les conclusions de cette analyse pourraient, le cas échéant, être reconsidérées selon les conclusions de l’expert précité.

Impact des rejets atmosphériques d’effluents radioactifs

L’exploitant a estimé la dispersion des rejets atmosphériques avec le logiciel COTRAM. Ce logiciel estime la dispersion atmosphérique selon un modèle dit de DOURY. La composition des rejets atmosphériques d’effluents radioactifs est présentée en annexe 1.

Les données météorologiques, les groupes de référence et les voies d’exposition retenus par l’exploitant n’appellent pas d’observation de la part de l’IRSN. Ces données et hypothèses sont en effet vraisemblablement enveloppes des situations d’exposition du public susceptibles d’être rencontrées. Sur la base de ces hypothèses, les doses estimées par l’exploitant sont extrêmement faibles, inférieures à 1 µSv/an.

Dans l’objectif d’évaluer les ordres de grandeur des résultats de calculs présentés par l’exploitant, l’IRSN a estimé l’impact dosimétrique des rejets atmosphériques d’effluents radioactifs (pour des activités correspondant aux limites demandées par AREVA NC) au moyen de son propre logiciel CONDOR. Ce logiciel permet également la modélisation de la dispersion atmosphérique selon les hypothèses de DOURY. Les caractéristiques des populations (régime alimentaire) susceptibles d’être affectées sont indiquées en annexe 3 et les doses calculées par l’Institut sont présentées en annexe 4. Ces doses qui prennent en compte l’accumulation des radionucléides dans l’environnement durant la période de fonctionnement de l’installation, sont également extrêmement faibles (de l’ordre de 1 µSv/an), cohérentes avec celles estimées par l’exploitant et très largement inférieures à la limite de 1 mSv/an (soit 1000 µSv/an) stipulée à l’article R.1333-8 du code de la santé publique. En outre, les doses efficaces inhérentes aux rejets de radon sont négligeables (la concentration ajoutée par les rejets au niveau des groupes de référence est de moins d’un dix millième de la teneur moyenne naturelle en radon dans l’air sur le territoire français).

Méthodes d’évaluation de l’impact des rejets atmosphériques d’effluents chimiques

L’exploitant a évalué les risques sanitaires pour une exposition chronique et une exposition aiguë aux rejets atmosphériques d’effluents chimiques par l’installation TDN. L’exposition aiguë correspond à une exposition de faible durée et souvent de plus forte intensité. Elle résulte de rejets plus élevés sur une période courte et qui doivent couvrir les fluctuations normales de fonctionnement de l’installation. L’exposition chronique correspond à une exposition continue ou répétée dans le temps (avec une fréquence suffisante) quel que soit le niveau d’exposition. Elle résulte des rejets usuels de l’installation en fonctionnement normal. La situation d’exposition des populations humaines est qualifiée de chronique dès lors que l’exposition dure au moins un an. Cette durée est communément admise par le plus grand nombre d’institutions. La composition des rejets atmosphériques d’effluents chimiques est présentée en annexe 1, tableaux 2 et 3, en distinguant ceux retenus pour l’exposition chronique (flux annuel) et l’exposition aiguë (flux horaire).

L’exploitant a estimé les concentrations des substances chimiques dans l’atmosphère avec le logiciel ADMS, fondé sur le modèle gaussien de panache stationnaire développé par le CERC (Cambridge Environmental Research Consultants). ADMS est un modèle de référence largement utilisé dans les études d’impact, notamment chimique, liées aux rejets d’installations. La modélisation de la dispersion tient compte de la rugosité du sol et d’une description relativement précise de l’état de l’atmosphère. Cette approche conduit à des résultats qui se veulent plus réalistes que les résultats de l’application du modèle de DOURY, qui conduit effectivement le plus souvent à des évaluations plus pénalisantes des concentrations de polluants dans l’atmosphère (voir annexe 2). Pour estimer le risque chimique, l’exploitant retient les mêmes données météorologiques que celles retenues pour l’étude d’impact radiologique, ce que l’IRSN estime satisfaisant.
Les groupes de référence, identiques à ceux retenus pour l'évaluation des rejets d'effluents radioactifs, ainsi que les voies d'exposition sélectionnées par l'exploitant n'appellent pas d'observation. La sélection des valeurs toxicologiques de référence (VTR) par l'exploitant pour estimer l'impact pour une exposition chronique et l'impact pour une exposition aiguë des rejets est conforme aux recommandations de la Direction générale de la santé et n'appelle également pas d'observation de la part de l'IRSN. La VTR est une appellation générique regroupant les valeurs permettant d'établir une relation entre une dose de substance chimique et un effet (effet à seuil de dose) ou une dose et une probabilité de survenue d'un effet (effet sans seuil de dose). Les VTR sont spécifiques d'un effet, d'une durée d'exposition (ici aiguë ou chronique) et d'une voie d'exposition (ingestion ou inhalation).

