CHAPTER 16.

RADIATION PROTECTION AND SAFETY IN RADIOTHERAPY

PEDRO ORTIZ LÓPEZ
Department of Nuclear safety and Security
International Atomic Energy Agency
Vienna, Austria

GOVINDA RAJAN
Medical Physics and Safety Section
Bhabha Atomic Research Centre
Mumbai, Maharashtra, India

ERVIN B. PODGORSAK
Department of Medical Physics
McGill University Health Centre
Montréal, Québec, Canada

16.1 INTRODUCTION

Soon after the discovery of x rays by Roentgen in 1895 and of natural radioactivity by Becquerel in 1896 it became apparent that ionizing radiation was not only useful for diagnosis and treatment of disease but also harmful to human tissues. It has been recognized since early studies on x rays and radioactive minerals that exposure to high levels of radiation can cause clinical damage to tissues of the human body. In addition, long term epidemiological studies of populations exposed to radiation, especially the survivors of the atomic bombing of Hiroshima and Nagasaki in Japan in 1945, have demonstrated that exposure to radiation also has a potential for delayed effects such as induction of malignancies or damage to genetic materials.

Ionizing radiation and radioactive substances are natural and permanent features of the environment, and thus the risks associated with radiation exposure can only be restricted, not eliminated entirely. Additionally, the use of human-made radiation is now widespread. Sources of ionizing radiation are essential to modern health care: disposable medical supplies sterilized by intense radiation have been central to combating disease; radiology and nuclear medicine are a vital diagnostic tool; and radiotherapy is commonly part of the treatment of malignancies. Applications of ionizing radiation are growing in industry, agriculture, medicine and many other fields of industry and research, benefiting the humanity. Irradiation is used around the world to preserve foodstuffs and reduce wastage, and sterilization techniques have been used to eradicate disease-carrying insects and pests. Industrial radiography is in routine use, for example, to examine welds and detect cracks, and to help prevent failure of engineered structures.

The acceptance by society of risks associated with radiation is conditional on the benefits to be gained from the use made of radiation. Nonetheless, the risks must be restricted and protected against by the application of radiation safety standards. It is therefore essential that activities involving radiation exposure be subject to certain standards of safety in order to protect the individuals that are exposed to radiation, be it: (i) occupationally; (ii) for medical diagnostic or therapeutic purposes; (iii) as members of the public.
Chapter 16. Radiation Protection and Safety

16.2. RADIATION EFFECTS

Exposure to radiation can cause detrimental health effects that fall into one of two categories: (i) deterministic and (ii) stochastic.

16.2.1. Deterministic effects

At large doses, radiation effects such as nausea, reddening of the skin or, in severe cases, more acute syndromes are clinically expressed in exposed individuals within a relatively short period of time after the exposure; such effects are called deterministic because they are certain to occur, if the dose exceeds a threshold level.

Deterministic effects are the result of various processes, mainly cell death or delayed cell division, caused by exposure to high levels of radiation. If extensive enough, these effects can impair the function of the exposed tissues. The severity of a particular deterministic effect in an exposed individual increases with dose above the threshold for the occurrence of the effect.

16.2.2. Stochastic effects

Radiation exposure can also induce delayed effects such as malignancies, which are expressed after a latency period and may be epidemiologically detectable in a population; this induction is assumed to take place over the entire range of doses without a threshold level. Hereditary effects due to radiation exposure have been statistically detected in other mammalian populations and are presumed to occur in human populations also. These epidemiologically detectable effects (malignancies and hereditary effects) are termed stochastic effects because of their random nature.

Stochastic effects may ensue, if an irradiated cell is modified rather than killed. Modified cells may, after a prolonged delay, develop into a cancer. The body's repair mechanisms make this a very improbable outcome at small doses; nevertheless, there is no evidence of a threshold dose below which cancer cannot result. The probability of occurrence of cancer is higher for higher doses, but the severity of any cancer that may result from irradiation is independent of dose. If the cell damaged by radiation exposure is a germ cell whose function is to transmit genetic information to progeny, it is conceivable that hereditary effects of various types may develop in the descendants of the exposed individual. The likelihood of stochastic effects is presumed to be proportional to the dose received, and this without a dose threshold.

The many aspects of the concept of radiation detriment make it undesirable to select any single quantity to represent it. The concept of detriment as recommended by the International Commission on Radiation Protection (ICRP) for stochastic effects includes the following quantities: the probability of fatal cancer attributable to radiation exposure; the weighted probability of incurring a non-fatal cancer; the weighted probability of severe hereditary effects; and the length of lifetime lost, if the harm occurs.

16.2.3. Effects on embryo and fetus

In addition to deterministic and stochastic health effects in adults, other health effects may occur in infants due to exposure of the embryo or foetus to radiation. These effects include a greater likelihood of leukaemia (stochastic effect) and, for exposure above various threshold dose values during certain periods of pregnancy, severe mental retardation and congenital malformations (deterministic effect). For more details on effects on the fetus see the ICRP Publication 84.
16.3. INTERNATIONAL CONSENSUS AND RADIATION SAFETY STANDARDS

Safety Standards are based on the knowledge of radiation effects and on the principles of protection described below. In this respect, the development of Safety Standards by the International Atomic Energy Agency (IAEA) follows a well-established approach. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), a body set up by the United Nations in 1955, compiles, assesses and disseminates information on the health effects of radiation and on levels of radiation exposure due to different sources; this information was taken into account in developing the Standards. Following a decision made in 1960, the IAEA safety standards are based on the recommendations of the ICRP that also take account of the scientific information provided by UNSCEAR.

Purely scientific considerations, however, are only part of the basis for decisions on protection and safety, and the safety standards implicitly encourage decision makers to make value judgments about the relative importance of risks of different kinds and about the balancing of risks and benefits. General acceptance of risks is a matter of consensus, and therefore, international safety standards should provide a desirable international consensus for the purpose of protection.

For these reasons, international consensus is basic to the IAEA standards, prepared with the wide participation of and approval by its Member States and relevant international organizations. The current version of a safety standards document entitled *International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources* (hereinafter referred to as the BSS document) was issued in 1996 under a joint sponsorship of the following organizations: the Food and Agriculture Organization of the United Nations (FAO), the International Atomic Energy Agency (IAEA), the International Labour Organisation (ILO), the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO).

The BSS document was published as the *IAEA Safety Standards No. 115* and comprises four sections: (i) preamble, (ii) principal requirements, (iii) appendices, and (iv) schedules. The purpose of the document is to establish basic requirements for protection against exposure to ionizing radiation and for the safety of radiation sources that may deliver such exposure.

16.4. TYPES OF RADIATION EXPOSURE

Certain industrial or medical practices will result in some radiation exposure with predictable magnitudes, albeit with some degree of uncertainty; such expected exposures are referred to in the BSS as *normal exposures*.

In addition, scenarios can be envisaged for which there is a potential for exposure, but no certainty that an exposure will in fact occur; such unexpected but feasible exposures are termed *potential exposures*. Potential exposures can become *actual exposures*; if the unexpected situation does occur; for example, as a consequence of equipment failure, design problems or operating errors.

The means specified in the BSS document for controlling normal exposures is the restriction of the doses delivered. In the case of exposure to patients, exposures are controlled through delivering only the doses that are necessary to achieve the diagnostic or therapeutic objective.
Chapter 16. Radiation Protection and Safety

The primary means for controlling potential exposures is by optimizing the design of installations, equipment and operating procedures:

(i) To restrict the probability of occurrence of events that could lead to unplanned exposures.
(ii) To restrict the magnitudes of the exposures that could result, if such events were to occur.

The radiation exposures covered by the BSS document encompass the exposures, both normal and potential, of:

(i) *Workers* pursuing their occupations (occupational exposures),
(ii) *Patients* in diagnosis or treatment (medical exposures), and
(iii) *Members of the public*.

The radiation exposures are, therefore, divided into three categories:

- **Occupational exposure** is defined as all exposures of workers incurred in the course of their work (with the exception of exposures excluded from the BSS and exposures from practices or sources exempted by the BSS).
- **Medical exposure** is defined as exposure incurred:
  - by *patients* as part of their own medical or dental diagnosis or treatment;
  - by *persons*, other than those occupationally exposed, knowingly while voluntarily helping in the support and comfort of patients;
  - by *volunteers* in a programme of biomedical research involving their exposure.
- **Public exposure** is defined as exposure incurred by members of the public from radiation sources, excluding any occupational or medical exposure and the normal local natural background radiation but including exposure from authorized sources and practices and from intervention situations.

16.5. QUANTITIES AND UNITS USED IN RADIATION PROTECTION

16.5.1. Physical quantities

Although most of the requirements of the BSS are qualitative, they also establish quantitative limits, and guidance levels. The main physical quantities used in safety standards are the *activity* and *absorbed dose*:

(1) *Activity* $A$, of an amount of a radionuclide in a particular energy state at a given time, is the quotient of $dN$ by $dt$, where $dN$ is the number of spontaneous nuclear transformations from that energy state in the time interval $dt$, thus

$$A = \frac{dN}{dt} = \lambda N = (\ln 2 / t_{1/2}) N,$$

(16.1)

where
\( \lambda \) is the decay constant of the radioactive nucleus;
\( N \) is the number of radioactive nuclides (atoms);
\( t_{1/2} \) is the half-life of the radioactive nucleus.

The SI unit of activity is 1 s\(^{-1}\) and its special name is the becquerel (Bq) representing one nuclear transformation (disintegration or decay) per second, \( i.e., 1 \text{ Bq} = 1 \text{ s}^{-1} \). The older unit of activity is the curie (Ci) representing \( 3.7 \times 10^{10} \text{ s}^{-1} \), \( i.e., 1 \text{ Ci} = 3.7 \times 10^{10} \text{ Bq} \). The curie was initially defined as the activity of 1 g of radium-226; however, refined measurements have shown that the activity of 1 g of radium-226 is 0.988 Ci.

\[(2)\] Absorbed dose \( D \) is defined as the quotient of \( d\bar{\varepsilon} \) by \( dm \), where \( d\bar{\varepsilon} \) is the mean energy imparted to matter of mass \( dm \), thus

\[
D = \frac{d\bar{\varepsilon}}{dm}, \tag{16.2}
\]

The SI unit for absorbed dose is 1 J/kg and its special name is the gray (Gy). The older unit of dose is the rad representing 100 erg/g, \( i.e., 1 \text{ Gy} = 100 \text{ rad} \).

16.5.2. Radiation protection quantities

The absorbed dose is the basic physical dosimetry quantity, but it is not entirely satisfactory for radiation protection purposes because the effectiveness in damaging human tissue differs for different types of ionizing radiation. In addition to the physical quantities, other dose-related quantities were introduced to account not only for physical effects but also for biological effects of radiation upon tissues. These quantities are: organ dose, equivalent dose, committed dose and collective dose.

Organ dose \( D_T \)

The organ dose is defined as the mean dose \( D_T \) in a specified tissue or organ \( T \) of the human body given by:

\[
D_T = \frac{1}{m_T} \int D \, dm = \frac{\varepsilon_T}{m_T}, \tag{16.3}
\]

where

\( m_T \) is the mass of the organ or tissue under consideration.
\( \varepsilon_T \) is the total energy imparted by radiation to that tissue or organ.

Equivalent dose \( H \)

The biological detriment (harm) to an organ depends not only on the physical average dose received by the organ, but also on the pattern of dose distribution that results from the radiation type and energy. For the same dose to the organ, alpha or neutron radiation will cause greater harm compared to gamma rays or electrons. This is because the ionisation events produced by alpha or neutron radiation will be much more closely spaced (densely ionizing radiations) and so there is a higher probability of irreversible damage to the chromosomes and less chance of tissue repair.
Chapter 16. Radiation Protection and Safety

Consequently, the organ dose is multiplied by a radiation-weighting factor $w_R$ to account for the effectiveness of the given radiation in inducing health effects; the resulting quantity is called the equivalent dose $H_T$.

The equivalent dose $H_T$ is defined as:

$$H_T = w_R D_{T,R},$$

where

$D_{T,R}$ is the absorbed dose delivered by radiation type $R$ averaged over a tissue or organ $T$ and $w_R$ is the *radiation-weighting factor* for radiation type $R$.

- For x rays, γ rays and electrons $w_R = 1$; for protons $w_R = 5$; for α particles $w_R = 20$; and for neutrons $w_R$ ranges from 5 to 20 depending on neutron energy.

