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Résumé

Ces dernieres années ont vu apparaitre de nombreux arguments convergents vers la con-
clusions que les probabilités classiques ne pouvaient pas rendre compte, a la fois dans leur
calcul et leur représentation, de I’imprécision ou de I’incomplétude éventuellement présente
dans I’'information disponible concernant un systéme, une variable, un parametre. Aussi des
théories de I’incertain ayant pour but de prendre explicitement en compte cette imprécision ont
émergé. Les trois principales de ces théories sont, de la plus a la moins générale: la théorie

des probabilités imprécises, la théorie des ensembles aléatoires, la théorie des possibilités.

Avec elles sont également apparues de nouvelles difficultés et de nouvelles questions rel-
atives a la représentation et au traitement des incertitudes: difficultés d’ordre pratique lors
de la manipulation des informations, la prise en compte explicite de I’'imprécision posant
de nouveaux problemes calculatoires ; questions sur I’interprétation de certaines notions (in-
dépendance, conditionnement) pour lesquels il y avait un consensus assez fort dans le cadre
classique des probabilités ; problemes d’unifications dus au fait que les théories proposent des
calculs, des solutions et des modes de traitement différents. En effet, en choisissant un cadre
alternatif ou plus expressif pour représenter et traiter 1’incertitude, des problémes qui étaient
auparavant "cachés" par le cadre relativement contraignant des probabilités classiques refont

surface.

Dans ce travail, nous apportons des réponses partielles a ces problemes, a la fois en es-
sayant d’interpréter les différentes notions au sein de cadres unificateurs et en proposant des
méthodes de manipulation pratiques. Nous nous intéressons principalement aux problémes

suivants:

e [’étude des représentations pratiques d’incertitudes. En particulier, nous situons des
représentations récemment proposées (p-boxes, nuages) par rapport a des représenta-
tions plus anciennes. Cela nous permet de mettre a jour un nombre intéressant de rela-

tions, facilitant de futures maniplations pratiques.
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e La combinaison d’informations provenant de sources multiples. En particulier, nous
nous intéressons aux problémes de la combinaison d’informations partiellement incon-
sistantes et de la prise en compte de dépendances entre sources. Nous nous intéressons

aussi brievement au probleme de 1’évaluation de la qualité de I’information transmise.

e [a modélisation de la notion d’indépendance entre variables, cette notion étant essen-
tielle lors de la combinaison de modele marginaux d’incertitudes en modeles joints.
Nous nous contentons de donner une vue générale de la problématique ainsi que quelques
premiers résultats, vu que I’étude complete de ces notions nécessiterait un travail de

recherche en soi.

Nous considérons aussi brievement les problemes de la prise de décision, et détaillons des ap-
plications pratiques mettant en oeuvre quelques unes des méthodes et représentations étudiées

dans ce travail.



Abstract

In these last years, many arguments appeared, converging to the fact that classical probabilities
cannot adequately handle or represent imprecision or incompleteness in the available informa-
tion concerning a system, a variable or a parameter. Hence, alternative theories proposing to
address and solve this issue have emerged. The three main such theories are, from the more to

the less general: imprecise probability theory, random set theory, possibility theory.

With them also appeared new difficulties and questions related to the representation and
treatment of uncertainty: difficulties regarding the practical handling of uncertainties, since
explicitly modeling imprecision often means an higher computational complexity when treat-
ing the information; questions related to the interpretation of some notions (conditioning,
independence) that almost met general consensus in classical probabilities; problems of unifi-
cation due to the fact that uncertainty calculus and treatments are sometimes different between
different theories and interpretations. Actually, by choosing a different or a more expressive
framework to handle uncertainty, issues that were previously "hidden" by the somewhat re-

strictive setting of classical probability theory are no longer hidden in the new setting.

In this work, we bring some partial answers to above issues, first by trying to settle different
problematics in unified settings, second by proposing practical methods allowing to handle

uncertainty in an efficient way. We focus mainly on the following issue:

e The study of practical uncertainty representations. In particular, we situate more re-
cent uncertainty representations (p-boxes and clouds) with respect to older uncertainty
representations. This lead us to expose a number of interesting relations between repre-

sentations, eventually leading to an easier practical handling of such representations.

e The combination of information coming from multiple sources. In particular, we look
at the two problems of combining partially consistent information and of taking account
of potential dependencies between information sources. We also address the issue of

evaluating the quality of the delivered information by the use of past assessments

ix



e Modeling and interpreting notions of independence between variables, these notions be-
ing essential in the construction of joint uncertainty models from marginal ones. Here,
we simply gives a general picture of the (many) notions existing in the uncertainty the-
ories considered here, and propose some first results eventually leading to an unified
frame. Indeed, a full study of the complex notion of independence would require a

work of its own.

Finally, we briefly look at the problems of decision making, and give some details about two

applications achieved during this work and using some of the methods exposed therein.
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Chapter 1

Résumé Francais de la these

(French Summary of the thesis)

If you cannot read French (or can also read English and prefer to skip this summary), please

go to pA1]

1.1 Introduction (Chapitre [2)

Ce travail de these présente des résultats relatifs a la représentation et au traitement des incer-
titudes entourant la valeur que peut prendre une variable, cette incertitude pouvant provenir
soit de la variabilité intrinseque des phénomenes influencant la valeur de cette variable, soit

de I’'imprécision ou du manque de fiabilité des informations disponibles.

Ici, nous nous intéressons aux cas ol I’incertitude est représentée par des modeles numériques
qui ne sont ni des probabilités précises (parce que I’information disponible est trop pauvre),
ni de simples ensembles de valeurs (parce que nous disposons d’informations permettant de

savoir quels éléments sont plus a méme d’étre observés).

Afin de répondre a ce type de probleme, différentes théories de 1’incertain ont émergé
ces dernieres années. Il s’agit, entre autres, des théories des possibilités [85], des ensembles
aléatoires [151] et des probabilités imprécises [203] (il s’agit 1a des trois théories principales
sur lesquelles nous allons nous concentrer). Par rapport a ces théories, notre position est
double:
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2 (French Summary of the thesis)

e d’une part, nous attachons une grande importance aux aspects permettant d’unifier ces

théories et le traitement de I’incertitude qui en découle.

e d’autre part, nous pensons que chacune de ces théories posseéde son propre intérét, et est
a méme de répondre a des questions pour lesquelles d’autres théories apportent parfois
des réponses insatisfaisantes. Dans ce sens, nous pensons que la question essentielle
n’est pas de savoir de maniere absolue quelle théorie est "meilleure" que les autres,

mais plutdt de chercher a savoir quelle théorie s’adapte le mieux a une situation donnée.

A cet effet, nous nous attacherons, tout au long de ce travail, a souligner les points commun
entre les différentes théories, tout en apportant des solutions pratiques, parfois particulieres a
I’une ou I’autre théorie, aux problemes que peut poser le traitement des incertitudes. Nous
nous concentrerons plus particulierement sur les problémes courants posés par les études de

stireté nucléaire.

Par incertitude, nous entendons donc les situations ou I’information ne permet pas d’identifier
de maniere exacte 1’état d’un systeme ou la valeur d’une variable. Par traitement, nous en-
tendons la manipulation de I’information disponible de maniere raisonnée, afin d’en déduire
d’autres informations potentiellement utiles. Nous différencions également deux niveaux
différents d’informations: un niveau générique, qui concerne les connaissances et modeles
généraux; un niveau contingent, regroupant les informations propres a une situation partic-
uliere. Par exemple, un modele physique d’écoulement de fluide constituera de 1’information
générique, tandis que la vitesse d’un fluide dans une expérience donnée sera de 1’information

contingente.

Afin de pouvoir décrire facilement les traitements auxquels nous nous intéresserons durant

ce travail, nous considérons le modele simplifié, donné par la figure suivante:
Information générique 1= Modeéle  D------ .

Variables

. . Variables
Information contingente

sources d’intérét

Traitement de I’incertitude: cadre général

Les variables sources sont celles a propos desquelles nous possédons de I’information. Le

modele décrit les liens (génériques) qui existent entre variables sources et variables d’intérét,
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et permet d’obtenir de I’information sur ces dernieres a partir d’information sur les variables
sources. Enfin, les variables d’intérét sont les variables sur lesquels nous voulons obtenir

une(des) information(s) utile(s) permettant de résoudre un probeme donné.

A partir de cette figure, nous pouvons définir un certain nombre de problémes relatifs au

traitement de 1’incertitude:

e Modélisation: construction d’un modele générique a partir d’informations contingentes
(observations particulieres). Il s’agit d’un procédé de type inductif, souvent appelé ap-
prentissage dans le domaine de I’intelligence artificielle (IA) ou inférence paramétrique

dans le domaine des statistiques.

o Inférence: tirer des conclusions plausibles a partir d’informations disponibles. Il s agit
d’un procédé déductif et impersonnel, qui consiste ici a tirer des conclusions sur les
variables d’intérét a partir d’informations sur les variables sources, par le biais d’un
modele générique. En statistique, ce type d’opération est souvent associée au probleme

de prédiction. Les problemes d’inférences comprennent:

— propagation directe a travers un modele déterministe: propager les incerti-
tudes sur les entrées (variables sources) d’un modele déterministe (i.e. fonction)
pour estimer les incertitudes sur les sorties (variables d’intérét). 1l s’agit du type
d’inférence le plus souvent fait en analyse de risque et en études de slireté. Notons
que cette inférence est monotone, dans le sens ou plus I’incertitude sur les entrées

est petite, plus celle sur les sorties I’est également.

— propagation inverse a travers un modele déterministe: similaire a la propaga-
tion directe, excepté que les variables sources sont maintenant les sorties, et qu’il
faut estimer I’incertitude sur les entrées. La difficulté pour ce genre d’inférence est
que le modele est tres rarement inversible, et que les dépendances entre les entrées
sont généralement mal connues. Comme la propagation directe, cette opération est

monotone.

— propagation/conditionnement sur un modéle stochastique: a partir d’une ob-
servation sur les variables sources, inférer les valeurs plausibles des variables
d’intérét en propageant cette information a travers un modele générique stochas-
tique (i.e. chaine de Markov, réseaux de Bayes). Dans ce cas, I’incertitude con-
cerne le modele, et non plus les variables. Ce type d’inférence se rencontre plus
souvent dans le domaine de I’TA. Notons également que cette opération n’est pas

forcément monotone, et qu’une information plus précise sur les variables sources
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peut augmenter 1’incertitude sur les variables d’intérét. Ce phénomene est plus

connu sous le nom de dilation.

¢ Fusion d’informations: action de synthétiser I’information provenant de plusieurs sources
en un message simple et interprétable, tout en prenant en compte I’inconsistence entre
les informations et les éventuelles dépendances entre les sources. La fusion d’information

s’opere entre informations de méme niveau de généricité.

e Prise de décision: action de déterminer 1’ensemble des actions optimales a prendre
dans une situation donnée et en fonction des informations disponibles. Au contraire de
I’inférence, c’est un procédé personnel (le sens d’optimal peut dépendre de la personne
prenant la décision) et qui a un impact sur le monde environnant une fois la décision
prise. Néanmoins, inférence et prise de décisions, méme si elles sont différentes, sont
souvent liées par le fait que les résultats d’une inférence sont souvent utilisés pour pren-

dre une décision.

e Révision: action de modifier nos croyances ou connaissances avec 1’arrivée de nouvelles
informations, pas forcément cohérentes avec les croyances ou connaissances initiales.
De méme que la fusion d’information, réviser se fait entre informations de méme niveau

de généricité.

Bien entendu, il est difficile de rendre compte avec cette figure et ces descriptions relativement
simples de la complexité présente dans des applications réelles. En pratique, il peut étre diffi-
cile de déterminer quelle est la meilleure réponse a apporter a un probleme, ou encore quel est
le niveau de généricité de tel ou tel type d’information. Néanmoins, de telles figures simpli-
fiées peuvent servir de point de départ aux réflexions qui détermineront ensuite le traitement

le plus adéquat a appliquer a une situation.

Dans ce travail, nous ne nous intéresserons qu’a certains des problemes évoqués plus
haut. Plus particulierement, nous nous concentrerons sur des problemes souvent rencontrés en

études de siireté ou en analyse de risques.