L'IRSN a estimé l'exposition chronique et l'exposition aiguë des groupes de référence aux rejets atmosphériques d'effluents chimiques par l'installation TDN, au moyen du logiciel CONDOR qui, on le rappelle, repose sur une modélisation de la dispersion atmosphérique de DOURY, comme les modèles utilisés par l'exploitant et l'IRSN pour les calculs radiologiques. Pour les estimations de l'impact pour une exposition aiguë, l'IRSN a retenu cinq situations météorologiques parmi les plus défavorables pour les différents groupes de référence retenus. L'IRSN a également tenu compte de la variabilité naturelle de la direction de vent pendant 1 heure, au moyen d'un facteur de battement de vent qui traduit l'élargissement du panache et la répartition des valeurs de concentration autour de l'axe du panache.

Résultats des estimations d’impact des rejets chimiques et interprétation en termes sanitaires

Les estimations d'exposition aux substances chimiques permettent de calculer des quotients de danger (QD) pour les substances à seuil d'effet et des excès de risque individuel (ERI) pour les substances sans seuil d'effet. Le QD est le rapport entre la dose de substances chimiques ingérée ou la concentration de ces substances dans l'air inhalé et la dose ou concentration de référence utilisée pour caractériser le risque d'effet à seuil liés aux substances toxiques (valeur correspondante à la VTR). L'ERI est la probabilité que l'individu exposé développe l'effet associé à une substance cancérigène (effet sans seuil) pendant sa vie du fait de l'exposition considérée. Pour interpréter ces résultats en vue de gérer ce risque, le Haut Conseil de la Santé Publique (HCSP) retient trois intervalles :

- un domaine d'action rapide = ERI > 10^-4 ou QD > 10 qui, selon le HCSP appelle la mise en œuvre de dispositions de protection de la population et de l'environnement dans une zone soumise à des pollutions de ce niveau ;
- un domaine de vigilance active = 10^-5 < ERI < 10^-4 et 1 < QD < 10 pour lequel le HCSP estime que les niveaux de risque sont sérieux mais jugés moins préoccupants et demandent un approfondissement de l'analyse de la situation avant toute prise de décision ;
- un domaine de conformité = ERI < 10^-3 et QD < 1 pour lequel le HCSP estime que les niveaux de risque sont considérés comme non préoccupants et qu'il n'est pas nécessaire de mettre en place des mesures de gestion particulières, en sus de celles qui existent déjà et relevant du principe général d'usage des meilleures technologies disponibles.

L'IRSN estime que, par principe, la conception d'une installation doit viser à ce que l'impact des rejets de substances chimiques résultant de son fonctionnement normal reste dans le domaine de conformité préconisé par le HCSP.

Pour ce qui concerne les expositions chroniques aux rejets chimiques de l'installation TDN, les résultats de l'IRSN comme ceux de l'exploitant, obtenus pour des quantités de rejets correspondant aux limites annuelles demandées, se trouvent dans le domaine de conformité. Par ailleurs, l'IRSN a évalué les concentrations des poussières, du dioxyde d'azote et du dioxyde de soufre dans l'air auquel les groupes de référence sont susceptibles d'être exposés.
Les résultats obtenus confirment les ordres de grandeur des concentrations calculées par l’exploitant. Celles-ci respectent les objectifs de la qualité de l’air.