- The SI unit of equivalent dose is J/kg with a special name the sievert (Sv), the old unit is the rem and the relationship between the two units is: 1 Sv = 100 rem. For example, for 1 Gy of photon dose to an organ, the equivalent dose is 1 Sv. However, for the same dose of 20 keV neutrons, the equivalent dose is 10 Sv, since the detriment is 10 times larger, *i.e.*, $w_R = 10$ for 20 keV neutrons.

- The organ dose $D_{T,R}$ is a measure of the energy absorption per unit mass averaged over the organ, while the equivalent dose $H_T$ is a measure of the consequent biological harm (detriment) to the organ or tissue $T$.

- If an organ is irradiated by more than one type of radiation, the equivalent dose is given by the sum:

$$H_T = \sum w_R D_{T,R}.$$  \hfill (16.5)

- In earlier ICRP recommendations, weighting factors related to the quality of radiation were applied to the absorbed dose to a point and the radiation weighted absorbed dose was called the dose equivalent $H$ (not referred to an organ, but to a point).

**Effective dose**

The relationship between the probability of stochastic effects and equivalent dose is also found to depend on the organ or tissue irradiated. This implies that for the same equivalent dose the detriments from the exposure of different organs or tissues are different. To take account of these differences, tissue-weighting factors are needed.

*Tissue-weighting factors* $w_T$ should represent the relative contribution of an organ or tissue to the total detriment due to the effects resulting form a uniform irradiation to the whole body. For low doses, individual organ or tissue detriments can be treated as additive and the total detriment to the whole body is the summation of individual detriments. Relative contribution to the total detriment, is, therefore, given by the quotient between the individual detriment and the total detriment resulting from a uniform irradiation of the whole body. Since the sum of relative contributions is normalized to unity, the sum $\sum w_T = 1$. 
The effective dose $E$ is defined as the summation of tissue equivalent doses, each multiplied by the appropriate tissue-weighting factor $w_T$, to indicate the combination of different doses to several different tissues in a way that correlates well with all stochastic effects combined (ICRP 60), i.e.:

$$E = \sum w_T H_T . \quad (16.6)$$

- Tissue-weighting factors $w_T$ are tabulated in the ICRP 60 report and in the IAEA safety standards. Despite depending on sex and age of the person, for purposes of radiation protection the values for tissue weighting factors are taken as constants and are applicable to the average population. For example, $w_T = 0.20$ for gonads, 0.12 for lung or red bone marrow, and 0.01 for skin. Thus, for the same equivalent dose, the risk of stochastic effect at low doses is higher for gonads compared to lung or red bone marrow.

- The unit of effective dose is J/kg and its special name is sievert (Sv).

- A uniform equivalent dose over the whole body gives an effective dose that is numerically equal to the uniform equivalent dose.

- The weighing factors $w_T$ and $w_R$ are mutually independent, i.e., the tissue risk factors $w_T$ are independent of radiation type and the radiation weighting factors $w_R$ are independent of tissue type, allowing us to write:

$$E = \sum_T w_T \sum_R w_R D_{T,R} = \sum_R w_R \sum_T w_T D_{T,R} . \quad (16.7)$$

- When one deals with only one type of radiation in a given situation and the effective dose is then given by:

$$E = \sum w_T D_{T,R} . \quad (16.8)$$

- The effective dose is a measure of dose designated to reflect the amount of radiation detriment likely to result from the dose. Effective doses from various radiation types and exposure modes may be compared directly.

- Annual dose limits for occupational and public exposure are given in terms of the annual effective dose, and in the case of exposure to an organ or to hands or feet, they are given in terms of equivalent dose.

- The term effective dose replaces the term effective dose equivalent defined in earlier ICRP documents.

- For well-defined geometry of irradiation, the equivalent dose $H$ to individual organs or the effective dose $E$ can be computed for an anthropomorphic phantom that simulates the human body. However, these quantities are not directly measurable, since there are no primary standards established for them.
Committed dose

When radionuclides are taken into the body, the resulting dose is received throughout the period of time during which they remain in the body. The total dose delivered during this period of time is referred to as the committed dose and is calculated as a specified time integral of the rate of receipt of the dose. Any relevant dose restriction is applied to the committed dose from the intake. The committed dose may refer to committed effective dose and to committed equivalent dose.

Collective dose

The radiation protection quantities discussed above relate to the exposure of an individual. The collective dose relates to exposed groups or populations and is defined as the summation of the products of the mean dose in the various groups of exposed people and the number of individuals in each group. The unit of collective dose is the man-sievert (man-Sv).

16.5.3. Operational quantities

The organ dose $D_T$, equivalent dose $H$ and effective dose $E$ are not directly measurable and there are no laboratory standards to obtain traceable calibration for the radiation monitors using these quantities. For this reason, the International Commission on Radiation Quantities and Units (ICRU) has defined a set of measurable operational quantities for protection purposes: the ambient dose equivalent, directional dose equivalent and personal dose equivalent; the latter used for comparing with regulatory requirements, such as dose limits.

Ambient dose equivalent $H^\ast(d)$

The ambient dose equivalent, at a point in a radiation field, is defined as the dose equivalent that would be produced by the corresponding aligned and expanded field in the ICRU sphere at a depth $d$ on the radius opposing the direction of the aligned field. The ICRU sphere is a 30 cm diameter tissue-equivalent sphere, with a composition of 76.2% oxygen, 11.1% carbon, 10.1% hydrogen, and 2.6% nitrogen. A depth $d = 10$ mm is recommended for strongly penetrating radiation.

Directional dose equivalent $H(d,\Omega)$

The directional dose equivalent, at a point in a radiation field, is defined as the dose equivalent that would be produced by the corresponding expanded field in the ICRU sphere at depth $d$ on a radius in a specified direction $\Omega$. A depth $d = 0.07$ mm is recommended for weakly penetrating radiation. Angle $\Omega$ is the angle between the beam direction and the radius of the ICRU sphere on which the depth $d$ is defined.

Personal dose equivalent $H_p(d)$

Personal dose equivalent is defined for both strongly and weakly penetrating radiations as the equivalent dose in soft tissue below a specified point on the body at an appropriate depth $d$. The relevant depths are generally $d = 10$ mm for penetrating radiations (photon energies above 15 keV). Depths $d = 0.07$ mm and $d = 3$ mm are used for weakly penetrating radiations (photon energies below 15 keV and beta radiations) in skin and eye lens, respectively.
The personal dose equivalent from exposure to penetrating radiation during the year is the radiation quantity to be compared with the annual dose limits (for effective dose) and to demonstrate compliance with the BSS recommendations as indicated below (see BSS document, Schedule II.).

16.6. BASIC FRAMEWORK OF RADIATION PROTECTION

The principles of radiation protection and safety upon which the safety standards are based are those developed by the ICRP. The detailed formulation of these principles can be found in the ICRP publications and they cannot easily be paraphrased without losing their essence. However, a brief, although simplified, summary of the principles is as follows:

- A practice that entails exposure to radiation should only be adopted if it yields sufficient benefit to the exposed individuals or to the society to outweigh the radiation detriment it causes or could cause (i.e., the practice must be **justified**).

- Individual doses due to the combination of exposures from all relevant practices should not exceed specified **dose limits** for occupational and for public exposure; dose limits are not applicable to medical exposure.

- Radiation sources and installations should be provided with the best available protection and safety measures under the prevailing circumstances, so that the magnitudes and likelihood of exposures and the numbers of individuals exposed be as low as reasonably achievable, economic and social factors being taken into account, and the doses they deliver and the risk they entail be constrained (i.e., protection and safety should be **optimized**):
  - In diagnostic medical exposure, optimization of protection is done by keeping the exposure of patients to the minimum necessary to achieve the required diagnostic objective;
  - In therapeutic medical exposure, optimization is done by keeping exposure of normal tissue as low as reasonably achievable consistent with delivering the required dose to the planning target volume (*from the BSS requirements in Appendix II.*).

- As indicated in Section 16.13. on occupational exposure, pregnant workers shall be protected so as to ensure that the embryo or foetus is afforded the same broad level of protection as required for members of the public.

- A safety culture should be inculcated that governs the attitudes and behaviour in relation to protection and safety of all individuals and organizations dealing with sources of radiation; in-depth defensive measures should be incorporated into the design and operating procedures for radiation sources to compensate for potential failures in protection or safety measures; and protection and safety should be ensured by sound management and good engineering, quality assurance, training and qualification of personnel, comprehensive safety assessments and attention to lessons learned from experience and research.
Chapter 16. Radiation Protection and Safety

- Dose limits do not apply to medical exposure and are not relevant for the control of potential exposures nor are they relevant for decisions on whether and how to undertake an intervention, but workers undertaking an intervention shall be subject to the relevant requirements of Appendix V of the BSS. Table 16.1. summarizes the values of annual dose limits.

16.7. GOVERNMENTAL REGULATION AND NATIONAL INFRASTRUCTURE

The BSS document places requirements on legal persons authorized to conduct practices that cause radiation exposure or to intervene in order to reduce existing exposures; these legal persons have the primary responsibility for applying the Standards. Governments, however, have a responsibility for their enforcement, generally through a system that includes a Regulatory Authority.

The authorizations of the legal persons to conduct a practice may take the form of a registration or a license. The difference between registration and license is that the latter requires a more specific safety assessment. The authorized legal persons are, therefore called registrants and licensees. In the case of radiotherapy, the authorization usually takes the form of a license.

TABLE 16.1. SUMMARY OF ANNUAL DOSE LIMITS ACCORDING TO THE BSS SCHEDULE II.

<table>
<thead>
<tr>
<th></th>
<th>Occupational exposure</th>
<th>Exposure to apprentices 16-18 years of age</th>
<th>Public exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective dose (whole body)</td>
<td>20</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>(mSv)</td>
<td>averaged over 5</td>
<td></td>
<td>averaged over 5</td>
</tr>
<tr>
<td></td>
<td>consecutive years</td>
<td></td>
<td>consecutive years</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>in a single year*</td>
<td></td>
<td>in a single year**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent dose (eye lens)</td>
<td>150</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td>(mSv)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent dose (hands, feet, skin) (mSv)</td>
<td>500</td>
<td>150</td>
<td>50</td>
</tr>
</tbody>
</table>

* provided that the average effective dose over 5 consecutive years does not exceed 20 mSv/year
** provided that the average effective dose over 5 consecutive years does not exceed 1 mSv/year
In addition, national infrastructures include certain essential services, such as personal dosimetry, and services for calibration and intercomparison of radiation measuring equipment. The provision of such services at the national level does not detract from the ultimate responsibility for radiation protection and safety borne by the legal persons authorized to conduct the practices.

16.8. SCOPE OF THE BASIC SAFETY STANDARDS

Article 1.03. (BSS document: Principal requirements – Scope)

The Standards apply to practices, including any sources within the practices, and interventions that are:

(a) Carried out in a State that chooses to adopt the Standards or requests any of the Sponsoring Organizations to provide for the application of the Standards;
(b) Undertaken by States with the assistance of the FAO, the IAEA, the ILO, the PAHO, or the WHO, in the light of relevant national rules and regulations;
(c) Carried out by the IAEA or involve the use of materials, services, equipment, facilities and non-published information made available by the IAEA or at its request or under its control or supervision.

16.9. RESPONSIBILITIES FOR IMPLEMENTATION OF BSS REQUIREMENTS

Article 1.06. (BSS document: Principal requirements – Responsible parties)

The principal parties having the main responsibilities for the application of the Radiation Safety Standards shall be:

(a) registrants or licensees; and
(b) employers.

Article 1.03. (BSS document: Principal requirements – Responsible parties)

Other parties shall have subsidiary responsibilities for the application of the Radiation Safety Standards. These parties may include, as appropriate:

(a) suppliers;
(b) workers;
(c) radiation protection officers;
(d) medical practitioners;
(e) health professionals;
(f) qualified experts;
(g) Ethical Review Committees; and
(h) any other party to whom a principal party has delegated specific responsibilities.

Specific responsibilities for medical exposure are given in Section 16.14 of this chapter.
16.10. SAFETY IN THE DESIGN OF RADIATION SOURCES AND EQUIPMENT

Article II.11. (BSS document: Appendix II. – Medical exposure – Design considerations)

Equipment used in medical exposure shall be so designed that:

(a) Failure of a single component of the system be promptly detectable so that any unplanned medical exposure of patients is minimized; and
(b) The incidence of human error in the delivery of unplanned medical exposure be minimized.