Le chapitre [3|s’intéresse au probleme de représenter I’incertitude entourant la valeur d’une
variable. Une attention toute particuliere est réservée aux représentations simples et pratiques,
qui sont les plus souvent utilisées dans les applications. En particulier, nous étudions les rela-
tions entre les représentations suivantes : distributions de possibilités, distributions imprécises
de probabilités, p-boxes, nuages et ensembles aléatoires. Afin de faciliter leur comparaison,

nous introduisons un modele dit de p-boxes généralisées.
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Le chapitre ] concerne le cas ot de multiples sources fournissent des informations a pro-
pos d’une méme variable. Nous étudions d’abord comment cette information peut étre syn-
thétisée en un message simple, en donnant une attention particuliere aux problemes du traite-
ment de I’inconsistence entre les informations et de la prise en compte de dépendances entre
les sources. Dans la seconde partie du chapitre, nous discutons d’une méthode permettant
d’évaluer la qualité de I’information fournie par les sources et donc, dans un certain sens, leur
fiabilité.

Dans le chapitre[5] nous étudions les notions d’indépendance qui peuvent exister entre dif-
férentes variables. En effet, si dans les probabilités classiques toutes les notions d’indépendance
sont formellement équivalentes a la définition de 1’indépendance stochastique, indépendem-
ment de leur interprétation, ce n’est plus vrai lorsque des modeles probabilistes imprécis sont
utilisés. Dans ce dernier cas, il existe autant de définitions formelles que d’interprétations.
Puisque la notion d’indépendance est centrale dans la construction de modeles joint d’incertitude
a partir de modeles marginaux (une situation qui arrive souvent en analyse de risque), nous
étudions et esquissons un premier cadre général dans lequel situer les différentes notions
d’indépendances rencontrées en probabilité imprécise. La question de relier ces notions aux

arbres d’événements est brievement abordée.

Le chapitre [6] est consacré au probleme de la prise de décision. Apres un bref compte-
rendu des différents criteres étendant aux probabilités imprécises le critere classique de la
maximisation de I’espérance mathématique, nous donnons quelques résultats pratiques relatifs
aux calculs de ces espérances lorsque I’incertitude est modélisée par une p-box définie sur les

réels.

Finalement, le chapitre [/| expose deux applications réalisées dans le cadre de la these au
moyen du logiciel de traitement des incertitudes SUNSET développé par 'IRSN. La pre-
miere concerne I’application des méthodes présentées au chapitre 4] aux résultats d’études
d’incertitude réalisées sur des codes de calculs simulant la rupture d’un systeme de refrodisse-
ment dans un réacteur nucléaire. La seconde concerne 1’application a un cas d’étude d’une
méthode numérique de propagation des incertitudes, dénommée RaFu et actuellement utilisée

par I'IRSN. Nous décrivons d’abord la méthode, puis les résultats obtenus sur le cas d’étude.
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1.2 Représentations pratiques d’incertitude (Chapitre 3)

Dans ce chapitre, nous nous intéressons aux représentations simples et pratiques qui permet-
tent de modéliser notre incertitude a propos de la valeur que peut prendre une variable X dans
un espace 2 . Parmi ces représentations simples, on trouve: les ensembles classiques, les
distributions de probabilité [[108]] et de possibilités [85], les distributions imprécises de proba-
bilités [42]], les ensembles aléatoires [151], les boites de probabilités (communément appelées

p-boxes) [[104], les variables aléatoires floues [34] et, plus récemment, les nuages [159].

Ces représentations, du fait de leur simplicité, facilitent souvent la manipulation des in-
certitudes, notamment en termes calculatoires. Elles sont également utiles pour résumer des
résultats complexes, ou pour élicitelﬂ des informations. Néanmoins, afin de manipuler cor-
rectement ces représentations, il est nécessaire de les comparer et d’établir des liens entre
elles, ces liens pouvant également montrer comment des outils de différentes théories peuvent

étre appliqués a une méme représentation.

Débuter cette comparaison et établir de tels liens sont les objets de ce chapitre. Comme
toutes les représentations étudiées ici peuvent s’ interpréter comme des cas particuliers d’ensembles
convexes de distributions de probabilités, nous utiliserons ce langage pour pouvoir relier et

comparer les différentes représentationﬂ

Nous nous intéressons plus particulierement aux deux représentations plus récentes que
sont les p-boxes et les nuages, et dont les liens avec les autres représentations pratiques

d’incertitude ont été peu explorés jusqu’ici.

1.2.1 Mesures non-additives et représentations connues

Nous introduisons d’abord les outils mathématiques et représentations connus permettant de
modéliser explicitement 1’imprécision présente dans 1’information. Contrairement aux proba-
bilités classiques, ol une seule mesure est utilisée, ces représentations modélisent I’incertitude
au moyen de deux mesures conjuguées, I’une représentant 1’idée de certitude, 1’autre de plau-
sibilit¢. L’importance de I’imprécision peut ensuite étre mesurée par la différence entre ces

deux mesures (les probabilités étant retrouvées lorsque les deux mesures coincident).

'On appelle élicitation la procédure qui consiste & demandé une évaluation de son incertitude a un expert
Znotons néanmoins que I’interpretation en termes d’ensembles de probabilités n’est pas la seule possible,
comme le montre I’ Appendice E]
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1.2.1.1 Capacités

Les fonctions d’ensembles que sont les capacités [25] sont utiles pour représenter I’ incertitude.

Definition 1.1. Etant donné un ensemble fini 2", une capacité sur 2 est une fonction y,

définie sur les sous-ensembles @(2") de 2, telle que:

o 1(0)=0,u(2") =1 (conditions aux bornes)

e ACB= u(A) < u(B) (monotonicité)

Une capacité vérifiant
VA, BC Z,ANB=0,u(AUB) > u(A)+ u(B) (1.1)

est dite super-additive. La notion duale, appelée sous-additivité, est obtenue en renversant

I’'inégalité dans I’équation ci-dessus.

Etant donné une capacité p sur 2", sa capacité conjuguée u° est définie par u(E) =
U(X)—u(E) =1— u(E®) pour tout ensemble E C 2" avec E€ le complément de E. Une
capacité est dite additive si I’inégalité de 1’équation (I.1)) devient une égalité. Une capacité

additive est sa propre conjuguée (U = ), et est une mesure de probabilité P.

Quand elles sont utilisées pour représenter 1’incertitude, les valeurs d’une capacité mesurent
le degré de confiance dans le fait qu’un événement va €tre observé. Dans ce cadre, les capac-
ités super-additives modélisent I’idée de certitude (puisque u(E)+ w(E€) < 1), tandis que les
sous-additives modélisent 1’idée de plausibilité (1 (E)+ u(E€) > 1).

Le noyau &2, d’une capacité super-additive u définie sur 2~ est I’ensemble (convexe) des

mesures de probabilités qui la domine:
Py = {PEP,IVEC 2, u(E) < P(E)}.

avec Py I’ensemble des mesures de probabilité définies sur 2. Par dualité, le noyau est
également 1’ensemble des mesures de probabilités dominées par la capacité conjuguée u°¢
(sous-additive), ce qui veut dire que, par la suite, ’on se concentrera exclusivement sur 1’une
ou 'autre de ces capacités (typiquement, la super-additive). Notons que le noyau peut étre
vide, et un moyen de s’assurer qu’il ne I’est pas consiste a faire appel a des propriétés des

capacités modélisant I’incertitude, telle la n-monotonie:
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Definition 1.2. Une capacité u super-additive sur 2~ est n—monotone, avec n > O etn € N,
si et si seulement si pour toute collection .7 = {A; C Z'|i € N,0 < i < n} d’événements A;,

I’équation

u(U A= Y ()" A
ICo

Aied A€l

est vérifiée.

Si une capacité est n-monotone, alors elle est assurée d’étre (n — 1)-monotone, mais pas
forcément (n+ 1)-monotone. Une capacité est dite co-monotone si elle est monotone pour tout
n. Une condition suffisante (mais pas nécessaire) pour qu’ une capacité ait un noyau non-vide
soit qu’elle soit 2-monotone. A partir d’une capacité, il est possible de définir de nombreuses

transformations bijectives [[115], notamment la transformée de Mobius:

Definition 1.3. Etant donné une capacité u sur Z°, sa transformée de Mobius est la fonction
m: @(X) — R des sous-ensemble de 2~ vers les réels, qui associe a chaque sous-ensemble E
de 2 la valeur

m(E) = Y (~=1)F\¥lu(B)

BCE

Notons que la fonction m est non-négative si et seulement si la capacité u est co-monotone [178,
Ch.2.7]. Dans ce dernier cas, nous 1’appelons distribution de masse. La transformée de
Mobius d’une mesure de probabilité est sa distribution de probabilité (m est positive et non-

nulle uniquement sur les singletons).

1.2.1.2 Ensembles de probabilités

Walley [203]] considere une représentation encore plus générale de 1’incertitude par des paires
de bornes duales (inférieures/supérieures). Au lieu de se restreindre a des événements (sous-
ensembles), il étend ses mesures a des bornes sur les espérances mathématiques de fonctions
réelles et bornées de 2~ (les événement correspondant alors a des fonctions indicatrices). Il
montre que ce langage est équivalent (en terme d’expressivité) a celui consistant a modéliser

I’incertitude par des ensembles convexes de mesures de probabilités, dénotés ici & [136]].

Ce langage étant tres général, nous nous en servirons pour comparer les représentations

pratiques que nous considérons, et nous adoptons la terminologie suivante:
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Definition 1.4. Soit [F; et [, deux cadres généraux de représentation d’incertitude, a et b deux
instances particuli¢res de ces cadres, et &, &), les ensembles de probabilités induits par a et
b. Alors:

e Nous disons que le cadre [y généralise cadre [, si et seulement si pour tout b € [Fy,
da € F; tel que &, = &), (ou, également, que [ est un cas particulier de [Fy).

e Nous disons que le cadre ¥y et [F; sont équivalents si et seulement si pour tout b € [y,

da € F; tel que &, = &), et inversément.

e Nous disons que le cadre [, est représentable par le cadre [F| si et seulement si pour
tout b € Iy, il existe une collection {ay,...,ar|a; € F1} telle que &, = P, N...N Py,

e Nous disons qu’un élément a € [F| approche extérieurement (intérieurement) un élément
b € IF; si et seulement si &, C X, (L, C L)

Dans ce travail, nous pouvons nous restreindre aux ensembles induits par des bornes de

probabilités sur les événements.

Nous définissons une probabilité inférieure P comme une capacité super-additive. L’ensemble
de probabilités p lui correspondant est alors le noyau de cette capacité. Nous considérons
ici des probabilités inférieures dites cohérentes, c’est-a-dire des probabilités inférieures qui
sont les enveloppes de I’ensemble de probabilités induit (i.e. pour tout ensemble A C 27,
nous avons P(A) = minpe »,(P(A))). En d’autres termes, les bornes fournies pour modéliser
I’incertitude sont atteintes par &?p et sont optimales (i.e. elles ne peuvent étre réduites sans ré-
duire &p). Néanmoins, ces ensembles, méme s’ils constituent des cas particuliers de modeles
plus généraux, peuvent rester difficile a manipuler du fait de leur complexité. Deux exemples
de modeles moins généraux introduits par leurs auteurs avec I’intention de fournir des outils
pratiques de manipulation d’incertitude sont les boites de probabilités (P-boxes) ainsi que les

distributions imprécises de probabilités.

P-boxes Une p-box [F, F] est définie comme une paire de distributions cumulées définies sur
les réels, telles que F < F (F domine stochastiquement F). Une p-box a ,F] induit I’ensemble
de probabilités Fp 7 = {P € Pr|Vr € R, F(r) < P((—o0,r]) < F(r)}, etil est utile de noter

u’une p-box consiste a donner des bornes de confiance sur des intervalles emboités (—oo, r|.
)

Contrairement aux distributions cumulées uniques [28], les p-boxes permettent aux ex-

perts d’exprimer leur opinion sur la valeur de percentiles de maniere imprécise (en fournissant
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des intervalles au lieu de valeurs uniques). Il existe également des outils numériques ef-
ficaces [209] permettant de manipuler les p-boxes pour faire rapidement des propagations

conservatrices d’incertitude.

Distributions imprécises de probabilité Une distribution imprécise de probabilité consiste
en un ensemble L d’intervalles L = {[I(x),u(x)]|x € 2"} tels que I(x) < p(x) < u(x) pour tout
x. Cet ensemble L décrit notre connaissance imprécise sur les probabilités des singletons, et in-
duit I’ensemble de probabilités Z, = {P € Py |Vx € 27, I(x) < p(x) <u(x)}. Comme I’ont
montré De Campos et al. [42], se restreindre a un tel ensemble de contraintes a de nombreux
avantages calculatoires. C’est également une représentation tres utile dans le cas de données

multinomiales, ou pour la modélisation d’histogrammes imprécis.