Pour ce qui concerne les expositions aiguës aux rejets chimiques de l’installation TDN, calculées pour les limites demandées de rejet sur 1 heure, l’IRSN note que les résultats de l’exploitant sont tous largement dans le domaine de conformité (QD individuel inférieur à 0,04) mais que pour trois substances, les quotients de danger pour l’exposition aiguë sont proches de 1 : le nickel (QD = 0,5), le benzène (QD = 0,2) et l’arsenic (QD = 0,1). L’IRSN confirme que ces éléments sont effectivement ceux qui pourraient générer le principal impact des rejets. En outre, les rejets maximaux calculés par l’IRSN sur 1h pour l’arsenic et le nickel conduisent, pour un groupe de référence de la population à proximité de l’installation TDN, à des quotients de danger plus élevés que ceux calculés par AREVA NC avec un quotient de danger de l’ordre 0,4 pour l’arsenic et légèrement supérieur à 1 (QD = 1,3) pour le nickel.

Il convient à cet égard de soulever que ces derniers résultats proviennent de l’application d’une approche de modélisation qui ne prend pas en compte la vitesse d’éjection des gaz et la rugosité du sol, paramètres qui conduisent à simuler un mélange plus important des polluants dans l’atmosphère (ce qui en conséquence peut conduire à baisser l’impact estimé en comparaison des résultats obtenus au moyen du modèle de DOURY). Aussi, afin d’apprécier si l’usage du modèle de DOURY pouvait conduire à surestimer exagérément les impacts calculés, l’IRSN a complété ses modélisations par des calculs de dispersion des rejets atmosphériques sur 1 heure avec un troisième modèle, le modèle de PASQUILL, prenant en compte des hypothèses plus précises que le modèle de DOURY sur l’état de stabilité de l’atmosphère. Les simulations effectuées conduisent à des estimations d’impact qui se situent entre les résultats de l’exploitant et ceux obtenus avec le modèle de DOURY.

Les différentes simulations réalisées montrent que la différence entre les évaluations d’impact effectuées par l’exploitant et celles conduites par l’IRSN provient des modèles retenus pour l’estimation de la dispersion dans l’atmosphère (panache gaussien stationnaire pour AREVA NC, DOURY et PASQUILL pour l’IRSN). Sans mettre en cause l’approche de modélisation retenue par AREVA NC, il convient d’observer que toute modélisation comporte des approximations et des incertitudes. Les résultats obtenus doivent donc être considérés en ayant à l’esprit ces incertitudes. A cet égard, l’ensemble de ces résultats (voir annexe 4 pour les résultats de l’IRSN) montre que les quotients de danger estimés pour les rejets maximaux sur une heure de nickel sont proches de 1, dans une fourchette variant d’un facteur 3 selon les modèles. Conformément à l’échelle d’interprétation du HCSP rappelée ci-dessus, les limites de rejet sur 1 h demandées par l’exploitant pour le nickel, et dans une moindre mesure pour l’arsenic et le benzène, sont donc au seuil du domaine de vigilance active. Dans ce cas, l’IRSN estime qu’une limite de rejet plus basse pour ces substances que celle initialement demandée par l’exploitant devrait être retenue. A cet égard, et dans le but de privilégier une approche prudente tenant compte des incertitudes sur la modélisation des impacts, l’IRSN considère que l’exploitant devrait revoir à la baisse d’au moins un facteur 3 la limite demandée pour les rejets sur 1 h de nickel et proposer également une réduction des limites demandées de rejet d’arsenic et de benzène afin de disposer de marge suffisante pour satisfaire à l’objectif de maintenir l’impact des rejets dans le domaine de conformité.

Conclusion de l’IRSN sur l’impact sanitaire lié au projet TDN

Sur la base de l’analyse du dossier d’AREVA NC et de ses propres calculs, l’IRSN conclut que l’impact radiologique des rejets de l’installation TDN devrait être extrêmement faible et n’appelle pas à mettre en œuvre de dispositions complémentaires à celles qu’AREVA NC retient dans son dossier. L’impact des rejets de l’essentiel des substances
chimiques présentées par AREVA NC, n’appelle pas non plus à mettre en œuvre des dispositions particulières à l’exception du nickel, de l’arsenic et du benzène pour lesquels l’IRSN préconise une réduction des limites de rejet demandées, selon les conditions développées dans le présent avis.