16.10.1. Equipment

Radiation sources, including radioactive material, equipment and accessories, should be purchased only from authorized suppliers and should have a valid type test. Procedures for the purchase, installation, acceptance, commissioning, use, maintenance and quality control of such material should be developed with the involvement of the qualified experts and the quality assurance/radiation protection committee.

Article II.13. (BSS document: Appendix II. – Medical exposure – Design considerations)

Registrants and licensees, in specific co-operation with suppliers, shall ensure that, with regard to equipment consisting of radiation generators and that containing sealed sources used for medical exposures:

(a) Whether imported into or manufactured in the country where it is used, the equipment conform to applicable standards of the International Electrotechnical Commission (IEC) and the International Standards Organization (ISO) or to equivalent national standards;
(b) Performance specifications and operating and maintenance instructions, including protection and safety instructions, be provided in a major world language understandable to the users and in compliance with the relevant IEC or ISO standards with regard to ‘accompanying documents’, and that this information be translated into local languages when appropriate;
(c) Where practicable, the operating terminology (or its abbreviations) and operating values be displayed on operating consoles in a major world language acceptable to the user.

Article II.15. (BSS document: Appendix II. – Medical exposure – Optimization of protection)

Registrants and licensees, in specific cooperation with suppliers, shall ensure that:

(b) Radiation installations using radioactive sources be fail safe in the sense that the source will be automatically shielded in the event of an interruption of power and will remain shielded until the beam control mechanism is reactivated from the control panel;
(c) High-energy radiotherapy equipment should:

(i) have at least two independent fail-to-safety systems for terminating the irradiation; and
be provided with safety interlocks or other means designed to prevent the clinical use of the machine in conditions other than those selected at the control panel.

The IEC standards applicable to radiotherapy are:

- IEC-601-2-1 for medical electron accelerators;
- IEC-60601-2-11 for gamma external beam therapy;
- IEC-60601-2-17 for remote afterloading brachytherapy;
- IEC-601-2-8 for superficial therapy with X rays;
- IEC-60601-2-29 for therapy simulators;
- IEC-62C/62083 for treatment planning systems (in press);
- IEC-60601-1-4, for computer controlled or programmable medical systems.

Evidence of compliance with the IEC or equivalent national standards should be demonstrated. For type tests sufficient evidence of compliance may be provided by manufacturer’s records with the results of the tests for the relevant equipment type and model. This should be supplemented by acceptance tests for the individual piece of equipment delivered. The relevant safety tests described in the IEC standards should be included in the acceptance protocol and be specified in the purchasing conditions. More detailed guidance is provided in the IAEA-TECDOC-1040.

The IEC standards prescribe the tests to be carried out by the manufacturer for a given type of equipment, and for site-tests to be done at the hospital on every individual piece of equipment. The IEC distinguishes three grades of tests:

- **Grade A**: this grade refers to an analysis of the equipment design related to an IEC safety requirement. It results in a written statement included in the technical description, regarding the working principles or constructional means by which the IEC requirement is fulfilled.

- **Grade B**: visual inspection or functional test or measurement. For this test grade the relevant IEC standard specifies a procedure (see, for example, IEC 60601-2-1). The test should then be performed according to the IEC procedure. Grade B tests may include fault conditions, which are achievable only without interference with the circuitry or construction of the equipment.

- **Grade C**: functional test or measurement, which may involve interference with circuitry or the construction of the equipment, and should be performed by, or under the direct supervision of, the manufacturer or his agent.

Equipment design should allow to interrupt the irradiation from the control panel and, after the interruption, resumption of irradiation should only be possible from the control panel. External beam therapy equipment containing radioactive sources and high dose rate brachytherapy equipment should be provided with a device to return sources manually to the shielded position in case of an emergency. For Gamma knives it should be possible to close the shielding door manually.

- Irradiation heads for external beam therapy, source containers in brachytherapy and other devices containing radioactive sources, should have a clear permanent sign indicating the existence of radioactive material (i.e., ISO 361 symbol).
• In addition, when outside the radiotherapy department, all devices containing radioactive sources should be labeled with a warning, which is recognized as “danger” by any member of the public. The ISO radiation symbol, shown in Fig. 16.1, is not intended to be a warning signal of danger but only of the existence of radioactive material.

• Accidents involving members of the public occurred although the ISO symbol was present, but was not recognized as danger. This prompted the IAEA to coordinate work on reaching an international agreement for a radiation danger warning sign.

![ISO 361 radiation symbol](image_url)

*Fig. 16.1. The ISO 361 radiation symbol.*

16.10.2. Sealed sources

**Article II.15.** (BSS document: Appendix II. – Medical exposure – Optimization of protection)

(e) Radioactive sources for either teletherapy or brachytherapy shall be so constructed that they conform to the definition of a sealed source.

Sealed source is defined in the BSS document glossary as radioactive material that is:

(i) Permanently sealed in a capsule or
(ii) Closely bounded in a solid form.

The capsule or material of a sealed source shall be strong enough to maintain leaktightness under the conditions of use and wear for which the source was designed, also under foreseeable mishap. To meet the requirements of BSS article II.15, sealed sources used for external beam therapy and brachytherapy should comply with the ISO 2919 document.
Applicators for brachytherapy should be those manufactured specifically for the source or those with which they are compatible. The use of radioactive sources after their manufacturer-recommended working life should be continued only upon leak testing and the approval of the regulatory authority. The use of older teletherapy units containing cesium-137 and brachytherapy sources incorporating radium-226 or old cesium-137 in preloaded applicators is no longer justified. Preloaded applicators and sources should be replaced as soon as practicable with afterloading sources not containing radium-226. Sources using beta emitters should be provided with shielding of low atomic number materials to minimize bremsstrahlung production, while in storage or while undergoing preparation for use.

16.10.3. Safety in design of facilities and ancillary equipment

As a general rule, the design of the radiotherapy facility needs to make provisions for safety systems or devices associated to equipment and treatment room. This includes electrical wiring related to emergency OFF switches, safety interlocks and warning signals.

Appropriate methods and data for shielding calculations are presented in the ICRP 33 and the NCRP 49 reports. An appropriate qualified expert should carry out the overall design of the facility, including shielding calculations. Examples of shielding calculations are given in Section 16.17. Additional information on the design of radiotherapy facilities can be found in the IAEA TECDOC-1040, the IEC Report 61859 and a report by the Institute of Physics and Engineering in Medicine.

Radiation monitoring equipment should be available on site in the vicinity of installations using sources of ionizing radiation.

Article II.15. (BSS document: Appendix II. – Medical exposure – Optimization of protection)

(f) When appropriate, monitoring equipment be installed or be available to give warning of an unusual situation in the use of radiation generators and radio-nuclide therapy equipment.

Manual brachytherapy

Typical safety features for the storage and preparation of radioactive sealed sources for manual brachytherapy are:

- The room be used only for source storage and preparation by designated and trained personnel;
- The room be provided with a locked door to control access and maintain source security (see Section 16.12 below on security of sources);
- A radiation sign be posted on the door;
- There should be shielded storage (a safe) for all sources. The outer surface of the storage shall be made of fireproof materials. The safe should be located near the preparation workbench to reduce the exposure of personnel during handling and transfer of sources.
- The safe should have compartments for different source activities. Each compartment should be marked so as to permit immediate and easy identification of its contents from the outside with a minimum of exposure.
Chapter 16. Radiation Protection and Safety

- The workbench should be provided with an L-block shielding with a lead glass viewing window.
- The source handling area should be well illuminated and a magnifying glass in a fixed mounting should be available in order to handle sources efficiently and with a minimum of radiation exposure.
- Devices for handling sources, especially forceps, should be available. They should be as long as practicable, and compatible with the efficient source handling. A device should be provided for threading sources expeditiously with the fingers protected by distance.
- Sources should be readily identifiable by sight. When radioactive sources of the same appearance but of different activities are used, they should be distinguishable, e.g., by different coloured threads or beads.
- Working surface for source preparation should be smooth and seamless to avoid loosing small sources such as iridium-192 wire fragments.
- The source storage and preparation laboratory should have a sink for cleansing of sources, provided with a filter or trap suitable for preventing loss of sources through the drainage system.
- There should be a clear indication of the radiation level in the room. This may be achieved by an area radiation monitor that is visible on entering the room and during any handling of the unshielded sources, or a survey meter should be available and in use during source handling.
- Space should be available for secure storage to enable decay of short half-life sources, such as iridium-192.
- Hand-carried transport containers must be provided with long handles and the lid of the container must be securely fastened to prevent tipping and dropping of sources during transportation. Containers should bear the radiation symbol as well as a warning sign.
- Space should be available for source transportation trolleys with source containers.

It is preferable that patient treatment rooms be for individual patients and adjacent to each other. If this is impossible, appropriate shielding between one patient and another is required.

- Shielding should be provided for nurses and visitors of brachytherapy patients, for which movable shields may be used within patient rooms, especially in manual brachytherapy.
- Prior to each treatment, movable shields should be placed close to the patient’s bed in such a way that exposure to the nurses caring for the patient is minimized. This is achieved by anticipating the nurse’s tasks, positions and movements throughout the room.
- The treatment room should contain a shielded storage container (large enough to accept the applicators if necessary) and a remote handling tool (forceps) for the event of a dislodged source.
- Sterilization facilities for preloaded applicators, if they are still temporarily used until replacement by remote after-loading applicators is possible, should be available in preparation or treatment rooms to ensure sufficient protection.
- An area monitor should be placed at the treatment room entrance so as to detect when a source or a patient with a source is leaving the room area. In order to ensure that no source remains within the patient, clothes or bed linen or in the area after treatment, a portable monitor shall be available for monitoring these items.
Remote control brachytherapy and external beam therapy

External beam therapy and high dose rate brachytherapy should be carried out in specially designed treatment rooms within the radiotherapy department, while low dose rate remote control brachytherapy can be performed in the ward in the area where manual brachytherapy is performed. The treatment room shielding should be designed in accordance with suitable recommendations (ICRP 33 and NCRP Report 49). The room should be large enough to accommodate the treatment machine allowing the full range of motion of the treatment table and patient transport.

With regard to the treatment rooms for HDR brachytherapy, the IAEA TECDOC-1040 states the following:

“If the feasibility of sharing a shielded treatment room between an HDR unit and another currently-used treatment machine is considered, it should be carefully evaluated. To avoid scheduling problems considerations should include the anticipated number of HDR procedures as well as the number of external beam treatments. This report recommends against this strategy in most instances.”

Access to the irradiation room shall be furnished with a visible signal indicating radiation source ON and OFF. A door interlock or other suitable means to prevent unauthorized access should be provided and a power-fail-safe area radiation monitor should be visible on entering the room. The mechanism should be capable of maintaining irradiation interruption until the door is closed and locked, and verification has been made that no person but the patient is inside the room. After an interruption, provided no operating parameters are changed or reselected, it should be possible to restart the irradiation, but only from the equipment control panel.

- One or more EMERGENCY OFF switches should be conveniently placed inside the treatment room to allow interruption of the irradiation from inside the room.
- The control panel should be installed in such a way that the operator will have total overview of the access to the irradiation room at all times. Adequate systems, devices, or other means should be provided to allow the operator to have a clear and full view of the patient.
- The systems for patient observation should be redundant and independent (e.g., closed circuit television, lead-glass windows, depending on the type of treatment unit).
- Oral communication should be possible with the treatment rooms and patients, by using an intercom or other communication system.
- Fire fighting means should be available in order to preserve integrity of radioactive sources in the event of fire.
- An installed radiation monitor and/or a portable survey instrument should be used to confirm the safe condition of the source.
16.11. SAFETY ASSOCIATED WITH ACCEPTANCE TESTS, COMMISSIONING AND OPERATION

After equipment installation, acceptance test should be conducted in order to verify that the equipment conforms to technical specifications given by the manufacturer and to verify compliance with safety requirements from IEC standards. Usually, the equipment belongs to the supplier until the acceptance process has been completed. The tests are usually performed by a manufacturer’s representative in the presence of personnel representing the user (qualified expert in radiotherapy physics) who will decide on acceptance. The first test in the acceptance procedure of a radiation-emitting device must be a rigorous area survey of the surroundings of the treatment room that houses the radiation-emitting machine.

As discussed in detail in Chapter 10, the tests to be included in the acceptance protocol should be specified in the purchasing conditions and contracts should clearly establish responsibility of suppliers for resolving non-conformity identified during acceptance testing. The tests grade B and C specified in the IEC standard for a particular machine can be used as guidance for preparing the test protocol.