1.2.1.3 Ensembles aléatoires

Ici, nous définissons un ensembles aléatoire (discret), noté (m,.# ), comme une fonction, ap-
pelée distribution de masse, m : g(2°) — [0, 1] des sous-ensembles de 2~ dans I’intervalle
unité, non-négative et normée (Y g 2~ m(E) = 1). Un sous-ensemble E ayant une masse posi-
tive est appelé ensemble focal, et nous notons .% 1’ensemble des éléments focaux d’un ensem-
ble aléatoire. A partir de cette fonction, Shafer [178]] définit trois fonctions, respectivement de

croyance, plausibilité et commonalité:

Bel(A)= Y m(E) (Belief).
EECA
PI(A)=1—Bel(A°)= Y m(E) (Plausibility).
E.ENA#D
0(A) = Z m(E) (Commonality).
E,EDA

La fonction de croyance Bel ainsi définie est une capacité co-monotone, et m est sa transformée

de Mobius. Nous pouvons définir I’ensemble de probabilité
gz(%g) ={PePy|VAC Z, Bel(A) <P(A) <PI(A)}

induit par un ensemble aléatoire.

Les ensembles aléatoires constituent donc des cas particuliers de probabilités inférieures.
A T’inverse, ils généralisent les p-boxes [[132]. Il n’existe pas de lien précis entre ensembles

aléatoires et distributions imprécises de probabilité, dans le sens ou I’un ne généralise pas
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I’autre, et inversement. Cependant, de nombreux auteurs ont étudié comment une représenta-

tion pouvait étre approchée par 1’autre 135,160, 42]

Un des intérét applicatif majeur des ensembles aléatoires est qu’ils peuvent étre vus comme
des distributions de probabilité portant sur des ensembles, ce qui implique que les méth-
odes de simulations du type Monte-Carlo peuvent facilement leur étre appliquées. Quand
ils sont définis sur les réels, il est courant de restreindre les ensembles focaux a un nombre
fini d’intervalles, ce qui permet d’étendre les résultats de 1’analyse d’intervalles [152] aux

intervalles aléatoires [91]].

1.2.1.4 Distributions de possibilités

Une distribution de possibilité est une fonction 7 : 2~ — [0, 1] de ’espace 2 dans I’intervalle
unité, telle que 7(x) = 1 pour au moins un élément de 2". A partir de cette distribution
sont définies plusieurs mesures [79], parmi lesquelles les mesures de possibilité, nécessité et

suffisance:

I1(A) = sup 7 (x)
X€A

N(A) =1-TI(A°)
A(A) = inf 7(x).
XEA
Leur propriétés caractéristiques sont N(ANB) =min(N(A),N(B)) et I[(AUB) = max(I1(A),I1(B))
pour toute paire d’événements A,B de 2". Etant donné un degré o € [0, 1], les o-coupes
strictes et régulieres Ag et Ay sont les ensembles Ag = {x € 27 |n(x) > a}etAy ={x € Z'|n(x) > a}.

Nous notons op =0 < a1 < ... < oy = 1 ’ensemble fini des valeurs distinctes prises par 7.

La mesure de nécessité étant une capacité co-monotone, une distribution de possibilité
constitue un cas particulier d’ensemble aléatoire, et définit 1’ensemble aléatoire (m,.# ), dont

les ensembles focaux E; de masse m(E;) sont, pouri =1,...,M [82]:

Ei={xe Z|n(x) > o4} = Ag, (1.2)
m(E;) = a; — a1

Une distribution de possibilité 7 induit donc également un ensemble de probabilités &7, tel
que

VA C 2, N(A) < P(A) < II(A)}.
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Les distributions de possibilité sont les modeles les plus simples pouvant modéliser ex-
plicitement I'imprécision. Cette simplicité fait qu’elles sont trés faciles a manipuler, mais
aussi peu expressives par rapport a d’autres modeles. Cependant, il existe de nombreux cas ou
elles sont utiles; Par exemple, le fait qu’elles puissent se voir comme des bornes de confiance
inférieures d’ensembles emboités les rend tres pratiques pour €liciter de I’information, ou pour
représenter des intervalles de confiance centrés autour d’une valeur [11] (représentation tres

souvent utilisée en statistique).

1.2.2 P-boxes généralisées

Les représentations précédentes sont connues depuis un certain temps et ont donc déja été
étudiées par de nombreux auteurs. Nous proposons et étudions maintenant une nouvelle
représentation consistant en une généralisation des p-boxes a des espaces 2 discrets arbi-
traires. Il y a (au moins) deux bonnes raisons pour étudier une telle généralisation: premiere-
ment, les p-boxes étant déja tres utiles lorsque définies sur I’espace des réels, il semble normal
de vouloir les généraliser; deuxiemement, nous verrons que les p-boxes généralisées sont tres
utiles pour étudier les nuages proposés par Neumaier [159]. Ces derniers ayant été proposés
récemment pour représenter I’imprécision présente dans I’information, il est nécessaire de les

positionner par rapport a d’autres représentations, travail que nous réalisons ici.

Rappelons d’abord que deux fonctions f et f’ sont comonotones si et seulement si pour
toute paire d’éléments x,y € 2, nous avons f(x) < f(y) = f'(x) < f'(y). En d’autres termes,
il existe une permutation ¢ de {1,2,...,n} telle que f(xg(1)) = f(xg2)) = -+ > f(Xs(m)) €t

' (xa(1)) = f'(xs(2)) = -+ = f'(X5(n))- Nous définissons alors une p-box généralisée comme:

Definition 1.5. Une p-box généralisée [F,F| sur un espace .2~ est une paire de fonctions
comonotones F.F, F: 2 — [0,1] et F : 2 — [0,1] de 2~ vers [0, 1] telles que F est plus
petite que F (i.e. F < F) et il existe au moins un élément x de 2" pour lequel F(x) = F(x) = 1.

Et, & partir d’une p-box généralisée [F,F], nous pouvons définir un pré-ordre complet
<(p.p Sur 2" tel que x<p gy si F(x) < F(y) et F(x) < F(y), grace 2 la condition de comono-
tonicité. Pour simplifier les notations, nous considérons que les éléments de .2~ sont indicés
tels que i < j implique X< F¥)> et que | 2°| = n. Nous définissons ensuite I’ensemble de

probabilités induit par la p-box généralisée comme

9[E7f] = {PEP%

i=1,....,n, F(x;) <P({x1,...,x:}) < F(x)}.
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Notons que si 2" est I’ensemble réel, et §[ F.F] I’ordre naturel entre les nombres, nous retrou-

vons les p-boxes classiques.

La proposition suivante montre que 1’incertitude décrite par les p-boxes généralisées peut

étre décrite par des paires de distributions de possibilités comonotones:

Proposition 1.1. Toute p-box généralisée |[F,F) sur 2 est représentable ( voir Déﬁnition

par une paire de distributions de possibilités Ttg, g, ¢’est-a-dire ,@[ FF = P\ Pry, avec:
nf(x,-):ﬁ,- et 7'L'E(xi>:l—maX{(Xj|j:O,...,i(Xj<(Xi}

pouri=1,....n, avec op = 0.

A T’inverse, toute distribution de possibilité peut-&tre vue comme une p-boxe généralisée
réduite a sa seule distribution supérieure ou inférieure, ce qui veut dire que les distributions de

possibilité sont des cas particuliers de p-boxes généralisées.

La proposition suivante indique que les p-boxes généralisées sont des cas particuliers

d’ensembles aléatoires:

Proposition 1.2. Les p-boxes généralisées sont des cas particuliers d’ensembles aléatoires,
c’est-a-dire que pour toute p-box généralisée [F,F) définie sur 2, il existe toujours un en-

semble aléatoire (m,ﬁ)[ﬂﬂ tel que Pp 7 = gz(m?g;)[[? o

et, si nous notons 0 = 9 < ¥ < ... < Yy = 1 les valeurs distinctes prises par les fonctions
F,F dela p-box sur les éléments de 2", cet ensemble aléatoire est défini, pour j =1,...,M,

comme suit:

Ej={x € Z|(np(x) > ) N(1 —7p(x:) <v))}
m(Ej) =Y —¥j-1

(1.3)

Le lien entre p-boxes généralisées et distributions imprécises de probabilités est moins
direct, puisqu’aucune des deux représentations ne généralise I’autre. Considérons d’abord
un ensemble L et une indexation (arbitraire) des éléments de .2". Pour i = 1,...,n, notons

I(x;) = I; et u(x;) = u;. Une p-box généralisée approchant extérieurement L peut alors étre
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construite grace aux équations suivantes:

F'(xi))=P(A;) = of =max( Y [;1— Y w) (1.4)
Xi€A; Xi¢A;

F/(xi) = B(Al) = ﬁi/ = min( Z u;, 1— Z li)
XjGAi xi¢Ai

avec P, P les probabilités inférieures et supérieures induites par 1’ensemble L. Chaque permu-
tation des éléments de 2~ donne alors une p-box généralisée différente. Maintenant, consid-
érons I’ensemble X4 des permutations ¢ de 2" et [F, F]/G une p-box généralisée correspondant
a une permutation particuliere. La proposition suivante montre que les distributions imprécises

de probabilités sont représentables par des p-boxes:

Proposition 1.3. Soit un ensemble L décrivant une distribution imprécise de probabilité, et
-1/ L . . . , .
[F,F|s la p-box généralisée obtenue avec la permutation G a partir de L et des équations

(T.4). Alors, nos avons la relation suivante:

Zr= ) Pyr. (1.5)

o€ls

ce qui nous permet de relier les distributions imprécises de probabilité aux p-boxes général-
isées. Maintenant que nous avons positionné cette représentation par rapport aux autres, nous
pouvons étudier les nuages de Neumaier [[159], qui comme nous allons le voir ont de fortes

connections avec les p-boxes généralisées.

1.2.3 Nuages

Definition 1.6. Un nuage est défini par une paire de distributions 6 : 2"~ — [0,1] et T : 2" —
[0, 1] de I’espace 2" vers [0, 1], telles que & est inférieure a 7 (i.e. & < m), avec w(x) = 1 pour
au moins un élément x dans 2", et §(y) = 0 pour au moins un élément y dans .Z". 0 et 7 sont

respectivement les distributions inférieure et supérieure du nuage.

Notons que, d’un point de vue mathématique, ces nuages sont équivalents a des ensembles
flous valués par intervalles assortis de contraintes aux bornes. Plus précisément, le nuage est
mathématiquement équivalent a un ensemble flou dont la fonction d’appartenance a comme
valeur, pour I’élément x, I’intervalle [6(x),7(x)]. Etudier les nuages en tant que représen-
tation de I’incertitude sur X permet donc également d’apporter un nouvel éclairage sur les

interprétations possible a donner a un ensemble flou valué par intervalles.
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Neumaier [159] définit un ensemble de probabilités ,@[mg} correspondant a un nuage [, 8|

comme

gz[n,g] ={PePy|P{xe Z|0(x)>a})<l—a<P{xe Z|n(x)>a})}

Etant donné I’ensemble fini des M valeurs prises par les distributions & et 7 sur 2", notées

0=7%<mn<...<7yu=1,les coupes strictes et régulieres sont définies comme

By ={xe Z'|n(x) >y} et By ={xec Z|n(x) > 1} (1.6)
pour la distribution supérieure 7 et

Cr={xe Z|6(x)>y}etCyp={xec Z|0(x) > 7} (1.7)

pour la distribution inférieure 6.

De méme que pour les p-boxes généralisées, la proposition suivante montre que les nuages

sont représentables par des paires de distributions de possibilité

Proposition 1.4. Un nuage 1, 8] est représentable par une paire de distributions de possibil-
ité 1 — 8 et m, c’est-a-dire:

Pirs)=PaNP_s

La proposition suivante formalise plus en avant le lien existant entre nuages et p-boxes

généralisées:

Proposition 1.5. Soit [7t, 8] un nuage sur 2. Alors, les trois assertions suivantes sont équiv-

alentes:

(i) Le nuage [m, 8] peut étre encodé comme une p-box généralisée [F, F| telle que Py 51 =

e
(ii) 8 et w sont comonotones (0(x) < 0(y) = m(x) < w(y))

(iii) les ensembles {By,Cy,|i,j=0,...,M} définis par les equations @ et forment
une séquence d’ensembles emboités (i.e. ils sont complétement (pré)-ordonnés par la

relation d’inclusion).
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Cette proposition indique que les p-boxes généralisées constituent des cas particuliers de
nuages, puisqu’elles sont équivalentes aux nuages pour lesquels les distributions & et 7 sont
comonotones. A partir de maintenant, nous appellerons de tels nuages comonotones. Ce
résultat indique entre autres choses que les nuages comonotones sont des cas particuliers

d’ensembles aléatoires, et induisent donc des probabilités inférieures co-monotones.