L’IRSN souligne enfin qu’il a pris connaissance des interrogations de la société civile, notamment celles formulées par l’association Rubresus sur les risques associés à l’implantation sur le site de Malvési de l’installation TDN. L’Institut estime que le présent avis permet de répondre à certaines d’entre elles, mais qu’il serait opportun de discuter plus avant l’ensemble des questions posées, notamment celles relevant de l’état des connaissances sur l’évaluation des risques, dans un cadre approprié. A cet égard, l’IRSN suggère qu’un processus soit mis en place qui permettrait d’offrir un espace de dialogue technique entre experts institutionnels et membres du public, au bénéfice mutuel d’un meilleur partage des enjeux sanitaires associés au site de Malvési, sur la base des rejets réels qu’il génère, et des avancées scientifiques qui pourraient permettre d’améliorer l’appréciation de risques multiples radiologiques et chimiques.

Pour le directeur général, par délégation

François BESNUS
Directeur de l’Environnement
ANNEXES

Les calculs d'exposition sanitaire à des rejets d'effluents gazeux repose sur la connaissance de ces rejets (liste des radionucléides et substances chimiques et quantités rejetées), des conditions météorologiques pour évaluer la dispersion atmosphérique (plusieurs modèles de dispersion existent), des voies de transfert des substances rejetées dans l'environnement, des voies d'exposition pour la population (inhalation et ingestion pour le cas de TDN) ainsi que des caractéristiques de cette population (localisation, classe d'âge, modes de vie) :

Les annexes suivantes présentent les principaux paramètres retenus par l'Institut pour réaliser ses propres-calculs d'exposition sanitaire aux risques radiologiques et chimiques :

Annexe 1 : composition des rejets radiologiques et chimiques (limites demandées par AREVA NC)
Annexe 2 : modèles de dispersion
Annexe 3 : caractéristiques des populations (régime alimentaire)
Les résultats obtenus sont présentés en annexe 4
Annexe à l’Avis IRSN/2017-00305 du 2 octobre 2017

Annexe 1

Composition des rejets radioactifs et chimiques (limites demandées par AREVA NC)