After acceptance and before starting operation, calibration of radiation sources and radiation beams as well as commissioning is performed. These phases are critical to patient safety as shown in accidental exposures involving a large number of patients in some instances where commissioning tests were not carried out or were done poorly (see the IAEA Safety Report 17). During commissioning, the qualified expert in radiotherapy physics measures all data required for clinical use of the machine including data used in treatment planning systems.

Acceptance test and commissioning should not be restricted to radiation emitting equipment or sources but should also be conducted for any system that has implications on safety, such as treatment planning systems (TPS). Improper commissioning of treatment planning systems has also been the cause of several accidental medical over-exposures or under-exposures, both detrimental to the treatment outcome.

Quality controls need to be carried out following formally established quality control protocols:

(i) Periodically under normal operating conditions
(ii) After the source has been installed or replaced, and
(iii) After repairs or maintenance work carried out on a treatment machine that has the potential to alter the radiation output.

An independent audit of the calibration of the sources should be carried out before starting clinical use of the source. Quality assurance is dealt with in detail in Chapter 10. The BSS requirements on quality assurance for medical exposure are also provided in Section 16.14 below.

Equipment should be operated in accordance with the technical documents, ensuring a satisfactory operation at all times, in respect of both the tasks to be accomplished as well as radiation safety. In particular, the manufacturer’s operating manual, and any additional procedures should be approved in accordance with the quality assurance system (see Section 16.10 for BSS requirements on equipment).
Sealed sources should be subject to **leak tests**, prior to the first use and at regular intervals thereafter, in conformity with the ISO 9978. Leak tests should be capable of detecting the presence of 0.2 kBq of removable contamination of the sealed source.

- For manual brachytherapy sources the typical method is the direct wet wipe test,
- For external beam therapy and remote control brachytherapy the method to be used is the indirect wipe test of nearest accessible surface.
- For radium-226 sources immersion or gas emanation tests are adequate; however, radium-226 should be replaced by other radionuclides as soon as practicable.

The sterilization process in brachytherapy should be appropriate for preventing damage to sources and applicators that could affect safety.

### 16.11.1. Safe operation of external beam radiotherapy

Safe operation of external beam treatment units require procedures for wipe tests, area surveys, interlock checks, and procedures for emergencies such as a source that becomes stuck in the ON or partially ON position. Such procedures require that the necessary equipment be available, calibrated and in working order.

The equipment includes:

- Radiation monitor GM-type,
- Radiation monitor, ionisation chamber type, with scales from μSv on.
- Equipment for wipe tests such as well counters and multichannel analysers
- Personal alarm dosimeters, especially for emergency intervention.

The procedures for the use of this equipment should recognize that some instruments will “lock up” in a high radiation field and read erroneously. Hence the procedure should require a three-step process:

1. Check the battery,
2. Check the monitor response with a check source and
3. Turn the instrument on and start monitoring from outside the room where the source is located, *i.e.*, from the lower to the higher dose rate areas.

During clinical operation the presence of other staff in the area of the control panel should be limited to the minimum to avoid distracting the operator.

### 16.11.2. Safe operation of brachytherapy

The source strength (usually in terms of the *Reference Air-Kerma Rate* (RAKR)) of each brachytherapy source should be determined individually, before it is used on a patient (see Chapter 13). The source documentation should be checked carefully. It is essential that the unit of activity used for source calibration be the same as the unit of activity used in the treatment planning system. Some of the accidental exposures in brachytherapy have been caused by errors in the manufacturer’s specification of the activity of one or several sources and others because the unit of activity used in the hospital differed from the unit stated by the manufacturer (see the IAEA Report 17 and the ICRP Publication 86).
Chapter 16. Radiation Protection and Safety

After verification of the source strength, the source or source holder should be marked with unique identifiers (for example, a pre-established colour) to facilitate visual recognition and to prevent the possibility of confusion among different sources. Containers used for transport of radioactive sources shall be in conformance with the requirements established in the IAEA Regulations for the Safe Transport of Radioactive Material.

The movements of the sources from the time they have left the safe until their return should be documented and signed by the person responsible for the move (using forms or a log-book). A person should be assigned to be in charge of the accountability of the sources. This person should keep a record of source order, issuance from and return to the safe with signatures (see requirements for source security below).

LDR and HDR sources have certain common operating procedures for safe use:

- Source inventories should be performed which show the location and current activity of each source at the facility with a unique identifier for each source. This may be either a color-coded or letter/number identifier.
- Sources should never be left on preparation surfaces. They have to be in storage, in transit, or in the patient.
- Leak tests (using moist wipes) need to be performed and documented on a periodic basis and these should have a sensitivity that is sufficient to detect a very low increase above the background radiation.
- For the HDR unit, the wipe tests are only performed on the afterloading drive assembly and transport containers, since the source itself has too high an activity to allow this sort of test.
- Area surveys are to be performed periodically around the source storage facilities for LDR and HDR sources.
- The storage facilities are to be marked to indicate that they contain radioactive materials. The responsible radiation safety individual in the event of an emergency should be clearly indicated.
- The storage facilities are to be kept locked at all times.
- After every brachytherapy treatment, the patient has to be monitored with a radiation survey meter so ensure that no activity remains in the patient.

Specific precautions to be observed during the cutting and handling of iridium-192 wires should include ensuring that:

- Appropriate tools and equipment, such as forceps, cutting devices, magnifying glasses and good illumination of the work surface are available and used; if iridium-192 wires are cut-off for immediate use, a container to hold cut lengths should be provided and labeled.
- Radioactive waste is collected and stored in adequate containers;
- Surfaces and tools are properly decontaminated;

Practical issues. The following information should be posted for brachytherapy treatments: identification of the patient, sources, date and time of insertion and removal, nursing required, time allowance for nurses and visitors, and concise instructions for unplanned source and applicator removal and for emergency. A patient with removable source in or upon his body should not leave the room unless accompanied by a hospital attendant.
Upon completion of treatment the licensee should ensure that all brachytherapy sources are removed from the patient, except in the case of permanent implants. The patient should be monitored with a portable detector to ensure that no source remains in or on the patient. Linen, dressings, clothing, and equipment should be kept within the room where the removal of sources takes place until all sources are accounted for, and should be monitored with a radiation survey meter. Rubbish bins, soiled dressing bins and laundry baskets, coming from a brachytherapy ward or other area where brachytherapy sources are employed, should be monitored with a radiation survey meter.

Mobile containers and portable equipment containing radioactive sources should be moved to a storage room or to a secure place when not in use.

Safe operation of manual brachytherapy

- Inspect the sources visually for possible damage after each use by means of magnifying viewers and a leaded viewing window in a shielded work area.
- Provide a diagram at the source storage safe, which has to show exact locations of each source within the safe, aids in reducing the time it takes to locate and identify a source.
- Handle the sources only with long forceps or tongs, never directly with the fingers.
- When transporting the sources a mobile, a shielded container is needed and the shortest route possible should be used.
- Sources, which come into direct contact with body tissues, require cleaning and possible sterilization after each use, which can subject the sources to possible damage from heat, abrasion, chemical attack, and mechanical stresses. Therefore, these sources must be inspected after every use.
- The work surfaces should be easily cleaned and brightly lighted to make it easy to find any sources that are dropped.
- As indicated in Section 16.10, a filter should be used in the drain to prevent loss of sources to the sewage, while cleaning in the sink.

Safe operation of remote control afterloading brachytherapy

- The QC of the afterloader includes tests to be performed at the beginning of each treatment day.
- The couplings and transfer tubes need to be checked (for HDR it has to be done before each treatment) to ensure that there is nothing to prevent the source motion.
- Remote afterloading equipment requires specific emergency procedures that are especially critical in HDR brachytherapy. These procedures are dealt with in Section 16.16.

16.12. SECURITY OF SOURCES

Article 2.34. (BSS document: Principal requirements – Security of sources)

Sources shall be kept secure so as to prevent theft or damage and to prevent any unauthorized legal person from carrying out any of the actions specified in the BSS document, articles 2.7., 2.8., and 2.9. by ensuring that:
Chapter 16. Radiation Protection and Safety

(a) Control of a source not be relinquished without compliance with all relevant requirements specified in the registration or licence and without immediate communication to the Regulatory Authority of information regarding any decontrolled, lost, stolen or missing source;

(b) A source not be transferred unless the receiver possesses a valid authorization;

(c) A periodic inventory of movable sources be conducted at appropriate intervals to confirm that they are in their assigned locations and are secure.”

The objective of source security is to ensure continuity in the control and accountability of each source at all times in order to meet BSS requirement 2.28. Specific provisions shall be made for situations in which loss of control could lead to accidents:

- Storage of sources before installation;
- Temporary or permanent cessation in the use;
- Storage after decommissioning awaiting decision on source return or disposal;
- Brachytherapy sources remaining in patient, clothes, bed linen or treatment area.

To comply with this requirement, the licensee needs to develop procedures to ensure the safe exchange and movement of radioactive sources within the institution, and establish controls to prevent theft, loss, unauthorized withdrawal or damage of sources, or entrance of unauthorized personnel to the controlled areas.

The licensee also needs to check the number of sources in a container when removing and when returning the sources and should perform a physical inventory of all sealed sources to confirm that they are present and secure in their assigned locations. The licensee should maintain a source movement log with a record indicating the date of removal, the name of the patient and the return of the source.

Radiotherapy equipment should be equipped with safety systems capable of preventing their use by unauthorized personnel. A key should be required to energize the system, access to which shall be restricted only to authorized staff. Any loss of a source shall be reported immediately to the radiation protection officer, who should report it to the regulatory authority. All linen, dressing, clothing, equipment, and trash container should be kept within the brachytherapy patient’s room, until checks have been performed and documented that sources are not attached to them.

16.13. OCCUPATIONAL EXPOSURE

Detailed requirements for protection against occupational exposure are given in the BSS, while the recommendations on how to meet these requirements are given in the IAEA Safety Guidance on Occupational Radiation Protection, RS-G-1.1 and 1.3. In this section, a summary of the most relevant issues for radiotherapy is given.

16.13.1. Responsibilities and conditions of service

The parties responsible for occupational exposure are not only licensees but also employers. In some cases the employer and licensee are the same legal person, but in other cases they may be different. For example, the employer of a maintenance engineer may be the maintenance company, while maintenance engineers work in many radiotherapy departments, each one under a different licensee.
16.13.2. The use of dose constraints in radiotherapy

Dose constraints can be used for optimizing protection in the planning stage for each radiation source. Anticipated individual doses should be compared with the appropriate dose constraints and protective measures should be taken to keep doses below dose constraints. The BSS definition of dose constraint is: “For occupational exposures, dose constraint is a source-related value of individual dose used to limit the range of options considered in the process of optimization”.

Since dose constraints are source-related, the source should be specified; e.g., when choosing source-related dose constraints for the sources involved in a radiotherapy facility, consideration should be given to the fact that medical and paramedical staff may work in more than one hospital and is exposed to the sources from two radiotherapy departments (for example, in one hospital in the morning and in another hospital in the evening).

16.13.3. Investigation levels for staff exposure in radiotherapy

Investigation levels are a tool used to provide a “warning” on the need to review procedures and performance, investigate what is not working as expected and take timely corrective action. In radiotherapy, a suitable quantity for use as investigation level is the monthly effective dose itself, but the dose to the hands can be used as a quantity for investigation level for staff in manual brachytherapy. In radiotherapy departments where different staff is dedicated to specific work or tasks, different investigation levels can be associated to the various tasks.

The following are examples of levels and their related tasks that are rarely exceeded and therefore, could be suitable as investigation levels:

- For staff working only with accelerators or remote control brachytherapy, a monthly investigation level of 0.2 mSv effective dose;
- For staff working with cobalt-60 external beam therapy, brachytherapy nurses, and persons inserting and removing manual-brachytherapy sources, a monthly investigation level of 0.4 mSv effective dose could be used.

16.13.4. Pregnant workers

Article 1.16. (BSS document: Appendix I. – Occupational exposure – Conditions of service)

A female worker should, on becoming aware that she is pregnant, notify the employer in order that her working conditions may be modified if necessary, and

Article 1.16. (BSS document: Appendix I. – Occupational exposure – Conditions of service)

The notification of pregnancy shall not be considered a reason to exclude a female worker from work; however, the employer of a female worker who has declared her pregnancy shall adapt the working conditions in respect to occupational exposure so as to ensure that the embryo or foetus is afforded the same broad level of protection as required for members of the public.
Chapter 16. Radiation Protection and Safety

This is especially relevant, for example, in manual brachytherapy where, under normal conditions, the dose to the foetus in certain workers may reach the dose limit for members of the public established in the BSS document (see Table 16.1.).