Nous montrons dans ce travail qu’il n’en va pas de méme pour la plupart des nuages
non-comonotones, qui induisent en général des probabilités inférieures qui ne sont pas 2-
monotones (sans pour autant que 1’ensemble de probabilité induit soit vide). Ces résultats
indiquent que, d’un point de vue purement pratique, les nuages non-comonotones apparaissent

comme moins intéressants que leur contre-partie comonotone.

A D’instar des p-boxes généralisées, il n’y a pas de lien direct entre nuages et distributions
imprécises de probabilité. Il est cependant possible de reprendre les résultats concernant les
p-boxes généralisées (ces dernieres étant des cas particuliers de nuages), et notamment la
Proposition [I.3] 1I est également possible de reprendre et d’étendre d’autres transformations
proposées pour approcher extérieurement des distributions imprécises de probabilité par des
distributions de possibilité [141] .

Notons également que la plupart des résultats obtenus ici et reliant les p-boxes généralisées
et les nuages a d’autres représentations d’incertitude s’étendent facilement au cas de représen-
tations continues définies sur les réels. Les résultats obtenus concernant les représentations

pratiques d’incertitude sont résumés par la figure[I.1]

Deux autres problémes qui sont brievement considérés dans le chapitre concernent d’une
part I’utilisation des modeles hiérarchiques de second ordre (Section [3.5)), et plus particuliere-
ment le cas des variables aléatoires floues [32, 217]], d’autre part la propagation des p-boxes
généralisées a travers un modele déterministe (Section [3.2.5)), ce qui nous permet, entre autre,
de mettre en évidence 1’utilité potentielle des relations exhibées dans le chapitre.

1.3 Traitement de sources multiples d’informations (Chapitred)

En pratique, lorsque la valeur d’une variable ou d’un parametre X est mal connue, il arrive
souvent que plusieurs sources (e.g. experts, capteurs, modeles physiques différents) four-
nissent des informations concernant cette variable ou ce parametre. Dans cette situation, deux
problemes différents mais corrélés sont (i) la construction d’une représentation synthétique et

interprétable, plus facile a manipuler que des informations éparses et (ii) I’évaluation de la
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Figure 1.1: Relations entre représentations pratiques: résume A — B: B est un cas
particulier de A. A --» B: B est représentable par A



Résumé Francais de la these
18 (French Summary of the thesis)

qualité de I’'information fournie par les sources.

Dans ce chapitre, nous nous penchons sur chacun de ces deux problemes. Concernant
le premier, dénommé en général probleme de fusion d’information, nous rappelons d’abord
les méthodes de syntheése de base pour chacune des théories considérées ici, pour ensuite
nous pencher plus spécifiquement sur les problemes de traitement des inconsistances dans
I’information et des dépendances pouvant exister entre les sources d’information. Pour ré-
soudre le probleme des inconsistances, nous proposons 1’utilisation de la notion de sous-
ensembles maximaux cohérents comme une solution générale et attractive a la fois d’un point
de vue théorique et conceptuel. Concernant les dépendances, nous proposons 1’utilisation
d’une regle prudente basée sur la théorie des fonctions de croyances et du principe du moindre

engagement.

1.3.1 Opérations de fusion d’information basiques

Soit [F un cadre de traitement des incertitudes (i.e., possibilités, ensembles aléatoires ou ensem-
bles de probabilités), [F - I’ensemble des représentations du cadre [ définie sur I’ensemble fini
Z . Linformation donnée par N sources étant modélisée par une représentation appartenant a
)N

IF, une opération de fusion ¢ est une fonction ¢ : (F )" — F - qui résume les informations

données par les sources en une représentation unique.

Supposons une notion d’inclusion, notée Cg ., définie entre les €léménts de [F »-. Etant
donné de I’'information provenant de sources multiples et représentée par des modeles a; €

Fg,i=1,...,N,lafusion d’ information peut suivre trois comportements principaux [18},93]:

e conjonctif: un comportement conjonctif est le pendant d’une intersection d’ensembles.
Le résultat ¢(ay,...,ay) d’une telle opération est tel que ¢(ai,...,ay) Cr, a; pour
i=1,...,N. Un opérateur conjonctif réduit donc I'incertitude globale, et fournit un
résultat plus précis que chacune des sources prise séparément. Il suppose que toute
les sources sont fiables, et peut fournir un résultat trés peu fiable, voire vide, en cas

d’inconsistances dans I’'information fournie par les sources.

e disjonctif: un comportement disjonctif est le pendant d’une union d’ensembles. Le
résultat @(ay,...,ay) d’une telle opération est tel que @(ay,...,an) D, a; pour i =
I,...,N. Un opérateur disjonctif augmente donc I’incertitude globale, et fournit un ré-
sultat moins précis que chacune des sources prise séparément. Il fait la supposition

qu’au moins une des sources est fiable. Le résultat d’une telle opération est générale-
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ment tres fiable, mais peut étre trés (trop) imprécis, ce qui réduit son utilité.

e compromis: le résultat d’un comportement de compromis se situe entre la disjonction
et la conjonction. De tels comportements sont généralement utilisés quand les infor-
mations fournies par les sources sont partiellement inconsistantes. L’objectif d’un tel
comportement est d’obtenir un résultat qui ait un bon équilibre entre informativité et

fiabilité. Nous distinguons deux types de compromis:

— adaptatifs: un comportement de compromis sera appelé adaptatif si le résultat
dépend du contexte. Le but est de passer d’un comportement conjonctif & un com-
portement disjonctif au fur et a mesure que I’inconsistance entre les informations
augmente. On retrouve alors la disjonction (conjonction) en cas d’inconsistance
totale (consistance totale) entre les sources. Entre ces deux situations, le comporte-
ment est de compromis. Les méthodes utilisant les sous-ensembles maximaux

cohérents, que nous considérons plus tard, en sont de bons représentants.

— non-adaptifs: un comportement de compromis est non-adaptatif quand il se com-
porte toujours de la méme maniere, quelque soit le contexte. Les moyennes arith-
métiques pondérées (ou combinaisons convexes) constituent un exemple typique
et populaire de tels opérateurs, et sont de loin les opérateurs de fusion les plus

utilisés en pratique.

Nous rappelons ensuite comment les opérateurs de base (conjonctions, disjonctions, com-
binaison convexe), ceux qui sont le plus souvent utilisés pour en construire de plus complexes,
se déclinent dans chacune des théories considérées ici (probabilités imprécises, ensembles

aléatoires, possibilités).

Probabilités imprécises soit N sources dont les informations concernant X sont modélisées
par les ensembles de probabilités &2, ..., Py. Les opérateurs principaux de fusion d’information

se définissent alors comme suit [202]]:

e conjonction: la conjonction gzm(w) des ensembles &7}, ..., Py se définit comme
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e disjonction: la disjonction Qm(1:N> des ensembles &7, ..., Py se définit comme
N
‘@U(lzN) = U P
i=1

et, en pratique, c’est souvent 1’enveloppe convexe 77 ( ‘@UU:N)) de 3%( 1) qui est con-

sidérée, étant plus facile a manipuler et équivalente d’un point de vue comportemen-

tal [202]].

e combinaison convexe: la combinaison convexe '@ﬂ(w) des ensembles Z,..., Py,
auxquels sont associés les poids non-négatifs et de somme unitaire A, ..., Ay se définit
comme

L@Z(I:N) = e%vﬂ A'i@i

Ensembles aléatoires soit N sources dont les informations concernant X sont modélisées
par les ensembles aléatoires (m,.#),,...,(m,.#)y. A partir de ces N ensembles aléatoires,
nous définissons une distribution de masse jointe mj.y), définie sur le produit Cartésien 2 N
comme une distribution ayant les distributions m;, i = 1,..., N pour marginales. c’est-a-dire,
pourtout j € 1,...,Neti; € {1,....[@(2)|}, m(1.y) est telle que:

My (- X Er) 1= Z mny(Eiy X ... X Ej o x Ey) =mj(E;)  (1.8)
isenijmt €41, | @2( 20|}

et m(j.y) ne reAoit une masse positive que si E; ;€ Z i, ’ensemble des ensembles focaux
de (m,.7) jetcepour j=1,...,N. Les opérateurs principaux de fusion d’information se

définissent alors comme suit:

e conjonction: une conjonction des ensembles aléatoires (m,.%),,...,(m,.F ), se définit

en deux étapes
1. la construction d’une distribution jointe satisfaisant
2. allouer chaque masse jointe m(lzN)(xljyzlEj) a I’ensemble ﬂ]jVZIEj, avec E; € .7

for j=1,...,N.

Notons qu’en prenant le produit des masses, on retrouve la regle bien connue de combi-
naison du Modele des Croyances Transférables (i.e. la regle de combinaison de Demp-

ster non-normalisée).
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e disjonction: une disjonction des ensembles aléatoires (m,.%),..., (m, F), se définit

en deux étapes
1. la construction d’une distribution jointe satisfaisant (1.8
2. allouer chaque masse jointe m(lzN)(xj}’:lEj) a I’ensemble UIJYZIEJ-, avec E; € .7

for j=1,...,N.

e combinaison convexe: des ensembles aléatoires (m,.F),,...,(m,.% )y se définit comme
I’ensemble aléatoire (m, 7 )y
ensemble £ C Z":

) ayant une distribution de masse telle que, pour chaque

N
mZ(l:N)(E) = ;klm,(E) (19)

Possibilités soit N sources dont les informations concernant X sont modélisées par les dis-

tributions 7y,...,my. Les opérateurs principaux de fusion d’information se définissent alors
comme Ssuit:
e conjonction: la conjonction T () des distributions 7y, ...,y se définit pour tout x €
Z comme
T ) (%) = Tiz1, N ()

avec | une norme triangulaire, couramment appelée t—normeﬂ Les plus souvent util-
isées sont I’opération minimum, qui peut €tre associée a une hypothese de dépendance
entre sources (puisque c’est la seule t-norme idempotente), et le produit (hypothese

d’indépendance).

e disjonction: la disjonction 7| (1) des distributions 7, ..., my se définit pour tout x € 2

comme

Ly (%) = Lizi v70(x)

avec L une conorme triangulaire ou t-conorme, qui sont les opérateurs duauxE] des t-

normes. La t-conorme la plus souvent utilisée est le maximum (t-conorme la moins

pénalisante).
e combinaison convexe: la combinaison convexe Ty (1) des distributions 7y, ..., Ty, auxquelles
sont associés les poids non-négatifs et de somme unitaire Ay, ..., Ay pour tout x € 2" se

3Une t-norme est une fonction T : [0, 1] x [0, 1] — [0, 1] associative, commutative, non-décroissante en chaque
membre et ayant 1 comme élément neutre
“Dans le sense ot pour tout (x,y) € [0,1]%, L(x,y) =1—T(1—x,1—y)
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définit comme

N
ToE 1) (%) = Z{ AiTr;(x)

Les propriétés et liens existants entre les opérateurs des différentes théories sont égale-

ment étudiés. Pour chacun de ces opérateurs, nous proposons également des contreparties

s’appliquant aux nuages de Neumaier, dont nous étudions les propriétés et les liens avec les

opérations des autres théories.