Tableau 1 : Composition des rejets atmosphériques d’effluents radioactifs

<table>
<thead>
<tr>
<th>Radionucléide</th>
<th>Activité rejetée après filtration (MBq/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>239Pu</td>
<td>5.49×10^4</td>
</tr>
<tr>
<td>238Am</td>
<td>2.97×10^4</td>
</tr>
<tr>
<td>237Np</td>
<td>7.33×10^4</td>
</tr>
<tr>
<td>236Pa</td>
<td>7.33×10^3</td>
</tr>
<tr>
<td>238Th</td>
<td>4.24×10^3</td>
</tr>
<tr>
<td>239Ac</td>
<td>4.96×10^3</td>
</tr>
<tr>
<td>237Th</td>
<td>4.96×10^3</td>
</tr>
<tr>
<td>235Ra</td>
<td>4.96×10^3</td>
</tr>
<tr>
<td>234Rn</td>
<td>4.96×10^2</td>
</tr>
<tr>
<td>233Pa</td>
<td>4.96×10^2</td>
</tr>
<tr>
<td>232Pa</td>
<td>4.96×10^2</td>
</tr>
<tr>
<td>231Pa</td>
<td>3.17×10^2</td>
</tr>
<tr>
<td>230Th</td>
<td>1.79×10^2</td>
</tr>
<tr>
<td>34Cs</td>
<td>1.69×10^2</td>
</tr>
<tr>
<td>89Sr</td>
<td>1.69×10^2</td>
</tr>
<tr>
<td>90Y</td>
<td>3.18×10^1</td>
</tr>
<tr>
<td>137Cs</td>
<td>2.10×10^1</td>
</tr>
<tr>
<td>209Po</td>
<td>5.47×10^0</td>
</tr>
<tr>
<td>Total</td>
<td>1.57×10^2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radionucléide</th>
<th>Activité rejetée après filtration (MBq/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>239U</td>
<td>2.48×10^4</td>
</tr>
<tr>
<td>238Th</td>
<td>2.48×10^4</td>
</tr>
<tr>
<td>236Pa</td>
<td>6.31×10^3</td>
</tr>
<tr>
<td>230Th</td>
<td>6.31×10^3</td>
</tr>
<tr>
<td>229Rn</td>
<td>6.31×10^2</td>
</tr>
<tr>
<td>226Rn</td>
<td>6.31×10^2</td>
</tr>
<tr>
<td>210Po</td>
<td>6.31×10^2</td>
</tr>
<tr>
<td>210Bi</td>
<td>6.31×10^2</td>
</tr>
<tr>
<td>210Pb</td>
<td>6.31×10^2</td>
</tr>
<tr>
<td>210Bi</td>
<td>5.47×10^3</td>
</tr>
<tr>
<td>210Pb</td>
<td>5.47×10^3</td>
</tr>
<tr>
<td>210U</td>
<td>5.47×10^3</td>
</tr>
<tr>
<td>210Pb</td>
<td>5.47×10^3</td>
</tr>
<tr>
<td>210Bi</td>
<td>5.47×10^3</td>
</tr>
<tr>
<td>210Pb</td>
<td>5.47×10^3</td>
</tr>
<tr>
<td>210Bi</td>
<td>8.35×10^2</td>
</tr>
<tr>
<td>210Pb</td>
<td>7.26</td>
</tr>
<tr>
<td>210U</td>
<td>7.26×10^2</td>
</tr>
<tr>
<td>210Pb</td>
<td>7.26</td>
</tr>
<tr>
<td>210Bi</td>
<td>7.26</td>
</tr>
<tr>
<td>210Pb</td>
<td>7.26</td>
</tr>
<tr>
<td>210Bi</td>
<td>7.26</td>
</tr>
<tr>
<td>210Pb</td>
<td>7.26</td>
</tr>
</tbody>
</table>
Tableau 2 : Composition des rejets atmosphériques de substances chimiques (kg/an)

<table>
<thead>
<tr>
<th>Origine du rejet atmosphérique</th>
<th>Substances</th>
<th>Flux (kg/an)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Métaux</td>
<td>Cadmium (Cd)</td>
<td>0,05</td>
</tr>
<tr>
<td></td>
<td>Mercure (Hg)</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>Thallium (Tl)</td>
<td>0,11</td>
</tr>
<tr>
<td></td>
<td>Arsenic (As)</td>
<td>0,46</td>
</tr>
<tr>
<td></td>
<td>Sélénium (Se)</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td>Tellure (Te)</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>Plomb (Pb)</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>Antimoine (Sb)</td>
<td>0,11</td>
</tr>
<tr>
<td></td>
<td>Chrome (Cr)</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>Cobalt (Co)</td>
<td>0,11</td>
</tr>
<tr>
<td></td>
<td>Cuivre (Cu)</td>
<td>1,89</td>
</tr>
<tr>
<td></td>
<td>Elain (Sn)</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>Manganèse (Mn)</td>
<td>2,14</td>
</tr>
<tr>
<td></td>
<td>Nickel (Ni)</td>
<td>4,87</td>
</tr>
<tr>
<td></td>
<td>Vanadium (V)</td>
<td>0,89</td>
</tr>
<tr>
<td></td>
<td>Zinc (Zn)</td>
<td>0,46</td>
</tr>
<tr>
<td></td>
<td>Uranium (U)</td>
<td>0,25</td>
</tr>
<tr>
<td>Cheminée TDN</td>
<td>Poussières (PM$_{10}$)</td>
<td>2,916</td>
</tr>
<tr>
<td>(débit nominal : 12 000 Nm3/h)</td>
<td>Dioxyde de soufre (SO$_2$)</td>
<td>19 440</td>
</tr>
<tr>
<td></td>
<td>Oxydes d’azote (NO$_x$)</td>
<td>36 880</td>
</tr>
<tr>
<td></td>
<td>Monoxyde de carbone (CO)</td>
<td>8 748</td>
</tr>
<tr>
<td></td>
<td>Ammoniac (NH$_3$)</td>
<td>3 888</td>
</tr>
<tr>
<td></td>
<td>Chlore d’hydrogène (HCl)</td>
<td>3 888</td>
</tr>
<tr>
<td></td>
<td>Fluorure d’hydrogène (HF)</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Protoxyde d’azote (N$_2$O)</td>
<td>29 160</td>
</tr>
<tr>
<td>COV</td>
<td>Acétophéside</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Formaldéhyde</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Benzène</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>DEHP*</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Toluène</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Xylènes</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzène</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Styène</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Chlorométhane</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Chloroéthane</td>
<td>24</td>
</tr>
<tr>
<td>Déchargement / Transfert du charbon</td>
<td>Poussières (PM$_{10}$)</td>
<td>130</td>
</tr>
<tr>
<td>Evente du silo d’argile</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Tableau 3 : Composition des rejets atmosphériques de substances chimiques (kg/h)