16.13.5. Classification of areas

Relevant areas of a practice can be classified as either controlled or supervised according to the BSS document, articles I.21.-I.25.

A controlled area is defined as an area in which specific protection measures and safety provisions are needed for controlling normal exposure and for preventing potential exposure. In radiotherapy practice, areas requiring specific protection measures (controlled areas) include:

- All irradiation rooms for external beam therapy,
- Remote afterloading brachytherapy treatment rooms,
- Operating rooms during brachytherapy procedures using real sources,
- Brachytherapy patient rooms,
- All radioactive source storage and handling areas.

It is preferable to define controlled areas by physical boundaries like walls or other physical barriers marked or identified with radiation area signs.

A supervised area is an area that should be kept under review even though specific protection measures and safety provisions are not normally needed. Supervised areas may include areas requiring regular review of the radiological conditions to determine whether or not there has been some breakdown of control in the procedures. Supervised areas may involve areas surrounding brachytherapy patients rooms or around radioactive source storage and handling areas.

All areas designated neither controlled nor supervised areas should be such that persons in them would receive the same level of protection as members of the public.

16.13.6. Local rules and supervision

Rules and procedures listed in Section 16.11 include those needed for occupational protection. Management should make the rules known to those to whom they apply and ensure that they are followed by assigning responsibilities for supervision of tasks.

16.13.7. Protective equipment and tools


Employers and licensees shall ensure that workers are provided with suitable and adequate personal protective equipment.

Protective equipment for radiotherapy is included in Section 16.10.
16.13.8. Individual monitoring and exposure assessment

The purpose of monitoring and dose assessment is to gather and provide information on the actual exposure of workers and to confirm good working practices contributing to reassurance and motivation. The BSS document requires individual monitoring for any worker who is normally employed in a controlled area and may receive a significant occupational exposure.

Those most likely radiotherapy professionals requiring individual monitoring are: radiation oncologists, qualified experts in radiotherapy physics, radiation protection officer, radiotherapy technologists, source handlers, maintenance staff and any nursing or other staff who must spend time with patients who contain radioactive sources.

Monitoring includes more than just measuring and determining the equivalent dose; it includes interpretation and assessment. Individual external doses can be determined by using individual monitoring devices such as thermoluminescent dosimeters or film badges, which are usually worn on the front of the upper torso (in most radiotherapy procedures, the whole body is assumed to be fairly uniformly exposed). When the possibility exists of exposure to the hands, such as in the handling of brachytherapy sources, extremity dosimeters need to be worn (if compatible with clinical practice).

The exchange of dosimeters in a radiotherapy department and receipt of the dose reports should not exceed a period of three months. Delays in the evaluation of a dosimeter can result in the loss of the stored information.

If an individual’s dosimeter is lost, the licensee shall perform and document an assessment of the dose the individual received and add it to the worker’s dose record. Often, the most reliable method for estimating an individual’s dose is to use his/her recent dose history, provided that nothing unusual occurred in the period. Individual monitoring devices are to be calibrated and this calibration shall be traceable to a standards dosimetry laboratory.

16.13.9. Monitoring the workplace

The BSS document requires licensees in cooperation with employers to develop programmes for monitoring the workplace (BSS document, articles I.37–I.40). Initial monitoring is to be conducted immediately after the installation of new radiotherapy equipment and after the replacement of teletherapy sources and remote-controlled brachytherapy sources. Initial monitoring should include measurements of radiation leakage from equipment within acceptance tests and area monitoring of occupied space around irradiation rooms.

Monitoring of exposure levels should be conducted through the use of area monitors in teletherapy and high dose-rate treatment rooms. Monitoring of the source storage and handling area is to be conducted with a survey meter immediately following the removal from or return to storage of brachytherapy sources.

Monitoring is to be conducted in association with brachytherapy procedures. Soon after implantation of the sources, a survey should be made of exposure rates in the vicinity of the patient. After removal of brachytherapy sources from a patient, a survey is to be performed to confirm removal from the patient and return to shielding of all sources. The transport container should be surveyed before and after brachytherapy procedures.
Chapter 16. Radiation Protection and Safety

Monitoring of packages containing radioactive sources, upon receipt by the licensee, is to be performed. All survey meters used for workplace monitoring must be calibrated and this calibration shall be traceable to a standards dosimetry laboratory.

16.13.10. Health surveillance

Article I.41. (BSS document: Appendix I. – Occupational exposure – Health surveillance)

Employers and licensees shall make arrangements or agreements to provide medical surveillance for workers.

The primary purpose of medical surveillance is to assess the initial and continuing fitness of employees for their intended tasks.

- Health surveillance programmes shall be based on the general principles of occupational health. No specific health surveillance related to exposure to ionizing radiation is necessary for staff involved in the operation of a radiotherapy practice.

- Only in the case of overexposed workers at doses much higher than the equivalent dose limits (e.g., 0.2-0.5 Sv or higher) would special investigations involving biological dosimetry and further extended diagnosis and medical treatment be necessary.

Counseling should be available to workers, such as women who are or may be pregnant, or are breast-feeding a child, individual workers who have or may have been exposed substantially in excess of dose limits, and workers who may be worried about their radiation exposure. This is particularly necessary for women who are or may be pregnant, such as female technologists working in radiotherapy, and nurses working in brachytherapy wards.

16.13.11. Records

Article I.44. (BSS document: Appendix I. – Occupational exposure – Records)

Employers and licensees shall maintain and preserve exposure records for each worker.

The exposure records shall include the following:

- Information on the general nature of work involving occupational exposure;
- Information on doses, and the data upon which the dose assessments have been based;
- When a worker is or has been occupationally exposed while in the employ of more than one employer,
- Information on the dates of employment with each employer and the doses, exposures and intakes in each such employment; and
- Records of any doses due to emergency interventions or accidents, which shall be distinguished from doses, during normal work.

Employers and licensees shall provide for access by workers to information in their own exposure records; and give due care and attention to the maintenance of appropriate confidentiality of records.
16.14. MEDICAL EXPOSURE

The detailed requirements given in Appendix II of the BSS document are applicable, in particular, to radiotherapy sources. In addition, the Safety Guide on Radiological Protection for Medical Exposure to Ionizing Radiation (see IAEA RS-G-1.5) describes strategies to involve organizations outside the regulatory framework, such as professional bodies (those for radiation oncology and medical physics), whose co-operation is essential to ensure compliance with the BSS requirements for medical exposures. Examples, which may illustrate this point, include acceptance-testing processes for radiation equipment, calibration of radiotherapy units, and reporting of medical accidental exposure.

Requirements on justification and optimization of protection also apply to medical exposure but not to the dose limits. Further, dose constraints do not apply to exposure of patients as part of their own diagnosis and treatment, but specific dose constraints shall be defined to non-occupational comforters and to medical exposure to individuals exposed for medical research, if these individuals do not benefit directly from the exposure.


Article II.1. (BSS document: Appendix I – Medical exposure – Responsibilities)

Registrants and licensees shall ensure that:

(a) No patient be administered a diagnostic or therapeutic medical exposure unless the exposure is prescribed by a medical practitioner;

(b) Medical practitioners be assigned the primary task and obligation of ensuring overall patient protection and safety in the prescription of, and during the delivery of, medical exposure;

(c) Medical and paramedical personnel be available as needed, and either be health professionals or have appropriate training adequately to discharge assigned tasks in the conduct of the diagnostic or therapeutic procedure that the medical practitioner prescribes;

(d) For therapeutic uses of radiation (including teletherapy and brachytherapy), the calibration, dosimetry and quality assurance requirements of the Standards be conducted by or under the supervision of a qualified expert in radiotherapy physics”.

Furthermore, the BSS document requires that the licensee shall ensure that:

(f) The training criteria be specified or be subject to approval, as appropriate, by the regulatory authority in consultation with relevant professional bodies.

16.14.2. Justification of medical exposure

Article II.4. (BSS document: Appendix II – Medical exposure – Justification)

Medical exposures should be justified by weighting the diagnostic or therapeutic benefits they produce against the radiation detriment they might cause, taking into account the benefits and risks of available alternative techniques that do not involve medical radiation exposure.
Chapter 16. Radiation Protection and Safety

With respect to medical research, article II.8 of the BSS document requires that:

The exposure of humans for medical research be performed only if it is:

(a) In accordance with the provisions of the Helsinki Declaration and follows the guidelines for its application prepared by Council for International Organizations of Medical Sciences (CIOMS) and WHO; and

(b) Subject to the advice of an Ethical Review Committee (or any other institutional body assigned similar functions by national authorities) and to applicable national and local regulations.

Research on humans in therapeutic procedures should only be performed, if there is a direct health benefit to the exposed person.

16.14.3. Optimization of exposure and protection

Article II.18. (BSS document: Appendix II – Medical exposure – Therapeutic exposure)

(a) Exposure of normal tissue during radiotherapy be kept as low as reasonably achievable consistent with delivering the required dose to the planning target volume, and organ shielding be used when feasible and appropriate.

(b) Radiotherapy procedures causing exposure of the abdomen or pelvis of women who are pregnant or likely to be pregnant be avoided unless there are strong clinical indications.

(d) Any therapeutic procedure for pregnant women be planned to deliver the minimum dose to any embryo or foetus.

The optimisation of protection in the case of patients is complex and does not necessarily mean the reduction of doses to patients, as priority has to be given to the acquisition of reliable diagnostic information and the achievement of the desired therapeutic effect.

With regard to the exposure of pregnant patients, the International Commission on Radiological Protection (ICRP) in Publication 84 on Pregnancy and Medical Radiation states:

Termination of pregnancy is an individual decision affected by many factors. Foetal doses below 100 mGy should not be considered a reason for terminating a pregnancy. At foetal doses above this level, there can be foetal damage, the magnitude and type of which is a function of dose and stage of pregnancy.


Article II.19. (BSS document: Appendix II – Medical exposure – Calibration)

Registrants and licensees shall ensure that:

(a) Calibration of sources used for medical exposure be traceable to a Standards dosimetry laboratory;

(b) Radiotherapy equipment be calibrated in terms of radiation quality or energy and either absorbed dose or absorbed dose rate at a predefined distance under specified conditions, e.g., following the recommendations given in the IAEA Technical Reports Series No. 277;
Sealed sources used for brachytherapy be calibrated in terms of activity, reference air-kerma rate in air or absorbed dose rate in a specified medium, at a specified distance, for a specified reference date;

Calibrations be carried out at the time of commissioning a unit, after any maintenance procedure that may have an effect on the dosimetry and at intervals approved by the Regulatory Authority.

At the time of publication of the BSS document, the IAEA code of practice based on air-kerma in air was included in the requirements (IAEA TRS-277). More recent protocols (codes of practice) based on standards of absorbed dose-to-water, such as the IAEA TRS 398 protocol, were not available at that time. However, it is possible to extend the BSS requirement to the new protocols (see Chapter 9).

Sealed sources used for external beam therapy and brachytherapy need to have a calibration certificate provided by the manufacturer, in accordance with the ISO 1677 or its national equivalent standards.

The licensee must implement a protocol for calibration of radiation sources used for radiotherapy. The Regulatory Authority should encourage the professional bodies of medical physics to adopt a protocol and require its implementation by licensees. It is advisable to use international protocols for calibration. This would avoid confusion and help prevent mistakes. Examples are the calibration procedures described by the IAEA (TRS-277, TRS-381 and TRS-398 for external beam as well as the IAEA TECDOC 1097 for brachytherapy.

Calibration of new equipment and new radiation sources should be done independently by at least two different qualified experts in radiotherapy physics and preferably using different dosimetry systems. The results should be compared only after the completion of both measurements.

The licensee should ensure that all teletherapy equipment outputs are compared at least once every two years in a national, regional or international programme for independent dose verification.

One of the simplest mechanisms for independent verifications of external beam calibration or physical dosimetry is participation in the IAEA/WHO thermoluminescent dosimetry postal dose quality audit. The Regulatory Authority should encourage registrants and licensees to participate in this programme or similar programmes.

For new brachytherapy sources where the measurement varies by more than 5% from the manufacturer’s certified activity or air-kerma rate in air, the source shall not be used for patient treatment until the difference is investigated further and resolved. The responsibility for the investigation and for further action remains with the licensee, and the investigation is usually performed by a qualified expert in radiotherapy physics, with or without external help.
Chapter 16. Radiation Protection and Safety

16.14.5. Clinical dosimetry

Article II.20. (BSS document: Appendix II – Medical exposure – Clinical dosimetry)

Registrants and licensees shall ensure that the following information is provided:

(b) For each patient treated with external beam radiotherapy equipment, the maximum and minimum absorbed doses to the planning target volume together with the absorbed dose to a relevant point, such as the centre of the planning target volume, plus the dose to other relevant points selected by the medical practitioner prescribing the treatment.