Nuages soit N sources dont les informations concernant X sont modélisées par les nuages

[7,6],,...,[m,8]y. Alors, nous proposons les opérateurs principaux suivants:
e conjonction: nous définissons la conjonction [7,d], des nuages [&,d],...,[7,0]y
comme
N N
[Tc’ 5](7(];}\]) = [nm(lzN)’ém(l:N)] = [I‘llll{l(nl),r{l:af(((sl)] (110)
e disjonction: nous définissons la disjonction 7, 8] , des nuages [«, 8],,..., [, 5]y comme
N N
[77:7 5]U(1;N) - [TCU(I:N)’SU(I:N)] = [%ﬁ(nl)?ril{l(&)] (1.11)
e combinaison convexe: etant donné les poids de somme unitaire Ay,..., Ay associés
aux nuages [m,d],...,[m, 0]y, nous définissons la combinaison convexe de nuages
[7,68],,...,[m, 8]y comme
N N
[7[7 S]Z(I:N) - [TEZ(I:N) ) SZ(I:N)] - [Z Aiﬂi, Z Aiéi] (l ' 12)

Bien que ces opérateurs (conjonctions, disjonctions, combinaisons convexes) soient suff-

isants pour traiter les problemes ou les informations sont soit trés inconsistantes, soit tres

consistantes entre elles, ils ne sont pas assez flexibles pour obtenir un modele utile dans le cas

ou les informations sont partiellement inconsistantes. Dans ce dernier cas, nous proposons

I’utilisation des sous-ensembles maximaux cohérents comme une réponse générale attractive

a la fois d’un point de vue conceptuel et théorique.
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1.3.2 Utilisation des sous-ensembles maximaux cohérents (SMC)

Les méthodes basées sur les SMC [[173]] consistent a utiliser une opération conjonctive au sein
des sous-groupes de sources dont les informations sont consistantes, pour ensuite synthétiser
les différents résultats par une opération de fusion disjonctive. Le résultat obtenu est donc
proche d’une conjonction pure si les informations montrent une grande consistance, et proche
d’une disjonction si les informations sont fortement inconsistantes. Cette approche permet de
répondre de manicre adaptative et simple au double objectif (parfois difficile a atteindre) qui
consiste a gagner un maximum d’informativité tout en restant consistant avec 1’information

donnée par chaque source.

Nous revoyons d’abord comment les SMC peuvent s’ appliquer de maniere générale, avant

d’étudier un cas plus précis s’appliquant a la théorie des possibilités.

1.3.2.1 Application générale

Probabilités imprécises 1’information étant donnée par N ensembles de probabilités &, ..., Py,
un sous ensembleﬂK C [N] est maximal cohérent (dit SMC) si Njex &2; # 0 et s’il est maximal
avec cette propriété (tout ajout d’une source a K conduit a une conjonction vide). Le résultat

de la fusion par SMC est alors:
k
Pucs, =2 | U () Zi (1.13)
j=1i€kK;

avec k le nombre de SMC, K les SMC et Z I’enveloppe convexe de I’ensemble.

Ensembles aléatoires 1’information étant donnée par N ensembles aléatoires (m,.F),,...,(m, F )y,

un ensemble résultant d’une fusion par SMC est construit en trois étapes

1. la construction d’une distribution jointe satisfaisant (I.8)

2. pour chaque masse jointe m(lzN)(x]}’:]Ej), K C [[N] est un SMC si NjexE; # 0 et si il

est maximal avec cette propriété. Soit Ky, ..., K} les SMC pour cette masse jointe.

3. allouer la masse m(1;N)(><§-V:1Ei) a I’ensemble UI;':I mieKj E;, avec E; € .%; pour i =
1,...,N.

SRappelons que nous notons [N] := {1,...,N} I'ensemble des N premiers naturels
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Possibilités I’information étant donnée par N distributions de possibilités my,..., Ty, un
sous-ensemble K C [N] est un SMC si minjegx 7; # @ et est maximum avec cette propriété.

Dans ce cas, le résultat d’une fusion par SMC est

k .
EMCS(l;N) - l’jrl:a])(g}(rjl G- (1.14)

Les regles de fusion ci-dessus ont I’avantage qu’elles permettent de traiter I’inconsistance
de maniere flexible, tout en requérant un minimum d’information (dans le cas des probabil-
ités imprécises et distributions de possibilités, seuls les modeles représentant les informations
fournies sont nécessaires). De plus, elles satisfont nombre de propriétés qui apparaissent

comme désirables dans un processus de fusion d’information.

Si ces regles sont séduisantes d’un point de vue théorique et conceptuel, les appliquer peut
poser des problemes calculatoires importants, puisqu’extraire les sous-ensembles maximaux
cohérents est, en général, un probleme de complexité NP-complete [140]]. Néanmoins, il existe
des cadres ou extraire les SMC ne présente pas une telle complexité, et c’est notamment le cas
lorsque les ensembles sont des intervalles définis sur les réels. Pour cette raison, nous étudions
une méthode SMC s’appliquant aux intervalles flous (distributions de possibilités dont les o-
coupes sont des intervalles) et travaillant & ¢-coupes constantes. Cette méthode, qui étend
I’équation (I.14) et est un cas particulier des SMC appliqués aux ensembles aléatoires, reste,
globalement, de complexité linéaire par rapport au nombre de sources, et est donc facilement

applicable.

1.3.2.2 SMC appliqué aux distributions de possibilité sur les réels.

Nous considérons donc le cas ou X prend sa valeur sur I’espace des réels, et ou I’information
est modélisée par N distributions de possibilités m;, i = 1,...,N. Cela peut étre, par exemple,

des experts donnant leurs avis en terme d’intervalles de confiance emboités.

Nous proposons donc d’utiliser la méthode MCS o-coupe par a-coupe (inspirée de travaux
précédents [77]). Etant donné les distributions 7y,..., @y, a chaque niveau o € [0, 1] corre-
spond une série de N intervalles E; o, avec E; o I’-coupe de la distribution ;. Soit K ¢
les sous-ensembles maximaux d’a-coupes tels que ﬂieKj’a E; o # 0 (Pour chaque niveau,
I’extraction de ces sous-intervalles est de complexité globalement linéaire). Nous définissons

ensuite I’ensemble Ey;cs,o comme 1'union des intersections associ€es aux sous-ensembles
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K; o, C’est-a-dire

Evcsa= U ) Eia (1.15)
j=1,...,f((x)iEKj,tx

avec f(a) le nombre de sous-ensembles maximaux cohérents distincts au niveau o. Notons
qu’en général, Eycs o est une union d’intervalles disjoints, et ne constituent pas une distri-
bution de possibilité, puisque la relation Eycs o O Eycs,g n’est pas vraie pour toute paire de

valeur B, a € [0, 1] telles que B > ., et les ensembles ne sont donc pas emboités.

Néanmoins, en pratique, il y aura un nombre fini de p+1 valeurs 0 = ; < ... <, <
Bp+1 = 1 telles que les ensembles Epcs, o seront emboités pour toute valeur & € (B, Bi+1], et
cela pour k = 1,..., p. Etant donné les distributions 7y, ..., 7y, ces valeurs sont assez faciles

a extraire.

En appliquant I’équation (T.15]) aux niveaux & € (B, Br. 1], nous obtenons donc un ensem-
ble flou F, non-normalisé, dont le degré d’appartenance varie dans (B, Br. 1] (les ensembles
Epcs,o €tant emboités entre ces valeurs). Il est ensuite possible de renormaliser cet ensem-
ble flou de maniere proportionnelle pour obtenir un ensemble flou Fy et de lui affecter une
masse m(fk) = Bri1 — Br- Le résultat est alors formellement équivalent a un ensemble flou
aléatoire (ou encore a une fonction de croyance floue), c’est-a-dire un ensemble aléatoire ou

les éléments focaux sont des ensembles flous. Le procédé est illustré par la figure [I.2]

Nous proposons ensuite une série d’outils pratiques permettant de manipuler plus facile-
ment 1’information résumée contenue dans cette variable aléatoire floue. Nous proposons
également des variantes permettant de prendre en compte, dans la procédure de fusion pro-
posée ci-dessus, des informations supplémentaires (e.g. nombre de sources fiables, facteurs
de fiabilité des sources, distance entre les informations). Entre-autres choses, nous proposons

de prendre la distribution de possibilité 7, correspondant a la fonction de contour, c’est-a-dire,
)4

Vxe &', m(x)= Zm,-vﬁi(x), (1.16)
i=1

comme résumé essentiel de I’'information. Cette distribution est ensuite plus facile a manip-
uler, et d’un point de vue axiomatique satisfait la plupart des propriétés requises par d’autres

auteurs.

Dans la suite du chapitre concernant la fusion d’information, nous étudions également de
plus pres la prise en compte de dépendances entre sources au sein de la théorie des ensembles

aléatoires dans la fusion conjonctive (Section4.3)). Cette théorie semble particulierement bien
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Figure 1.2: Sous-ensembles maximaux cohérents: illustration



Résumé Francais de la these
(French Summary of the thesis) 27

adaptée pour prendre en compte de telles dépendances, qui peuvent s’exprimer par le biais de
la construction de la distribution de masse jointe (premiere étape des différents opérateurs de
fusion définis plus haut pour les ensembles aléatoires). En particulier, nous donnons quelques
premiers résultats permettant d’utiliser le principe de moindre engagement pour fusionner
prudemment plusieurs sources d’informations. Un des intéréts théorique (et pratique) de ces
résultats est qu’ils indiquent que lorsque les ensembles aléatoires sont équivalents a des distri-
butions de possibilités (i.e. éléments focaux emboités), nous retrouvons la fusion par t-norme

minimum, ¢’est-a-dire le mode de fusion conjonctif le plus prudent en théorie des possibilités.

1.3.2.3 Evaluation de I’information

Comme nous I’avons vu plus haut, certains opérateurs de fusion (e.g. la moyenne arithmétique
pondérée) requicrent d’affecter des poids aux différentes sources d’informations, ce qui revient
a leur affecter des importances, ou une fiabilité différente a chacune. Déterminer ces poids de
maniere rationnelle n’est pas toujours chose aisée. De plus, dans des activités scientifiques
telles que I’analyse de risque ou les études de s°reté, il est important que ces poids, s’ils

doivent étre déterminés, le soient de la maniere la plus objective possible.

C’est pourquoi nous proposons une méthode générale (Section {4.4), inspirée de travaux
précédents [28,[174] et applicable a I’ensemble des théories explorées ici, permettant d’évaluer
la qualité de I’information délivrée par les différentes sources, en se basant sur des perfor-
mances passées. Afin d’expliciter notre approche sur un exemple dégénéré, nous consid-
érerons une source ayant donné pour information concernant la valeur de la variable X un

sous-ensemble A C 2.

La méthode consiste a affecter a chaque source un score, basé sur un ensemble de variables

témoinﬂ et sur deux criteres qui sont:

o Informativité: mesure la précision de I’information fournie par une source pour une
variable témoin donnée. Plus précise a été la source, plus élevée est son informativité.
Selon le cadre de travail, nous proposons une mesure d’informativité qui généralise la

valeur suivante:

Al
Inf=1——-
E2
valeur qui reflete bien la précision de I’intervalle A par rapport a I’ignorance (I’ensemble

2)

%une variable témoin est une variable pour laquelle la source a précédemment donné des informations impré-

cises, et dont la valeur réelle a été observée ultérieurement



Résumé Francais de la these
28 (French Summary of the thesis)

e Calibration: mesure la cohérence entre I’information fournie par la source et les valeurs
observées pour une variable témoin. En gardant a I’esprit que notre source a considéré
que la valeur se trouvait dans 1’ensemble A, nous différencions deux cas: le cas ou la
valeur précise prise par X est observée, et celui ou I’observation est elle-méme entourée
d’incertitudes. Dans le cas ou la valeur précise x* est observée, alors la calibration est
simplement la mesure de confiance supérieure que la source accordait a cette valeur
(dans le cas d’un intervalle, 1 si x* € A, 0 sinon). Dans le cas ou 1’observation permet
simplement de conclure X € B, nous considérons la mesure de calibration

|ANB]
Cal =
|B|

et nous proposons aux différents cadre considérés dans ce travail. Cette mesure d’inclusion

de B dans A permet en effet de mesurer combien la source jugeait B plausible.

Une source de bonne qualité est donc une source recevant un haut score, c’est-a-dire une
source informative et bien calibrée. Les formules proposées dans le manuscrit répondent a un

certain nombre de critére rationnels:

1. les mesures doivent récompenser les sources a la fois informatives et bien calibrées,

2. la calibration ne devrait €tre influencée que par nos observations ou nos connaissances

concernant les variables témoins,

3. les mesures devraient étre comparables entre-elles, quelque soit la nature et le nombre

de variables témoins (en d’autres termes, elles devraient avoir une métrique commune).

1.4 Incertitudes et (In)dépendance (Chapitre

Nous nous intéressons ensuite aux notions d’indépendance entre variables. En effet, si la défi-
nition formelle d’indépendance stochastique en probabilité classique fait I’'unanimité une fois
que I'on s’affranchit du probleme de I’interprétation, ce n’est plus le cas lorsque I’on con-
sidere des modeles imprécis. Dans ce dernier cas, a différentes interprétations correspondent
différentes définitions formelles d’indépendance, et il est donc nécessaire de les étudier de

plus pres pour bien les maitriser, et savoir quand chacune peut s’appliquer.