<table>
<thead>
<tr>
<th>Origine du rejet atmosphérique</th>
<th>Substances</th>
<th>Quantité rejeté (kg en th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metaux</td>
<td>Cadmium (Cd)</td>
<td>3,41 10^-2</td>
</tr>
<tr>
<td></td>
<td>Mercure (Hg)</td>
<td>7,67 10^-2</td>
</tr>
<tr>
<td></td>
<td>Thallium (Tl)</td>
<td>1,92 10^-2</td>
</tr>
<tr>
<td></td>
<td>Arsenic (As)</td>
<td>6,02 10^-2</td>
</tr>
<tr>
<td></td>
<td>Sélénium (Se)</td>
<td>3,16 10^-2</td>
</tr>
<tr>
<td></td>
<td>Tellure (Te)</td>
<td>1,82 10^-2</td>
</tr>
<tr>
<td></td>
<td>Plomb (Pb)</td>
<td>1,30 10^-2</td>
</tr>
<tr>
<td></td>
<td>Antimoine (Sb)</td>
<td>6,60 10^-4</td>
</tr>
<tr>
<td></td>
<td>Chrome (Cr)</td>
<td>6,65 10^-3</td>
</tr>
<tr>
<td></td>
<td>Cobalt (Co)</td>
<td>6,30 10^-3</td>
</tr>
<tr>
<td></td>
<td>Cuivre (Cu)</td>
<td>1,12 10^-3</td>
</tr>
<tr>
<td></td>
<td>Eltain (Sn)</td>
<td>9,61 10^-1</td>
</tr>
<tr>
<td></td>
<td>Manganèse (Mn)</td>
<td>1,27 10^-1</td>
</tr>
<tr>
<td></td>
<td>Nickel (Ni)</td>
<td>2,88 10^-1</td>
</tr>
<tr>
<td></td>
<td>Vanadium (V)</td>
<td>5,26 10^-4</td>
</tr>
<tr>
<td></td>
<td>Zinc (Zn)</td>
<td>2,74 10^-3</td>
</tr>
<tr>
<td>Cheminée TDN</td>
<td>Uranium (U)</td>
<td>6,50 10^-3</td>
</tr>
<tr>
<td>(débit maximum : 13 000 Nm³/h)</td>
<td>Poussières (PM₁₀)</td>
<td>5,20 10^-3</td>
</tr>
<tr>
<td></td>
<td>Dioxyde de soufre (SO₂)</td>
<td>3,90</td>
</tr>
<tr>
<td></td>
<td>Oxydes d'azote (NOₓ)</td>
<td>0,50</td>
</tr>
<tr>
<td>Autres</td>
<td>Monoxyde de carbone (CO)</td>
<td>1,30</td>
</tr>
<tr>
<td></td>
<td>Ammoniac (NH₃)</td>
<td>8,50 10^-3</td>
</tr>
<tr>
<td></td>
<td>Chlorure d'hydrogène (HCl)</td>
<td>8,50 10^-3</td>
</tr>
<tr>
<td></td>
<td>Fluorure d'hydrogène (HF)</td>
<td>6,50 10^-4</td>
</tr>
<tr>
<td></td>
<td>Peroxyde d'azote (NO₂)</td>
<td>3,60</td>
</tr>
<tr>
<td>COV</td>
<td>Acétylhydroxide</td>
<td>2,68 10^-2</td>
</tr>
<tr>
<td></td>
<td>Formyldéhyde</td>
<td>8,93 10^-2</td>
</tr>
<tr>
<td></td>
<td>Benzène</td>
<td>6,25 10^-2</td>
</tr>
<tr>
<td></td>
<td>DEPH*</td>
<td>8,93 10^-2</td>
</tr>
<tr>
<td></td>
<td>Toluène</td>
<td>2,88 10^-2</td>
</tr>
<tr>
<td></td>
<td>Xylènes</td>
<td>5,36 10^-3</td>
</tr>
<tr>
<td></td>
<td>Ethylbenzène</td>
<td>8,93 10^-3</td>
</tr>
<tr>
<td></td>
<td>Styrol</td>
<td>8,93 10^-3</td>
</tr>
<tr>
<td></td>
<td>Chloroform</td>
<td>1,79 10^-3</td>
</tr>
<tr>
<td></td>
<td>Chloroéthane</td>
<td>1,79 10^-3</td>
</tr>
<tr>
<td>Rejets diffus du dépotage charbon</td>
<td>Poussières (PM₁₀)</td>
<td>3,78 10^-3</td>
</tr>
<tr>
<td>Events du silo d'argile</td>
<td></td>
<td>2,00 10^-3</td>
</tr>
<tr>
<td>Events du silo d'alumine</td>
<td></td>
<td>6,00 10^-3</td>
</tr>
</tbody>
</table>
Annexe à l'Avis IRSN/2017-00305 du 2 octobre 2017