(c) In brachytherapy treatments performed with sealed sources, the absorbed doses at selected relevant points in each patient.

(e) In all radiotherapy treatments, the absorbed doses to relevant organs.

To meet these requirements, i.e., the items to be determined and the way they are determined and documented, a protocol should be used. The ICRU reports are recommended for consultation on such determination and recording.

16.14.6. Quality assurance for medical exposures

Article II.22. (BSS document: Appendix II – Medical exposure – QA for medical exposures)

Registrants and licensees, in addition to applying the relevant requirements for quality assurance specified elsewhere in the Standards, shall establish a comprehensive quality assurance programme for medical exposures with the participation of appropriate qualified experts in the relevant fields, such as radiophysics or radiopharmacy, taking into account the principles established by the WHO and the PAHO.

The Regulatory Authority should encourage licensees to work with professional associations in the development of such programmes. The Licensee should ensure that the programmes are updated on a regular basis. As the development of a national programme may not be feasible in many Member States, a well-established and proven international or national programme may be followed (for example, AAPM TG-40, ESTRO Booklet No. 2, IAEA-TECDOC-1151).

Article II.23. (BSS document: Appendix II – Medical exposure – QA for medical exposures)

Quality assurance programmes for medical exposures shall include:

(a) Measurements of the physical parameters of the radiation generators, imaging devices and irradiation installations at the time of commissioning and periodically thereafter;

(b) Verification of the appropriate physical and clinical factors used in patient diagnosis or treatment;

(c) Written records of relevant procedures and results;

(d) Verification of the appropriate calibration and conditions of operation of dosimetry and monitoring equipment; and

(e) As far as possible, regular and independent quality audit reviews of the quality assurance programme for radiotherapy procedures.
Following the acceptance of new radiotherapy equipment, sufficient data shall be measured at the commissioning to be used for clinical dosimetry and treatment planning.

- The measured data shall be clearly documented in the workbook.
- Before being issued for use in treatment planning, the documentation shall be independently verified, signed and dated.
- All dosimetry calibrations, clinical dosimetry data and methods of calculation for therapy equipment are to be reconfirmed at regular intervals.

The measurements and checks carried out for this purpose should be sufficient to detect any significant variations from the data in use.

Verification of patient treatment through in-vivo dosimetry is advisable under special circumstances. This procedure may not be available in all institutions, but nevertheless it is recommended for incorporation as soon as it becomes feasible.

Routine QA programme is an integral component of modern radiotherapy practice. The QA programme should include auditing, both internal and external, and continual improvement. These principles need to be linked to the radiation protection programme in order to strengthen safety whilst at the same time improving quality and efficiency.

Feedback from operational experience and lessons learned from accidents or near misses can help identify potential problems and correct deficiencies, and therefore should be used systematically as part of the QA programme.

The maintenance of records is an important part of a QA programme. When planning and developing an effective quality assurance programme, licensees need to recognize that it demands a strong managerial commitment and support in form of training and resources of time, personnel and equipment.

16.14.7. Constraints for comforters and visitors

Dose constraints do not apply to patients. With regard to patient’s comforters and visitors, article II.27 of the BSS document (Appendix II) recommends the following:

Registrants and licensees shall constrain any dose to individuals incurred knowingly while voluntarily helping (other than in their occupation) in the care, support or comfort of patients undergoing medical diagnosis or treatment, and to visitors to patients who have received therapeutic amounts of radionuclides or who are being treated with brachytherapy sources, to a level not exceeding that specified in Schedule II, article. II.9.

Schedule II of the BSS document establishes that:

The dose of any such comforter or visitor of patients shall be constrained so that it is unlikely that his or her dose will exceed 5 mSv during the period of a patient's diagnostic examination or treatment. The dose to children visiting patients who have ingested radioactive materials should be similarly constrained to less than 1 mSv.
Chapter 16. Radiation Protection and Safety


Article II.28. (BSS document: Appendix II – Medical exposure – Maximum activity for patients in therapy on discharge from hospital)

In order to restrict the exposure of any members of the household of a patient who has undergone a therapeutic procedure with sealed or unsealed radionuclides and members of the public, such a patient shall not be discharged from hospital before the activity of radioactive substances in the body falls below the level specified in Schedule III, Table III-VI. Written instructions to the patient concerning contact with other persons and relevant precautions for radiation protection shall be provided as necessary.

Table III-VI (BSS document, Schedule III) only includes the value for iodine-131 and sets 1100 MBq as the guidance level for maximum activity for patients in therapy on discharge from hospital. The ICRP has an ongoing Task Group with the charge of developing guidance for other sources, including those used for permanent implants in brachytherapy such as iodine-125 and palladium-103.


Article II.29. (BSS document: Appendix II–Medical exposure–Accidental medical exposure)

Registrants and licensees shall promptly investigate any of the following incidents:

(a) Any therapeutic treatment delivered to either the wrong patient or the wrong tissue, or using the wrong pharmaceutical, or with a dose or dose fractionation differing substantially from the values prescribed by the medical practitioner or which may lead to undue acute secondary effects; .. and

(c) Any equipment failure, accident, error, mishap or other unusual occurrence with the potential for causing a patient exposure significantly different from that intended.

Article II.30. (BSS document: Appendix II–Medical exposure–Accidental medical exposure)

Registrants and licensees shall, with respect to any investigation required under article II.29:

(a) Calculate or estimate the doses received and their distribution within the patient;
(b) Indicate the corrective measures required to prevent recurrence of such an incident;
(c) Implement all the corrective measures that are under their own responsibility;
(d) Submit to the regulatory authority, as soon as possible after the investigation or as otherwise specified by the regulatory authority, a written report which states the cause of the incident and includes the information specified in (a) to (c), as relevant, and any other information required by the regulatory authority; and
(e) Inform the patient and his or her doctor about the incident.

The IAEA Safety Report No 17 and the ICRP Publication 86 contain reviews and lessons to be learned from an extensive collection of accidental medical exposures.
16.15. PUBLIC EXPOSURE

16.15.1. Responsibilities

The licensee is responsible for controlling public exposure resulting from a radiotherapy practice. Public exposure is controlled by proper shielding design and, in large part, by ensuring that radiation sources are shielded and secured (e.g., located in a locked area) interlocks are functional, keys to the control panel are secured, to prevent unauthorized access or use. Presence of members of the public in and near the radiotherapy department shall be considered when designing shielding of storage and treatment facilities.

16.15.2. Access control for visitors

The licensee should make arrangements to control access of members of the public to radiotherapy irradiation rooms, and provide adequate information and instruction to these persons before they enter a controlled area so as to ensure appropriate protection (e.g., members of public shall be accompanied by radiotherapy staff).

16.15.3. Radioactive waste and sources no longer in use

The licensee should notify the regulatory authority and submit a plan for transfer and disposal of sources, if they are no longer in use. The licensee maintains responsibility for the sources until the time of their transfer to another appropriate licensee or to an authorized waste disposal facility; in particular, the licensee has to notify the regulatory authority of any intention to transfer or decommission cobalt-60 teletherapy equipment prior to initiating any action. Depleted uranium used as shielding material shall also be treated as radioactive waste. For example, a cobalt-60 teletherapy head may contain depleted uranium and is to be disposed of appropriately.

16.15.4. Monitoring of public exposure [BSS Appendix III. 13.]


The licensee shall, if appropriate:

(a) Establish and carry out a monitoring programme sufficient to ensure that the requirements of the standards regarding public exposure to sources of external irradiation be satisfied and to assess such exposure;
(b) Keep appropriate records of the results of the monitoring programmes.

The programme for monitoring public exposure from radiotherapy shall include dose assessment in the surroundings of irradiation rooms for external beam therapy, brachytherapy wards, source storage, source preparation rooms and waiting rooms.

16.16. POTENTIAL EXPOSURE AND EMERGENCY PLANS

Requirements on the safety of sources and facilities are set out in Section 16.10. This Section focuses on identification of possible emergency situations or accidents, and their prevention, preparation for and mitigation of them.
Chapter 16. Radiation Protection and Safety

16.16.1. Potential exposure and safety assessment

Article IV.3. (BSS document: Appendix IV – Potential exposure – Safety assessment)

Licensees shall conduct a safety assessment, either generic or specific for the sources for which they are responsible.

The assessment is to be provided to the Regulatory Authority, according to the BSS principal requirements on authorization (articles 2.11. to 2.13 of the BSS document).

Generic safety assessments are suitable for types of equipment with a high degree of uniformity (article IV.9 of the BSS document). As experience in identifying accident scenarios by an individual licensee may be limited, arrangements between licensees and manufacturers to provide for notification on malfunctions and dissemination by feedback to licensees should be encouraged.

16.16.2. Mitigation of consequences: emergency plans

Based on the events identified by the safety assessment, the licensee shall elaborate mitigation measures embodied in a set of emergency procedures. The responsibilities shall be allocated (article V.2 of the BSS document) and the relevant staff shall be trained in the mitigation measures, which shall be periodically rehearsed. The lessons learned from the rehearsals shall be used to review and update the emergency plans. The procedures shall identify the responsibilities of individuals and shall be concise, unambiguous and posted visibly in places where they could be needed.

Only maintenance staff trained and authorized for these tasks should carry out emergency procedures during source change of external beam therapy units and remote control brachytherapy units. If participation of radiotherapy staff is necessary for any of these actions, the scope of this participation shall be restricted to operating the control panel and responsibilities shall be clearly defined.

For emergency situations there need to be emergency plans, which are concise and easily followed, and these should be developed before the start-up of a radiation treatment programme. Below are given the most frequent types of emergency situations:

Lost source

It is critical for this type of events that an up-to-date inventory exists so that the following can be determined immediately:

- which source(s) is (are) missing,
- what is their type and activity,
- when and where they were last known to be, and
- who last took possession of the sources.

The area where the sources were last known to be should be closed to entry and exit until a survey has been performed. This search needs to be performed with the most sensitive radiation detection survey meter.
Stuck source

Emergency procedures need to be short, concise, unambiguous, and, if necessary, illustrated with drawings without any explanation text. They need to be read at first sight and followed.

- **External beam therapy units**
  Emergency procedures should be posted at the treatment unit for this event. In general, the first step is to use the source driving mechanism to return the source to the shielded position. If this is not immediately successful and there is a patient on the treatment couch, the patient should be removed from the area and the area must be secured from further entry. Emphasis should be placed on avoiding exposure of the staff to the primary beam. The RPO is then notified and takes over the control of the situation.

- **Remote control brachytherapy units**
  Emergency plans require having an emergency container available in the treatment room, as well as an emergency kit containing long-handled forceps for manipulation of the source guide tubes and applicators, if the source fails to return to the safe. The emergency container should be placed close to the patient and should be sufficiently large so that it can accept the entire applicator assembly that contains the source and is removed from the patient.

For HDR brachytherapy, the following remark is taken from the IAEA TECDOC 1040: “High dose rate brachytherapy is potentially a high risk technique and extreme accuracy and care are essential. The short response time required for emergency actions (minutes) imposes the need for the presence of both a physician and physicist trained in emergency procedures during all applications.”

Manufacturers usually provide suggested emergency procedures for the case that the source fails to return to the safe. They assume the physical integrity of the applicator is maintained. These procedures are specific to the actual afterloading unit but generally involve the following sequence. Each step assumes that if the previous action fails to lead to recovery, then the following action is required.

The generic sequence is as follows:

1) Observation at console of error message and emergency indicators (audible and visible alarms);
2) Recovery from the console (e.g., pressing an “emergency OFF” button);
3) Entry into the room with a portable radiation survey meter (opening the door activates the interlock that retracts the source);
4) Monitoring radiation levels in the room;
5) Recovery from the afterloading unit (by pressing an “emergency OFF” button on the remote afterloading unit (RAU);
6) Manual retraction of the source (using a hand crank);
7) Patient survey and RAU survey (confirming source is in the safe);
8) Applicator removal and placement in the emergency container;
9) Patient survey and emergency container survey (to confirm source is not in the patient and is in the emergency container); and
10) Removal of the patient from the vault (with subsequent survey monitoring).
Chapter 16. Radiation Protection and Safety

Contamination

There is a very low probability of contamination accidents in radiotherapy departments, where radium-226 as well as old powder-form cesium-137 sources have been replaced. In case of a contamination accidents, it is important that the area be closed to further entry and that all who were in the area remain to be surveyed and de-contaminated if necessary. If there are windows or other ventilation present, these should be closed. There should also be a statement of how to contact the responsible radiation safety individual in the event of an emergency.