Nous proposons donc une premiere taxonomie qui nous permet de classer les types d’indépendance

selon la nature des relations qu’elles décrivent, basée sur différents travaux [203, Ch.9], [[144], [216]], [6].
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Cette taxonomie distingue parmi les notions d’indépendance celles qui sont:

o Non-Informative (nlnf.) ou Informative (Inf.): par non-informative, nous entendons ces
notions d’indépendance qui traduisent I’absence de connaissance sur les relations entre
variables, et qui suppose donc que toute relation est possible. Par informative, nous
entendons les notions qui traduisent la connaissance d’une absence de relation, et qui

permettent de modéliser cette absence.

o Subjective (Sub.) ou Objective (Obj.): une notion d’indépendance est dite subjective si
elle concerne nos croyances a propos des valeurs que peuvent prendre des variables, et

objective si elle cherche a décrire des propriétés intrinseques au phénomene observé

o Symétrique (Sym) or Asymétrique (Asym.): Une notion est symétrique si dire que X est
indépendant de X, implique automatiquement que X; est indépendant de X;. Ce type
d’indépendance rend souvent plus facile la construction de modeles d’incertitude joints
a partir de modeles locaux ou marginaux, et permet donc de stocker I’information sous
cette forme. Cette propriété est souvent appelée factorisation. Ces notions symétriques
ne permettent pas de modéliser des notions d’indépendance qui concerne des relations

asymétriques.

Il faut alors utiliser des notions d’indépendances asymétriques, certes moins pratiques
mais qui permettent d’exprimer de telles notions. Une notion d’indépendance est asymétrique
si dire que X est indépendant de X, n’est pas équivalent a dire que X, est indépendant

de X;. Ces relations asymétriques sont souvent de types évidentiels ou causals

— les relations d’indépendance causales expriment I’idée que deux variables ne sont
pas causalement reliées. Par exemple, elles permettent d’exprimer qu’une habitude

de vie n’est pas la (une) cause d’une maladie.

— les relations d’indépendance évidentielles expriment 1’idée qu’apprendre la valeur
d’une variable ne va pas changer nos croyances a propos d’une autre variable, ce
qui n’implique pas qu’apprendre la valeur de cette derniere ne changera pas nos

croyances a propos de la premiere.

Nous rappelons et classons ensuite les principales notions d’indépendances rencontrées
dans les théories de I’incertain, ¢’est-a-dire les notions d’interactions inconnues; d’indépendance
forte; d’indépendance de répétition; de non-pertinence et d’indépendance épistémique; d’indépendance
d’ensembles aléatoires; de non-interaction possibilistes. Pour simplifier les définitions, nous

considérons des relations entre deux variables X; et X, prenant leurs valeurs dans 27, 2>.
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Nous notons Z(1.5) = 21 X 23 le produit cartésien des deux espaces, et X(;.5) une variable

prenant ses valeurs sur Z(1.).

Definition 1.7. Soit deux ensembles marginaux de probabilités Py, , Py, représentant notre
incertitude sur les variables X, X, prenant leurs valeurs dans 27, Z>. La notion d’interaction

inconnue entre X1, X, est la donnée de I’ensemble de probabilités jointes '@ULXU:z) tel que
QUI,X(M) = {PX(1:2) S P%I:Z)lpxl S ‘@XUPXZ S ﬂxz}

avec Py, , Py, les probabilités marginales de PX(m) sur les domaines .27, 25 et P9~ I’ensemble

des probabilités sur 2.

La notion d’interaction exprime 1’idée que nos informations ne nous permettent pas de

connaitre les relations qui peuvent lier X et X3, et revient donc a toutes les considérer.

Definition 1.8. Soit deux ensembles marginaux de probabilités Py, , Px, représentant notre
incertitude sur les variables X, X, prenant leurs valeurs dans 2, 2. Lanotion d’indépendance

forte [33] entre X1, X, est la donnée de I’ensemble de probabilités jointes QZSLX(M) tel que
gZSLX(l;z) = {PX(lzz) = ]P%&l;z) ‘PX(1:2) = Px, ® Px,, Px, € Px,,Px, € Px,}

avec ® le produit de mesure usuel.

La notion d’indépendance forte exprime 1’idée que X; et X, prennent leurs valeurs suivant

deux processus aléatoires stochastiquement indépendants.

Definition 1.9. Soit deux ensembles marginaux Px, = Py, = Hx identiques représentant
notre incertitude sur deux variables X, X, prenant leurs valeurs dans 27, 23, avec 21 = 2, =
Z . La notion d’indépendance de répétition [33] entre X1, X, est la donnée de I’ensemble de

probabilités jointes ,@RI,X“Q) tel que
‘@RLX(IQ) = {Px(m) € IP)55(1:2)|PX(1:2) =Px®Py, Px € Px}

avec ® le produit de mesure usuel.

La notion d’indépendance de répétition revient a considérer que X; et X, suivent deux
processus aléatoires identiques et indépendants. Cette notion correspond a la notion statistique

usuelle d’échantillons indépendants et identiquement distribués.
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Definition 1.10. Soit deux ensembles marginaux Py, , Py, représentant notre incertitude sur
X1,X; prenant leur valeur dans 27, Z>. Alors, la notion de non-pertinence épistémique [33]]

de X envers X; est la donnée de 1’ensemble de probabilités jointes ‘@Elrrmz,x(m) tel que

(@Elrrlﬂ27x(l:2) = {PX(l;z) € Pﬁf(l;z” vx(l:Z) S %/-(1:2)7 PX (1.5 (x(I:Z)) = Pxi (xl)pxz(x2|xl)a
Px, € Px,, Py, ("|01) € Px, }

avec Py, (-|x1) les probabilités conditionnelles potentielles sur 2> étant donné x;.

La notion de non-pertinence épistémique exprime 1’idée qu’apprendre la valeur d’une vari-
able (ici X1) ne changera pas nos croyances actuelles quand a la valeur possible de X;. C’est
une notion asymétrique, et la notion symétrique correspondante (indépendance €pistémique)
est obtenue en utilisant la notion de non-pertinence dans les deux sense (i.e. X| non-pertinent

envers Xp, et inversément).

Definition 1.11. Soit (m, %)y, , (m,.7 ), deux ensembles aléatoires représentant I’incertitude
sur les variables X1, X, prenant leur valeur dans 27, 2>, et Px,, Px, les ensembles de prob-
abilités induits. La notion d’indépendance d’ensembles aléatoires (57,207 entre X1, X, est la

donnée de I’ensemble de probabilités jointes

ﬁRSI,X(IZZ) = {PX(1;2) € P<%1:2)|VA - ‘%122)7PX(1;2) (A) < Z nx, (Exl)mxz(EXZ)}
(EX1 XEXZ)QA#Q
Exieﬁxi

avec my,(Ex;) la masse donnée a I’ensemble focal Ex, dans (m, 7 )y.

Cette notion traduit 1’indépendance entre les distributions de masses dans la théorie des
ensembles aléatoires. Elle est plus difficile a interpréter au sein de la théorie des probabil-
ités imprécises, mais dans ce dernier cas, elle peut servir d’approximation a d’autres notions
d’indépendance, plus difficiles a manipuler. Une autre notion d’indépendance relative aux en-
sembles aléatoire, dénommée indépendance cognitive, est également brievement décrite dans

le chapitre, mais moins discutée, du fait de I’existence de peu de résultats la concernant.

Definition 1.12. Soit deux distributions marginales 7y, , Ty, représentant I’incertitude sur les
variables X, X, prenant leur valeur dans 27, Z,. Alors, la notion de non-interaction possi-
biliste [218] entre X1,X, est la donnée de la distribution jointe TPLX 1) telle que, pour tout
X(12) In Z(129)

TOPLX 1) (X(1:2)) = min (7T, (x1), 7x, (x2))

a laquelle peut ensuite étre associée I’ensemble de probabilités jointes @p17x(1:2).
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Notion Inf./nInf. Obj./Sub. Sym/Asym. Expressible in
IP RS P
Int. inconnue nlnf. Sub. Sym v v X
Non-int. possibiliste  Inf./nInf. Sub. Sym vV vV
Ind. cognitive Inf. Sub. Asym. 7V X
Ind. d’ens. aléatoires Inf. Sub. Sym vV oV X
Non-pert. épistémique Inf. Sub. Asym. v o ? X
Ind. de Kuznetsov Inf. Sub. Sym v < ? X
Ind. forte Inf. Ob;. Sym v v X
Ind. de répétition Inf. Ob;. Sym v ? X

Table 1.1: Notions d’indépendance et de non-pertinence dans I’incertain: résumé (?:
question a résoudre)

La non-interaction possibiliste peut traduire deux notions. D’une part, elle peut s’ interpréter
comme une hypothese de dépendance totale entre niveaux de confiance, et d’autre part, on
peut la voir comme la réduction de la notion d’interaction inconnue a un cadre purement
possibiliste (la possibilité jointe correspondant a la non-interaction possibiliste est alors vue

comme la "trace" partielle d’un jugement d’interaction inconnue).

Le tableau [[.T| résume comment les différentes notions évoquées plus haut se situent par
rapport a notre classification. La notion d’indépendance développée par Kuznetsov [134, [36]
et qui se base sur les bornes des espérances mathématiques y figure également, ainsi que
I’indépendance cognitive [178, Ch.7.5], afin que le tableau soit complet. La figure[I.3] quant
a elle, montre les relations d’inclusions qui existent entre les modeles joints résultant des
différentes notions. A nouveau, nous utilisons le langage des ensembles de probabilités pour

faciliter la comparaison.

Dans la suite, nous nous intéressons au probleme d’interpréter la notion de non-pertinence
épistémique par le biais d’arbres d’événements et de la théorie probabiliste développée par
Shafer [[179] autour de ces derniers. Comme 1I’ont montré des recherches récentes [47, 48],
il existe en effet de forts liens entre ce cadre et la théorie des probabilités imprécises. Nous
montrons donc que la notion de non-pertinence entre de multiples variables est équivalente a
la notion d’indépendance dans des arbres d’événements particuliers, que nous appelons arbres
standards (Section [5.2)).
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D1 x1.9 C LK1 X 10 © PEMdX,, . C Prsi X, © Pcix,, C Puix,
X(1:2) X(1:2) X(1:2) P X(1:2) X(1:2) X(1:2)
Elrr X,
Ul Ul
’@RLX(I:Z) ‘@PLX(I:Z)

Figure 1.3: Relations d’inclusion des modeles joints a partir de modeles marginaux
c@XI ) ‘@Xz

Nous explorons ensuite comment certaines notions d’indépendances, plus facile a ma-
nipuler et calculatoirement plus avantageuses, peuvent en approcher d’autres. En particulier,
nous étendons des résultats précédemment obtenus pour le cas bi-dimensionnel [89] a un cadre
général (n dimensions, n étant un nombre quelconque), et permettant d’approcher de maniere
conservative 1’indépendance entre ensembles aléatoires (dont la structure jointe présente une
complexité croissant exponentiellement avec le nombre de dimensions) par la notion de non-
interaction possibiliste (dont la complexité de structure jointe ne croit pas avec le nombre de

dimensions). Nous discutons ensuite de 1’utilité d’une telle approche dans un cadre pratique

(Section|[5.3).

1.5 Prise de décision dans I’incertain (Chapitre [6)

Dans ce chapitre, nous nous intéressons brievement au probleme de prise de décision dans
I’incertain. Méme si ce probleme ne concerne pas a proprement parlé le traitement de 1’incertitude,
il est difficile de le dissocier totalement de tels traitements, puisque ces derniers sont (presque)
toujours utilisés en vue de prendre une décision. En particulier, les études de risques et de
siireté sont souvent associées a des décisions recouvrant a la fois un aspect économique et

humain.

La prise de décision consiste (du moins en traitement de I’incertitude) a choisir, parmi un
ensemble fini .27 de choix possibles, les actions optimales (du point de vue du décideur). Dans
ce travail, nous considérons un cadre relativement restreint de prise de décision, puisque nous

considérons:

i qu’a chaque choix a € &7 peut étre associé un gain (utilité) de valeur réelle et précise, noté

u,: 2" — R, et que u,(x) représente ’intérét de choisir I’action a quand X prend la valeur
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xe 2.

i1 que les choix ne peuvent pas €tre combinés entre-eux (i.e., pas de mélanges convexes de

choix)

iii que nous sommes dans un environnement statique. Nous ne considérons donc pas le prob-

leme de déterminer des séquences optimales de choix

iv qu’un choix a € o/ ne modifie pas I’incertitude sur X, i.e., nous supposons I’indépendance

entre choix et €tat de la variable.