Annexe 2

Modèles de dispersion

Les modèles gaussiens de la dispersion atmosphérique permettent de représenter la dispersion de polluants à l'échelle locale, dans les premières dizaines de kilomètres autour d'une source. Ces modèles sont très utilisés car ils donnent de bons résultats à cette échelle.

Si les échanges horizontaux sont liés essentiellement au transport par le vent, le vent vertical est très faible et le mélange vertical des polluants est assuré par la diffusion turbulente. La turbulence atmosphérique a deux origines, la turbulence d'origine thermique, due au réchauffement au sol par le rayonnement solaire et la turbulence d'origine dynamique, due au frottement de l'air sur le sol ou sur une autre couche d'air. L'état turbulent de l'atmosphérique traduit l'efficacité du processus de mélange des polluants dans l'atmosphère. Celui-ci est souvent associé à la notion de stabilité. Un des éléments pour définir la stabilité atmosphérique est donné par le profil vertical de température (gradient vertical de température).

Modèle de DOURY

Une représentation très simplifiée de l'atmosphère est donnée dans Doury. Elle a été développée spécifiquement pour l'application aux radionucléides, et déterminée empiriquement, sur des expériences en champ plus lointain que celles utilisées en général. Il n'y a que deux types de stabilité : la diffusion normale (variation de température inférieure à -0,5°C sur 100 m), ou faible (variation supérieure à -0,5°C sur 100 m).

Modèle de PASQUILL

Dans ce modèle, la stabilité de l'atmosphère dépend du gradient vertical de température, qui lui-même dépend de l'ensoleillement (de jour) et de la couverture nuageuse (de nuit). Elle dépend également de la vitesse du vent. Les classes de stabilité de Pasquill permettent de décrire la stabilité de l'atmosphère en fonction de ces paramètres. Il y a six classes de stabilité, de A (très instable) à F (très stable).

Lois de la similitude (utilisées dans le modèle ADMS)

La modélisation de la dispersion turbulente dans le modèle ADMS s'appuie sur les lois continues de la similitude plus sophistiquées que les lois de Pasquill ou de Doury. La théorie de la similitude consiste, de façon générale, à déterminer des relations entre différentes échelles d'un écoulement, via une analyse dimensionnelle. Ici, il s'agit de relier la dispersion aux variables liées à la petite échelle de la turbulence et en particulier les fluctuations du vent. Les lois de la similitude prennent en considération la rugosité du sol (turbulence d'origine mécanique) et une description plus précise de l'état de l'atmosphère. Elles conduisent à des résultats qui se veulent plus réalistes que les lois de Doury.
Annexe à l’Avis IRSN/2017-00305 du 2 octobre 2017