Off-site accidents

Off-site accidents with major consequences have been caused by loss of security of teletherapy sources not in use. Some of them (Mexico and Brazil) caused large-scale contamination and others with external irradiation only (Thailand and Turkey). Off-site accidents require actions by national and international intervening organizations. Participation of radiotherapy licensees in national emergency plans may be required and integrated.

Patient accidental exposure

The requirements in the BSS document on investigation of accidental medical exposure have been already referred to in Section 16.14, including incident reporting and corrective measures to be taken.

16.17. GENERAL SHIELDING CALCULATIONS

The three important parameters that influence the external radiation exposure are: time, distance, and shielding:

- Radiation dose received by individuals is proportional to the time they spend in the radiation field.
- Radiation dose generally follows an inverse square law. Hence, the dose is reduced substantially by increasing the distance from the radiation.
- The dose is reduced, if shielding attenuates the radiation.

These parameters are involved in shielding design, which basically consist of three steps:

1) Establishing a design value for the effective dose in the occupied area.
2) Estimating the radiation field at the occupied area if there were no shielding.
3) Obtaining the attenuation factor that is necessary to reduce the dose value from the effective dose in (2) to the effective dose in (1).

It is convenient to keep heavily occupied areas as far away as possible from the treatment rooms and surround the rooms with no occupancy or low occupancy areas (e.g., roof with control of access). The treatment room itself should be large enough for easy patient transport in trolley and also for ease of installation and servicing of the equipment. Design of the room with maze facility makes a heavy motorized entry door unnecessary for photons. With proper design, a maze can make neutron shielding and a heavy motorized door unnecessary.
Treatment rooms in radiotherapy departments typically fall into one of the following six categories: linear accelerator, cobalt-60 teletherapy room; orthovoltage x-ray room; superficial x-ray room; high dose rate (HDR) brachytherapy room; and low dose rate (LDR) brachytherapy room.

Shielding requirements for each of these rooms follow similar rules and conventions; however, each of the rooms introduces a few of its own specific requirements and constraints. If the source room contains only Low Dose Rate (LDR)-type brachytherapy sources and they are always stored in a locked shielded safe within the room, except while preparing the sources behind a shield, the room may not require any special shielding.

The patient room which houses the manual afterloading LDR brachytherapy patients may not need any shielding, if mobile lead shields are used around the patient's bed. Installations housing linear accelerators, teletherapy machines, x-ray machines or high dose rate remote afterloading devices all require special shielding to protect the operators, staff, patients and public in adjacent areas.

16.17.1. Step one: design dose at occupied areas (annual dose and weekly dose)

The design effective dose rate $P$ (in Sv/year or Sv/wk) at a given occupied area is derived by constrained optimization, i.e., by selecting a source-related dose constraint, with the condition that the individual effective doses from all relevant sources will be well below the prescribed effective dose limits for persons occupying the area to be shielded. However, when using constraints for shielding calculations, consideration should be given to the remark made by the ICRP 33 (paragraph 256) stating that actual dose values to individuals in the occupied areas are 1/10 (for equivalent dose) to 1/30 of the effective dose used as shielding design parameter. This is due to a number conservative assumptions made in the calculation.

Typical conservative assumptions in the calculations are:

(i) *Attenuation of the beam by the patient is usually not considered.*

(ii) *Maximum possible leakage radiation is assumed.*

(iii) *Workload, as well as the use and occupancy factors are overestimated.*

(iv) *An assumption is made that staff is always in the most exposed place of the occupied area.*

(v) *For linac producing x rays and electrons an assumption is made that the linac always operates in the x-ray mode.*

(vi) *For dual energy linacs, an assumption is made that the linac always runs in the higher energy mode.*

Since some of these conservative assumptions may be unavoidable to cover uncertainties when using constraints, a critical review of conservative assumptions should be performed so as to achieve a balanced decision and avoid accumulation of over-conservative measures that may go far beyond optimization.
TABLE 16.II. TYPICAL VALUES FOR DESIGN EFFECTIVE DOSE $P$ IN OCCUPIED AREAS ADJACENT TO A RADIOTHERAPY TREATMENT ROOM.

<table>
<thead>
<tr>
<th>Nature of occupancy</th>
<th>Annual effective dose (mSv/yr)</th>
<th>Weekly effective dose (mSv/wk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupational worker</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>Member of the public</td>
<td>0.5</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- The use of $P = 0.01$ mSv/wk corresponds to an area for permanent occupation by members of the public and may lead to high value of shielding thickness (of the order of 230 to 250 cm regular concrete for 20 MV photons in an area exposed to the primary beam at a distance of about 4 m from the source).
- This thickness of regular concrete will be reduced by 50 cm or more if the area is designated a controlled area and the dose constraint of 0.2 mSv/wk is used. This approach would be consistent with keeping the console area from public that may distract and have other safety consequences. This solution, however, requires individual monitoring for persons that work in or come frequently to the area of the console, but it is not necessary for persons who work in the area only occasionally.
- The relation between effective dose $P$ and the air-kerma in air values for the radiation field is made through the personal dose equivalent $H_p(d)$ for penetrating radiation with $d = 10$ mm. An accepted conservative assumption is to make the personal dose equivalent numerically equal to the effective dose $P$ and to the air-kerma in air value (Gy/wk) of the radiation field.

16.17.2. Step two: calculation of the radiation field (air-kerma in air) in the occupied area without shielding

The following parameters are used for the calculation of the effective dose without shielding:

- **Primary radiation** is the radiation directly emitted from the treatment machine through the collimator opening in the case of external sources and from the radioactive source in the case of brachytherapy.
- **Scatter radiation** is the radiation produced by the scattering of the primary radiation beam from various media struck by the primary beam, such as the patient, collimators, beam shaping accessories, air, etc.
- **Leakage radiation** is the radiation that escapes through the shielded head of the therapy unit (for accelerators, leakage radiation only exists while the beam is ON, for cobalt units leakage radiation is always present).
- **Workload $W$** is defined as the machine output per week or per year at a well-defined point (usually the machine isocenter in the treatment room). It is expressed in Gy/week or Gy/year.
16.17.3. Step three: attenuation by shielding barriers

- **Primary barrier** is the portion of the treatment room walls or ceiling that may be irradiated directly by the primary beam. Therapy machines are usually located on the lowest floor of a building so shielding of the floor against primary, scattered and leakage radiation is not of concern.

- **Secondary barriers** are all portions of the treatment room walls, floor or ceiling that cannot be irradiated directly by the primary beam. These barriers then provide shielding against the scatter and leakage radiation produced in the treatment room.

- **Use factor** $U$ is the fraction of the BEAM-ON time during which the primary beam is directed toward a particular barrier. The following primary beam use factors are usually assumed for external beam machines: $U$ (floor) = 1; $U$ (walls) = 0.25; $U$ (ceiling) = 0.25. For all secondary barriers $U$ is always equal to 1, since secondary radiation is always present.

- **Occupancy factor** $T$ is a factor with which workload is multiplied to account for the degree of occupancy of the area in question. Typical values: $T$ (offices) = 1; $T$ (corridors) = 0.25; $T$ (waiting rooms) = 0.125.

- **Half-value layer (HVL)** and **tenth-value layer (TVL)** are those thicknesses of attenuating material that decrease the photon beam intensities to 50% and 10%, respectively, of the original value (100%).

- **Barrier transmission factor** $B$ provides the fraction of the incident beam air-kerma in air transmitted through a given thickness of shielding material. Primary, scatter, and leakage barrier transmission factors $B_{\text{pri}}$, $B_{\text{scat}}$, and $B_{\text{leak}}$, respectively, must be calculated and the required barrier thickness is then determined using published graphs of transmission factors against shielding material thickness for various beam energies and shielding materials.

- **Shielding materials** are materials used in primary and secondary barriers to provide shielding against the primary, scatter, and leakage radiation produced in the radiotherapy treatment room. The most common materials used for shielding of external beam and brachytherapy treatment facilities are: ordinary concrete (density: 2.35 g/cm$^3$), barite concrete (density: up to 3.2 g/cm$^3$), high-density concrete (density: up to 5 g/cm$^3$), steel (density: 7.9 g/cm$^3$), and lead (density: 11.3 g/cm$^3$).

To compute the radiation levels beyond the radiation barriers in areas adjacent to treatment rooms, transmission data are required, that take into account not only the primary beam attenuation but also the radiation scattered in the shielding itself (broad beam geometry data).

**Narrow beam geometry** only includes primary radiation so that the point of interest does not receive any scattered radiation. For instance, to measure the primary beam intensity transmitted through an attenuator, a narrow-beam geometry (with suitable collimation and barrier-detector distance) is set up so that the scatter does not reach the detector. Narrow beam geometry is useful to characterize beam quality in the “kilovoltage” photon range (see Chapter 9).
Chapter 16. Radiation Protection and Safety

In broad beam geometry, the detector (or the radiation worker) receives not only the transmitted beam but also the scatter from or through the barrier. Sets of broad beam transmission and graphics data for common use in radiotherapy installations are provided in the ICRP 33 and the NCRP 49 publications.

If $K_P$ and $K_S$ represent the primary and the scattered air-kerma in air “seen” by the detector, respectively, the buildup $B$ for a barrier is given by:

$$B = (K_P + K_S)/K_P.$$  \hspace{1cm} (16.9)

For narrow beam geometry $B = 1$ and for broad beam geometry $B > 1$ with $B$ referring to build-up not to be confused with the transmission factors designated by $B$ in the text below.

16.18 TYPICAL LINEAR ACCELERATOR INSTALLATION

The main components of a typical linear accelerator (linac) installation are: (i) treatment room, (ii) entrance maze, (iii) control room, and (iv) optional mechanical/electrical room. The maze connects the treatment room with the control room that houses the operational controls of the linac. The treatment room and maze together are called the linac bunker.

A schematic diagram of a typical installation for an isocentric high-energy linac is given in Fig. 16.2. The thickness of the primary and secondary barriers is determined through first determining the transmission factors and then determining the barrier thickness required to provide the calculated transmission factors.

16.18.1. Workload

Typical linac workload figures vary depending on initial assumptions. An example of slightly conservative assumptions is:

- **Clinical workload** $W_{\text{clin}}$ for 50 patients per working day, 3.3 Gy delivered dose at the isocenter per patient (pt), 5 working days per week, and 52 working weeks per year:

$$W_{\text{clin}} = 3.3 \text{ Gy/pt} \times 50 \text{ pts/day} \times 5 \text{ days/week} \times 52 \text{ weeks/year} = 42900 \text{ Gy/year} \hspace{1cm} (16.10)$$

- **Physics workload** $W_{\text{phys}}$ includes use of the linac for calibration, quality assurance, phantom measurements, servicing and maintenance. A conservative estimate of this is $W_{\text{phys}} = 7100 \text{ Gy/year}$, resulting in the following total linac workload:

$$W_{\text{tot}} = W_{\text{clin}} + W_{\text{phys}} = 5 \times 10^4 \text{ Gy/year} \sim 10^3 \text{ Gy/week} \hspace{1cm} (16.11)$$

- In shielding calculations for dual energy linear accelerators a conservative assumption is usually made that the accelerator will operate at the higher energy 100% of the time.
FIG. 16.2. Typical floor plan for an isocentric high-energy linac bunker. In part (a) the machine gantry rotation axis is parallel to the maze entry corridor; the primary barriers are parts of the floor and ceiling, as well as parts of the east and west walls. In part (b) the machine gantry rotation axis is perpendicular to the maze entry corridor; the primary barriers are parts of the floor and ceiling and parts of the north and south walls. The primary barrier in the south wall is made of high density concrete for space conservation. The door to the treatment room maze is a neutron-shielded door.
Chapter 16. Radiation Protection and Safety

16.18.2. Calculation of primary barrier transmission factor \( B_{pri} \)

The primary barrier transmission factor \( B_{pri} \) is calculated from the following relationship:

\[
B_{pri} = \frac{P(d_{pri} / d_o)^2}{WUT},
\]

(16.12)

where

\( d_o \) is the linac SAD (usually 1 m);
\( d_{pri} \) is the distance from the linac target (x-ray source) to the point-of-interest (usually 0.3 m outside the wall or ceiling to be shielded);
\( W \) is the total workload of the linear accelerator;
\( U \) is the barrier use factor; and
\( T \) is the occupancy factor at the point-of-interest.