Lorsque I'incertitude sur X est modélisée par une probabilité précise, le choix optimal est
souvent celui qui maximise 1’espérance mathématique de 1’utilité. Pourvu que I’incertitude
soit représentable fidelement par une distribution de probabilité, ce critere semble étre un
bon choix et a été justifié théoriquement par de nombreux auteurs. Dit autrement, il consiste
a établir un (pré-)ordre complet entre les différents choix, construit a partir des espérances

mathématiques.

Cependant I’information disponible ne permet pas toujours de représenter 1’incertitude
par une probabilité unique, et dans ce dernier cas, comme pour I’indépendance, il existe de
nombreux moyens d’étendre le critere de maximisation de I’espérance mathématique au cadre
des probabilités imprécises [[193], ensembles aléatoires ou distributions de possibilité. Ces
extensions (criteres) suivent globalement deux principes [198]] : soit elles cherchent a toujours
établir un ordre complet entre les actions, en travaillant sur des probabilités particulicres des
ensembles ou sur les bornes d’espérances, soit elles relachent la condition de complétude dans
I’ordre induit, et autorise a déterminer un ensemble d’actions optimales non-comparables,

plutdt qu’une seule.

Parmi les criteres qui suivent la premiere voie se trouve le ['-maximin [114], le ["-maximax,
le critere d’Hurwicz [[122], 1a probabilité pignistique[] Bet P [[187]. Parmi les criteres suivant la
seconde voie se trouvent la Maximalité, la dominance par Intervalles et I’E-admissibilité. La
figure ci-dessous montre les implications qui existe entre ces criteres (A — B indiquant qu’une

action optimale au sens de A le sera aussi au sens de B).

"Néologisme dérivé du mot latin pignus, signifiant décision
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Pignistique I'-maximax I'-maximin

E-admissibilité Maximalité

Dominance par Intervalles

Ces criteres requicrent souvent de calculer des bornes d’espérances mathématiques sur
des ensembles de probabilités. Si cela s’avere relativement aisé lorsque 2~ est un ensemble
fini [198], il en va tout autrement lorsqu’il est continu. Nous étudions donc ensuite le cas
particulier ou 2 est un sous-ensemble des réels, ou I’incertitude est modélisée par une p-box
[F, F] et ol u, est une fonction continue sur 2. Nous proposons des premiers résultats perme-
ttant d’obtenir les formules analytiques des fonctions cumulées qui vont permettre d’atteindre

les bornes d’espérances.

1.6 Applications illustratives (Chapitre

Nous donnons ensuite quelques détails relatifs a deux applications réalisées durant ce travail
de these, au moyen du logiciel SUNSET développé a I'IRSN.

1.6.1 Evaluation et synthese d’informations appliquées a des codes de

calculs nucléaires

La premiere application concerne I’application des méthodes développées dans le chapitre {4
aux résultats d’analyses d’incertitude effectuées avec des codes de calculs nucléaires différents
au cours d’un programme OCDE appelé BEMUSE [160]]. Ce programme, regroupant 10 par-
ticipants, avait pour but de comparer les méthodologies d’analyse d’incertitude en les appli-
quant a un cas d’accident de perte de réfrigérant du circuit primaire d’une centrale nucléaire

par grosse breche.

Ce type d’accident, qui provoque une diminution du flux de réfrigérant, est en effet cri-
tique. Une centrale nucléaire produisant de 1’énergie et de la chaleur interne, c’est le rdle du

systeme réfrigérant que de garder la température a un niveau acceptable. Quand une grosse
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breche dans ce circuit survient, le systeme est immédiatement arrété d’urgence, cependant
il est nécessaire, méme apres cet arrét, de s’assurer que la température ne dépasse pas un
niveau critique pouvant engendrer une catastrophe (e.g. fuite de radio-éléments). En effet,
d’importantes quantités de chaleur peuvent encore étre émises apres arrét du réacteur, du fait

des réactions résiduelles.

Lors du projet BEMUSE, 10 participants ont donc appliqué leurs méthodes d’analyses
d’incertitude sur un cas expérimental réalisé sur une installation de taille réduite. Chacun
d’entre eux a eu a déterminer ses incertitudes sources, ses variables d’entrée et a pu utiliser
des codes de calculs différents. Bien que les résultats de I’ensemble des participants aient tous
été assez proches des valeurs expérimentales observées, ils présentaient néanmoins quelques
différences, et étaient assez difficiles a comparer a premicre vue. Il nous a donc semblé utile
d’appliquer aux résultats du programme les méthodes développées au chapitre 4 Nous nous
sommes restreints aux théories des probabilités classiques et des possibilités, ce qui était suff-
isant pour mettre en exergue les points de convergence et de divergence entre les approches
basées sur les probabilités classiques et celles utilisant d’autres théories de I’incertain, ainsi

que les avantages présentés par chacune.

1.6.1.1 Evaluation des sources

Puisque les valeurs expérimentales d’un certain nombre de variables étaient disponibles, nous
avons pu réaliser une évaluation de la qualité des informations obtenues par les différentes

études d’incertitude.

D’un point de vue méthodologique, les résultats nous ont permis de montrer que les deux
approches utilisées (probabiliste et possibiliste) conduisaient a des résultats similaires, du fait
qu’elles étaient baties sur les mémes concepts, mais que des différences étaient cependant
observées, ces différences étant dues aux différences de formalismes. En particulier, puisque
peu de variables témoins étaient utilisées (4), nous avons pu mettre en exergue les problemes
rencontrés par la méthode probabiliste dans de tel cas (i.e. pouvoir discriminant diminué).
Rappelons qu’en pratique, il est recommandé d’utiliser un minimum de 10 variables témoins

pour utiliser I’approche probabiliste.

D’un point de vue plus pratique, les observations suivantes ont pu étre faites:

e rang par rapport au code utilisé : lors de I’évaluation, il a pu étre observé que le rang
(la qualité) donnée a un participant était peu dépendant du code de calcul qu’avait utilisé

par ce participant. Ce résultat montre que 1’influence de I'utilisateur sur les résultats
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produits par le code peut étre tres grande, et souligne 1I’importance de posséder une

bonne expérience d’utilisation et de bonnes connaissances des processus en jeux.

o validation/evaluation du code : un aspect important encore matiere a débat dans la
modélisation de phénomenes physiques complexes est la maniere de valider un code de
calcul (i.e. de certifier que ses résultats sont conformes a 1I’expérience). Les résultats
des méthodes d’évaluations étant significatifs par eux méme, ils pourraient €tre utilisés

dans les procédures de validation de codes.

o validation des observations informelles : les méthodes utilisées ont également permis
de donner une base solide et rationnelle a des observations jusqu’ici faites de maniere
informelle. Elles sont donc également un moyen d’appuyer des conclusions et de les

conforter.

1.6.1.2 Synthese de ’information apportée par les sources

La synthese de I'information nous a permis de mettre en évidence deux avantages des méth-

odes utilisées:

1. Utilité des évaluations : a la fois pour I’approche probabiliste et possibiliste, 1’ utilisation
des poids déterminés par I’étape précédente (section nous a permis d’améliorer
le résultat de la syntheése d’information (2 la fois en informativité et calibration), soit
en les utilisant directement dans une combinaison convexe, soit en se restreignant aux

informations fournies par des sous-groupes de "meilleures" sources.

2. Quantification du conflit : 1’utilisation des méthodes de fusion possibiliste, et no-
tamment de 1’opération conjonctive, nous ont permis de fournir une valeur quantifiée
et visuelle du conflit pouvant exister entre certains groupes de sources (utilisateurs du

méme code, ... ), quantification jusqu’ici peu (ou pas) réalisée.

Les informations fournies par les sources étant assez consistantes entre-elles, nous n’avons

pas cru bon appliquer les méthodes SMC aux données du cas BEMUSE.

1.6.2 Application de la méthode RaFu a un cas d’étude

La méthode de propagation hybride [9,12] propose de différencier, parmi N variables X, ..., Xy

entourées d’incertitudes les variables dont la valeur est gouvernée par un aléa intrinseque (in-
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certitude aléatoire) des variables dont la valeur est fixe, mais mal connue du fait de manque
d’informations (incertitude épistémique). Dans la méthode de propagation hybride, les pre-
mieres sont modélisées par des probabilités et propagées au moyen de méthodes de simulation
classiques (e.g. Monte-Carlo), tandis que les secondes sont modélisées par des distributions
de possibilités et propagées au moyen du principe d’extension, qui suppose la non-interaction
possibiliste entre les variables. Le résultat de cette propagation est une variable aléatoire floue

qui est ensuite post-traitée en fonction du résultat voulu.

Deux des problemes d’ordre pratique de la méthode hybride de propagation sont qu’elle
requiert de nombreux calculs et ne fournit pas d’évaluation de I’erreur due a 1’approximation
numérique réalisée durant la propagation. Si ce probleme est mineur lorsque le modele a
travers lequel on propage est simple et que beaucoup de calculs peuvent étre réalisés sans
colits élevés, il ne I’est plus lors de propagations a travers des codes de calculs complexes,
pour lesquels le nombre de simulations (calculs) a pouvoir réaliser est généralement limité, du

fait de leur colt élevé, a la fois en temps et en argent.

Nous proposons donc une méthode numérique pratique, appelée RaFu et développée dans
le logiciel SUNSET, qui reprend les bases théoriques de la propagation hybride tout en se pro-
posant d’optimiser le nombre de simulations a réaliser (d’échantillons a considérer) pour at-
teindre un objectif donné. Elle se base sur le fait qu’en pratique, le décideur désirera rarement
obtenir la variable aléatoire floue dans son entiereté, mais seulement quelques une de ses car-

actéristiques.

La méthode RaFu consiste donc a demander au décideur, avant d’effectuer la propaga-
tion, de spécifier la nature d’un triplet de parametres (s, ¥r,Ya) correspondant a la réponse
désirée: 7ys correspond aux aspects statistiques de la réponse désirée; Yz concerne les aspects
épistémiques, c’est-a-dire concernant les distributions de possibilité; y, sert a spécifier la pré-

cision numérique qui veut €tre atteinte, et permet un controle de 1’erreur numérique.

Nous appliquons ensuite la méthode RaFu a un cas d’étude simplifié afin de I’illustrer. Ce
cas d’étude consiste a évaluer le niveau de couronnement d’un barrage afin de le dimensionner.
Ce cas d’étude, bien que simple, nous permet de mettre en évidence 1’effet de I’approximation

numérique, et I’importance de prendre en compte cette erreur numérique dans les calculs.
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1.7 Conclusions et perspectives (Chapitre

Dans ce travail, nous avons étudié plusieurs aspects du traitement des incertitudes en présence
d’imprécision, progressant a la fois vers une unification des différentes théories et vers des

outils pratiques permettant de facilement manipuler I’information.

Du chapitre [3] dans lequel nous avons étudi¢ les représentations pratiques d’incertitude,
a la fois anciennes et plus récentes, nous pouvons conclure que les p-boxes généralisées (ou,
de facon équivalente, les nuages comonotones) sont des représentations aux propriétés in-
téressantes qui permettent de faire le lien entre p-box classiques, possibilités et nuages. Leur
interprétation en terme de bornes de confiance sur des intervalles emboités les rend également

intéressantes du point de vue de 1’élicitation experte.

Les perspectives données dans ce chapitre sont principalement I’étude de la manipula-
tion pratique des p-boxes généralisées et des nuages (définir et étudier le conditionnement, la
propagation, la fusion, la marginalisation, ...) ainsi que I’extension des résultats obtenus a
des domaines de définition plus généraux. Ces perspectives ont été déja abordées, bien que de
facon incomplete, dans le présent travail. Des optiques de recherche moins directes mais qui
pourraient s’avérer intéressantes consisteraient a explorer les connections qui pourraient exis-
ter entre ces représentations et la notion de bipolarité ou encore avec la théorie des ensembles

flous valués par intervalles.