Annexe 3

Caractéristiques des populations (régime alimentaire)

<table>
<thead>
<tr>
<th>Tableau 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nourrisson (3 mois)</td>
</tr>
<tr>
<td>1 an - 2 ans</td>
</tr>
<tr>
<td>3 ans - 7 ans</td>
</tr>
<tr>
<td>8 ans - 12 ans</td>
</tr>
<tr>
<td>13 ans - 17 ans</td>
</tr>
<tr>
<td>Adulte</td>
</tr>
</tbody>
</table>

Nourrisson (3 mois)	légumes feuilles	légumes fruits	légumes racines	céréales	viande de bœuf	lait de vaches	viande de mouton	volailles	œufs	viande de porc
1 an - 2 ans	NA	NA	NA	NA	1	NA	NA	NA	NA	NA
3 ans - 7 ans	0,671	0,293	0,719	0,001	0,349	0,276	0,428	0,718	0,597	0,276
8 ans - 12 ans	0,671	0,293	0,719	0,001	0,349	0,276	0,428	0,718	0,597	0,276
13 ans - 17 ans	0,671	0,293	0,719	0,001	0,349	0,276	0,428	0,718	0,597	0,276
Adulte	0,671	0,293	0,719	0,001	0,349	0,276	0,428	0,718	0,597	0,276

NA : non applicable
Annexe à l'Avis IRSN/2017-00305 du 2 octobre 2017

Annexe 4

Résultats des calculs

Tableau 5 : Doses efficaces annuelles estimées par l'IRSN (mSv/an)

<table>
<thead>
<tr>
<th>Groupe de référence</th>
<th>1 an à 2 ans</th>
<th>3 ans à 7 ans</th>
<th>8 ans à 12 ans</th>
<th>Adulte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romilhac-le-Haut</td>
<td>0,00002</td>
<td>0,0001</td>
<td>0,00008</td>
<td>0,00005</td>
</tr>
<tr>
<td>Geyssières</td>
<td>0,0003</td>
<td>0,0001</td>
<td>0,00009</td>
<td>0,00006</td>
</tr>
<tr>
<td>Domaine de Montlaurès</td>
<td>0,0001</td>
<td>0,00005</td>
<td>0,00004</td>
<td>0,00003</td>
</tr>
<tr>
<td>Romilhac-le-Bas</td>
<td>0,0002</td>
<td>0,00008</td>
<td>0,00006</td>
<td>0,00004</td>
</tr>
<tr>
<td>Livièvre Haute</td>
<td>0,001</td>
<td>0,0005</td>
<td>0,0004</td>
<td>0,0003</td>
</tr>
<tr>
<td>ACPG</td>
<td></td>
<td></td>
<td></td>
<td>0,00006</td>
</tr>
<tr>
<td>SLCMC</td>
<td></td>
<td></td>
<td></td>
<td>0,00006</td>
</tr>
<tr>
<td>BTV, GBE, ARTERRIS</td>
<td></td>
<td></td>
<td></td>
<td>0,00004</td>
</tr>
</tbody>
</table>

Ces classes d'âge ne sont pas retenues pour le scénario « travailleurs »

Tableau 6 : QD (sans unité) estimés par l'IRSN pour la voie d'exposition par inhalation de nickel - effet à seuil - Exposition aiguë

<table>
<thead>
<tr>
<th>Groupe de référence</th>
<th>Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romilhac-le-Haut</td>
<td>0,58</td>
</tr>
<tr>
<td>Geyssières</td>
<td>0,45</td>
</tr>
<tr>
<td>Domaine de Montlaurès</td>
<td>0,73</td>
</tr>
<tr>
<td>Romilhac-le-Bas</td>
<td>0,43</td>
</tr>
<tr>
<td>Livièvre Haute</td>
<td>0,28</td>
</tr>
<tr>
<td>ACPG</td>
<td>0,24</td>
</tr>
<tr>
<td>SLCMC</td>
<td>1,3</td>
</tr>
<tr>
<td>BTV, GBE, ARTERRIS</td>
<td>0,39</td>
</tr>
</tbody>
</table>