The primary beam of an external beam unit should be only directed towards primary barriers with sufficient shielding. If part of the primary shielding is incorporated into the equipment with the use of a retractable beam stopper, electrical and/or mechanical interlocks should be provided to prevent the possibility that the radiation beam is directed toward the primary barriers when the beam stopper is not intercepting the beam.

The beam stopper is usually made of lead with a thickness adequate to attenuate the primary radiation beam to 0.1% of its original value (typically 3 tenth-value layers or 10 half-value layers amounting to about 10 to 15 cm of lead for megavoltage photon beams). Treatment machines equipped with beam stoppers are cumbersome with regard to patient set-up on the treatment machine; however, the beam stoppers minimize the required thickness of the primary barriers and are thus used in installations where space constraints prevent the use of adequate primary barrier thickness. With the use of beam stoppers, the primary barrier wall thickness becomes close to that required for secondary barriers.

16.18.3. Calculation of the scatter barrier transmission factor \( B_{scat} \)

The scatter barrier transmission factor \( B_{scat} \) is determined from:

\[
B_{scat} = \frac{P(d_1 / d_o)^2 (d_2 / d_o)^2 (F_o / F)}{aWT},
\]

(16.13)

where

\( d_o \) is the \( SAD \) of the linear accelerator,
\( d_1 \) is the distance from the patient to the point-of-interest,
\( d_2 \) is the distance from the target to the scattering volume (patient),
\( a \) is the ratio of scattered radiation at 1 m from the scattering object (patient) to the primary radiation at 1 m;
\( F_o \) is an average field area (400 cm\(^2\)); and \( F \) is the actual field size at the position of the patient.
The *scattering coefficient* $a$ depends on photon beam energy and scattering angle. Its typical value for 90° scatter is $10^{-4}$ to $10^{-3}$. Compton scattering formula predicts a maximum energy of 0.511 keV ($m_e c^2$) for 90° scatter and a maximum energy of 0.255 keV ($0.5 m_e c^2$) for 180° scatter.

### 16.18.4. Calculation of the leakage barrier transmission factor $B_{\text{leak}}$

The leakage barrier transmission factor $B_{\text{leak}}$ is calculated assuming beam attenuation due to linac head shielding transmission of 0.1%. The energy of the leakage radiation is assumed the same as that of the primary radiation. Thus,

$$B_{\text{leak}} = \frac{10^3 P (d_3 / d_o)^2}{WT}, \quad (16.14)$$

where

- $d_o$ is the SAD of the linear accelerator;
- $d_3$ is the distance from isocenter to point-of-interest (average distance for all possible gantry positions);
- $W$ is the workload of the linear accelerator,
- $T$ is the occupancy factor.

### 16.18.5. Determination of barrier thickness

Using broad beam transmission data from the ICRP 33 or the NCRP 49 publications, one determines the required primary, leakage and scatter barrier thickness for the calculated transmission factors $B_{\text{pri}}$, $B_{\text{leak}}$, and $B_{\text{scat}}$, respectively.

The barrier thickness determined for leakage radiation is usually larger than that determined for the scatter radiation. One rule of thumb is that if the leakage barrier thickness exceeds the scatter barrier by more than 3 $HVLs$ (*i.e.* $\sim 1 TVL$), then just the leakage barrier thickness is applied as the required wall thickness. On the other hand, if the thicknesses for the two barriers are within 3 $HVLs$, then one extra $HVL$ is added to the leakage barrier thickness to determine the required secondary barrier thickness to account for the slight increase in effective dose due to the scattered component.

Ordinary concrete is the most common shielding material in megavoltage therapy installations. Other materials may be used to conserve space, since for megavoltage beams the required primary barrier thickness is inversely proportional to the density of the shielding material (see Compton effect in Section 1.4.6.). One should keep in mind, however, that replacing ordinary concrete with other materials will have serious financial implications. For example, high density concrete ($5 g/cm^3$) will cut the barrier thickness roughly to half of that required for ordinary concrete, but on a per volume basis the costs of the shielding material will increase by a factor of 30. The difference is even more pronounced when steel or lead is used for shielding.
### Table 16.III. Typical Shielding Thickness for Ordinary Concrete to Protect Areas Adjacent to Cobalt Units or High Energy Linac Bunkers for Members of the Public

<table>
<thead>
<tr>
<th>Radiation Quality</th>
<th>Primary Barrier (cm)</th>
<th>Secondary Barrier (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>130</td>
<td>65</td>
</tr>
<tr>
<td>10-25 MV</td>
<td>240</td>
<td>120</td>
</tr>
</tbody>
</table>

#### 16.18.6. Consideration of Neutron Production in a High-Energy Linac

In high-energy (above 10 MV) linac installations, neutrons produced by x-ray-neutron (x,n) and electron-neutron (e,n) reactions. The neutron contamination is produced by high-energy photons and electrons incident on the target, primary collimator, beam flattening filter, collimator jaws, beam accessories, air and the patient. The cross-section for a (γ,n) reaction is at least an order of magnitude larger than that for an (e,n) reaction; hence, neutrons produced by the linac x-ray mode are of primary concern. For this reason, the maximum photon energy produced by a linac rather than the maximum electron energy is considered the more significant contributor to the neutron dose.

- Neutrons can activate other elements that remain radioactive and will contribute to a radiation exposure of radiotherapy staff entering the treatment room after a high-energy photon beam treatment. The radionuclides from activated components of a linac are generally short-lived (on the order of seconds to a few minutes).

- A similar problem is posed by the direct activation of elements in (x,n) reactions, such as the oxygen-15 (half-life 2 minutes) and nitrogen-13 (half-life 10 minutes). The radioactivity in treatment room air is removed by efficient room ventilation. The ventilation handles also the removal of ozone and noxious gasses in addition to removal of radioactive gases through 6-8 air exchanges per hour.

- The concrete primary and secondary barriers designed to protect against photon dose are quite adequate to protect against electrons and also against contamination neutrons. However, the neutrons undergoing multiple scattering along the maze can present an unacceptable radiation level in the control area, thus requiring a specially designed door.

#### 16.18.7. Door of a Linear Accelerator Room

The door of a high-energy linac may require shielding against x rays and neutrons scattered through the maze toward the linac control area. High-energy neutrons are more of a problem than the low energy photons. Neutrons are thermalized and absorbed with a layer of about 12 cm of borated polyethylene in the door that is followed by about 2.5 cm of lead to absorb the γ rays produced by neutron capture reactions in boron nuclei. An alternative to the special neutron-shielding door is a double maze design, which avoids the need for a shielded door.
16.18.8. Other considerations

- A 'radiation area’ sign (along with a visible red light) needs to be provided above the door to the treatment room and preferably also on the control room door to indicate a beam-on condition. There should be audio communication with the patient and emergency switches inside the room to shut off the radiation in case of emergency.

- In some cases (e.g., installation of a linear accelerator in an existing cobalt-60 room or in a small room) installation of the machine with a beam stopper may be necessary.

- The manufacturer often quotes a primary beam stopper that attenuates the primary beam by a factor of 0.001 (about 3 TVLs) reducing the primary barrier thickness requirement by 3 TVLs. If the remaining primary barrier thickness is less than the thickness required for scatter and leakage, the whole wall can be made of uniform thickness, as required for scattering and leakage barrier.

16.19. SHIELDING DESIGN FOR BRACHYTHERAPY FACILITIES

High dose rate brachytherapy treatment rooms are designed with similar constraints as are the linac and teletherapy rooms. There is, however, one major difference: in brachytherapy rooms all walls are primary barriers, since the source generally be positioned anywhere in the room and the radiation is emitted isotropically and un-collimated from the source. The attenuation in the patient is not considered in primary barrier transmission calculations. The workload specification is given in terms of air-kerma in air per week or year.

- The typical workload specification for a remote afterloading high dose rate (HDR) iridium-192 facility is determined using the following data:
  - Maximum source activity: 370 GBq (10 Ci)
  - The maximum number of patients treated = 10/day
  - Number of working days (or treatment days) per week = 5 day/wk
  - Maximum treatment time = 10 minutes (for 10 Ci) per patient
  - Air-kerma rate constant for iridium-192:
    \[ 111 \text{ } \mu \text{Gy} \cdot \text{m}^2/\text{GBq} \cdot \text{h} = 4.1 \mu \text{Gy} \cdot \text{m}^2/(\text{mCi} \cdot \text{h}) \]
  - Workload:
    \[ W = 10^4 \times 10 \times 5 \times 10 \times (1/60) \times 4.1 \mu \text{Gy} \cdot \text{m}^2/\text{wk} = 3.4 \times 10^5 \mu \text{Gy} \cdot \text{m}^2/\text{wk}. \]

- Though the treatment time increases due to decay, the product (activity \times time) remains the same and, hence, the example for the computation is made for the maximum treatment time with a 370 GBq (10 Ci) source. All parameters are conservative, introducing a safety factor in the calculated workload.

- For older HDR units using cobalt-60 a maximum of 20 source pellets may be used, each pellet with a maximum activity of about 1.85 GBq/pellet (500 mCi/pellet) for a total source activity of 370 GBq (10 Ci).
Chapter 16. Radiation Protection and Safety

- The maximum treatment time and the number of patients per day, however, remain the same for a cobalt-60 HDR remote afterloading unit as in the HDR iridium-192 case.

- The workload for planning a high dose rate cobalt-60 brachytherapy room comes to about $1.1 \times 10^6 \mu\text{Gy} \cdot \text{m}^2 / \text{wk}$, using $\Gamma_{\text{AKR}}$ of 308.5 $(\mu\text{Gy} \cdot \text{m}^2)/(\text{GBq} \cdot \text{h})$.

- In the case of low-dose-rate remote afterloading cesium-137 units, two patients may be treated simultaneously with a maximum of 18 sources per patient, the activity of each source being around 1,110 GBq (30 mCi). The treatment time for low dose rate brachytherapy is assumed to be 40 hours/week.

**BIBLIOGRAPHY**


INSTITUTE OF PHYSICS AND ENGINEERING IN MEDICINE (IPEM),”The design of radiotherapy treatment room facilities”, editors: B. Stedeford, H.M. Morgan, W.P.M. Mayless, IPEM, York, United Kingdom (1997).

IAEA TECDOCs


INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), Recommendations on standardized procedures for calibration of brachytherapy sources at SSDLs and hospitals”, in “Calibration of brachytherapy sources”, IAEA-TEDOC-1079, IAEA, Vienna, Austria (1999).

IAEA Safety Standards Series


IAEA Safety Report


IAEA Technical Report Series


ICRP Publications


IEC Documents


ISO Documents


NCRP Reports


List of International Organisations

LIST OF INTERNATIONAL ORGANISATIONS

whose mission statements fully or partially address radiation protection and the use of ionizing radiation in medicine:

EUROPEAN FEDERATION OF ORGANISATIONS IN MEDICAL PHYSICS (EFOMP)
Dijon, France www.efomp.org

EUROPEAN SOCIETY FOR THERAPEUTIC RADIATION ONCOLOGY (ESTRO)
Brussels, Belgium www.estro.be

INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA)
Vienna, Austria www.iaea.org

INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION (ICRP)
Stockholm, Sweden www.icrp.org

INTERNATIONAL COMMISSION ON RADIATION UNITS AND MEASUREMENTS (ICRU)
Bethesda, Maryland, U.S.A. www.icru.org

INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)
Geneva, Switzerland www.iec.ch

INTERNATIONAL ORGANISATION FOR STANDARDIZATION (ISO)
Geneva, Switzerland www.iso.org

INTERNATIONAL ORGANISATION OF MEDICAL PHYSICS (IOMP)
www.iomp.org

INTERNATIONAL RADIATION PROTECTION ASSOCIATION (IRPA)
Fortenay-aux-Roses, France www.irpa.net

INTERNATIONAL SOCIETY FOR RADIATION ONCOLOGY (ISRO)
Brussels, Belgium www.isro.be

INTERNATIONAL SOCIETY OF RADIOLOGY (ISR)
Bethesda, Maryland, U.S.A. www.isradiology.org

PAN AMERICAN HEALTH ORGANIZATION (PAHO)

RADIOLOGICAL SOCIETY OF NORTH AMERICA (RSNA)
Oak Brook, Illinois, U.S.A. www.rsna.org

WORLD HEALTH ORGANISATION (WHO)
Geneva, Switzerland www.who.int