Le chapitre[]se conclut avec quelques recommandations concernant I’ utilisation des opéra-
teurs de fusion d’informations au sein des théories de I’incertain: les opérateurs disjonctifs et
conjonctifs devraient €tre réservés aux cas ou les sources sont respectivement totalement in-
consistantes et consistantes, et les opérateurs de compromis devraient étre utilisés dans les
situations intermédiaires. Concernant ces derniers, nous avons étudié de plus pres les opéra-
teurs s’appuyant sur la notion de sous-ensembles maximaux cohérents, qui nous apparaissent
comme les mieux adaptés au traitement des informations partiellement consistantes, a la fois
théoriquement et conceptuellement. Néanmoins, leur application peut poser quelques prob-
lemes calculatoires, et il est nécessaire de chercher des méthodes efficaces permettant de les
mettre en oeuvre, soit en utilisant des cadres simplifiés, soit en développant des heuristiques
efficaces. En nous restreignant aux distributions de possibilités définies sur les réels, nous
avons opté pour la premiere solution. Nous avons également commencé 1’étude de la prise en

compte de dépendances mal connues dans le cadre des ensembles aléatoires.

En ce qui concerne la méthode SMC appliquées aux distributions de possibilité, elle de-

mande surtout a étre validée a un niveau pratique, tout comme 1’approche que nous avons
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proposée pour évaluer les sources d’information a partir de performances passées. L’ approche
proposée pour prendre en compte les dépendances entre sources demande quant a elle a étre
étudiée de plus pres, pour I’étayer d’un point de vue théorique et la rendre plus accessible d’un

point de vue pratique.

Le chapitre [5| concernant I’indépendance a engendré plus de questions qu’il n’a fourni de
réponses, la modélisation et I’interprétation de 1I’indépendance lorsque 1’imprécision est prise
en compte requérant un long travail de recherche. Néanmoins, nous avons apporté quelques
éléments de réponse en proposant un début de taxonomie permettant de classifier les notions
d’indépendance, et en débutant 1’étude consistant a interpréter ces notions d’indépendance au
travers d’arbres d’événements. Les perspectives incluent, entre autres choses, la clarification
des points d’interrogations laissés dans le tableau [I.1] ainsi que la poursuite de I’étude des

notions d’indépendance dans les arbres d’événements.

Dans les chapitres [6] et [7, nous avons surtout abordé des problemes d’ordre pratique liés
a I'utilisation de modeles représentant explicitement I’imprécision. Les perspectives pour
ces deux chapitres consistent principalement a poursuivre 1’effort d’analyse et a proposer des
solutions plus générales ou plus efficaces aux problemes posés, notamment en ce qui concerne
le calcul de bornes d’espérances pour des représentations définies sur les réels (e.g. en étendant
nos résultats a d’autres cas et représentations) et la propagation numérique d’incertitude a
travers des modeles complexes (e.g. par I'utilisation de surfaces de réponses ou de techniques
du type MCMC).



Chapter 2
Introduction

“Everything should be made as simple as possible, but not simpler”
— Albert Einstein (1879-1955)

This work presents results related to the treatment of uncertainty bearing on variables
whose exact value is not perfectly known, this lack of knowledge being due either to the
aleatory nature of some phenomena influencing this value or to a lack of precise and fully
reliable information concerning this value. More precisely, we interest ourselves to the case
where uncertainty is modeled by numerical (quantitative) representations, which are neither
(precise) probability distributions (because we do not have sufficient information) nor sets
(because we do have information about which elements of the space are more likely to be

observed).

In recent decades, different uncertainty theories have emerged to address properly this
kind of situations. In this work, we restrict ourselves to the three main such theories: possi-
bility theory, random set theory and imprecise probability theory (see Appendix [A). We could
say that the position we have with respect to uncertainty treatment is somewhat dual, in the

following sense:

e We attach a great importance to unification of uncertainty handling, in the sense that
we think it essential to make bridges and to emphasize convergence points between

different theories, rather than confining ourselves to one exclusive theory.

e We consider each uncertainty theory as potentially useful per se, as long as it is suffi-

ciently theoretically justified. Indeed, we see the absolute statement that one is "better"
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than the other as overrated: some theories are more general than others, some are more
fitted to a given situation than others, some are more mature than others, some have
interpretations better fitted to a particular situation or problem, some dispose of more
convenient tools than others. To us, the main question is not "which is the best?" but

rather "when, where, why and how each theory should be used?"

2.1 Reasoning under uncertainty (with quantitative mod-

els): a general view

By reasoning, we mean manipulating information in a sensible and, as far as possible, rational

way, in order to derive plausible and useful conclusions.

By under uncertainty, we mean that the available information does not allow to perfectly
know all component of considered systems, and that we are uncertain about their exact current

state or value.

We also make a distinction between two levels of information: generic information cor-
responding to background knowledge and general beliefs about the world, and contingent
information corresponding to information, belief or knowledge concerning a peculiar situa-
tion. For example, that birds fly in general is a generic information, while any information
concerning my next-door neighbor bird is peculiar. A computer code or an analytical function
modeling the evolution of the temperature in a nuclear reactor core during an accident are
generic information, while the values observed during a particular accident are contingent.
Algorithms encoded in a robot constitute its generic information, while information received

by it through sensors or other devices is contingent.

We define the following general simplified frame, pictured in Figure [2.1] which will be

instrumental to define problems considered in the sequel:

e Source variables are variables about which we have some information, that is we have

an idea about the value they assume.

e Variables of interest are those variables on which we want to have information, because
knowing their value will help in further decisions, but for which we do not have direct

information.

e A model models generic information about the relationship existing between source vari-

ables and variables of interest. It allows to use information concerning source variables
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Generic information ~---->C  Model ~ ----- .
1

Variables
of interest

Source

Contingent information .
Variables

Figure 2.1: Uncertainty treatment: general frame

in order to have information about variables of interest

Depending on the situation, the uncertainty can bear on source variables (e.g. input variables in
risk analysis) or on the models (e.g. Markov chains, Bayes networks). There can be multiple
source variables, variables of interest or models. Also, this frame can be chained, in the
sense that some variables that were of interest for one system can become source variables for
another system (e.g. experts use source variables and internal models to provide knowledge
on some variables of interest, which will become source variables in a subsequent propagation

through another model).

The following problems, commonly encountered in uncertainty treatments, all fit in Fig-

ure 2.1t

e Model choice/design: the process of choosing and designing a model of the system on
which further treatments are to be done. This step requires careful thinking, as many
models can compete as good candidate for a particular system. For instance, fuzzy rule
bases, neural networks or SVM can all be used as universal approximators of functions,
and it is not always clear which one should be used in which situation. Statistical tests
procedures can be seen as tools to check that a particular model is fitted to the considered

system.

e Model Identification/validation: once the model is chosen, it remains to identify its
features for the particular problem at hand. This process consists in using available
knowledge in order to build or identify a model. It is principally an inductive process,
since it mainly consists of using contingent knowledge to build a generic model within
the chosen framework, which can then be used to make inferences. In Al, this process
can be associated to learning, while in statistics it corresponds more to inductive or
parametric inference, whose aim are to identify a generic model (e.g. parameters) from
the data.
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e Inference: inference is defined as the process of drawing (plausible) conclusions from
premises or evidence. It is primarily a deductive, theoretical and rather impersonal pro-
cess. In this work, we interpret inference as the act of drawing conclusions on variables
of interest from observations on source variables, with the help of a (fixed) generic
model. It thus consists of using generic information to draw plausible conclusions from
contingent information. Note that, in classical statistics, what we consider here as infer-

ence is often called prediction.Typical inference processes encompass

— (direct) propagation through deterministic model: propagating uncertainty on
source variables through a deterministic model (e.g. a computer code, an analytical
model, ...) to evaluate the uncertainty on variables of interest. By deterministic
model, we mean a model such that to one precise input correspond one precise
output. This kind of inference is the most usual in industrial risk analysis, where
most of the time, models are analytical formulas or computer codes simulating
complex physical phenomena. Such inference processes are monotonic with re-
spect to uncertainty in our knowledge, in the sense that reducing uncertainty on
source variables will reduce uncertainty on variables of interest once propagation

is done.

— inverse propagation: similar to direct propagation, except that this time, source
variables on which information are available are the output of the (deterministic)
model and interest variables are (unknown) parameters or inputs of the models,
and the aim is to infer the most plausible values of these inputs or parameters.
The difficulty is that most of the time the model is not invertible and dependencies
between inputs, outputs and parameters are not known. Note that this inference
process remains monotonic in the same sense as in above: the more we know

about source variables, the less the resulting uncertainty on variables of interest.

— propagation through/conditioning on uncertain models: Given some observa-
tions on source variables and a so-called stochastic model (i.e. Markov Chain,
Bayes Net, Probability tree), infer plausible value of the variable of interest. This
type of inference is more commonly encountered in Artificial Intelligence. It can
be associated to the act of focusing our generic beliefs (or information) on a sub-
class corresponding to our observations. We assume here that the model is uncer-
tain, but that our observations are not. In this case, it is well know that monotonic-
ity with respect to uncertainty about singular information do not hold, since it can
happen that a more precise observation can give us less decisive inferences. This

phenomenon is often referred as dilation within uncertainty theories.
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e Information fusion: If multiple sources provide information about the same source

variables, variables of interest or potential models, information fusion consists in merg-
ing all these information items into a reliable and informative summary, while coping
with possible dependencies between sources and inconsistencies in information. Infor-
mation fusion only makes sense with information of an equivalent level of generality, i.e.
merging contingent information with contingent information, and generic information

with generic information.

Decision making: the process of determining optimal actions, given the current evi-
dence on variables of interest. Decision have consequences, in the sense that, once op-
timal actions are determined, applying one of them changes the environment. Decision
is also more personal, since an action that is optimal for a subjecﬂ will not necessarily
be so for another subject (e.g. employees and shareholders of same company do not
generally share the same objectives). Determining an optimal act for a given subject is
typically done by eliciting utilities or preferences from the subject on a set of different
feasible actions. In our opinion, processes of inference and of decision making should
be considered separately, since even if they’re closely related (inference is often used to

make decisions), their respective purposes are different.

Revision: the process of revision consists in modifying our current knowledge or beliefs
in minimal way, given the arrival of new information which are not necessarily coherent
with our current knowledge or beliefs. As for information fusion, revising only makes

sense with information having a similar level of generality.

Of course, our picture does not encompass all the complexity encountered in real appli-

cations nor the variety of frameworks dealing with uncertainty, and in practice distinguish-

ing between different processes and between information levels of generality is not an easy

task. . . Nevertheless, such a picture (and other similar representations) is a good starting point,

and can serve as a useful guideline to answer the questions "when, where, why and how use

particular tools?".

2.2 About the present work

This work studies some of the problems we have just mentioned, and more specifically those

commonly encountered in industrial risk analysis or in safety studies. For each of these prob-

I'Subject is taken here in a wide sense: it can be an organization, a whole country, or a single person
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lems, and in accordance with our view about uncertainty treatment, we. . .

e ...position the general problematic, make a partial review of solutions proposed by
uncertainty theories, and as much as possible, recall or show the links existing between

these solutions.

e ...propose methodologies bringing solution to the considered problem, some of them
being set in the frame of a particular theory of uncertainty. Our first objective while

developing these methodologies was to keep them tractable and easily applicable.

In Chapter [3] we study the problem of representing uncertainty about the value assumed
by a variable X on a finite domain 2°. We give special attention to practical uncertainty
models allowing for an easier handling of uncertainty in applications. In particular, we study
extensively the relations between the following models: possibility distributions, imprecise
probability assignments, p-boxes, clouds and random sets. To be able to relate more efficiently
these models, we introduce the notion of generalized p-boxes, which will be instrumental
to relate possibility distributions, p-boxes and clouds together. Some attention is given to
continuous models defined on the real line and to so-called hierarchical models, that is models

defined on multiple levels.

Chapter [ concerns the treatment of uncertainty when multiple sources all provide infor-
mation about the value that a single variable X that may assume on a finite domain 2", this

information being modeled by representations introduced in Chapter 3]

In the first part of this chapter, we study the means to summarize the information provided
by the sources in a synthetic, operational and interpretable message. We give some special
attention to two different problems encountered by such synthesis:

e dealing with inconsistencies present between the pieces of information provided by the
different sources. We propose the use of the logical notion of maximally coherent sub-
sets as a way to cope with such inconsistencies. We fully study an extension of this
notion to possibility distributions defined on the real line, and propose practical tools to

make the method easier to use in practice.

e dealing, in the frame of random set theory, with sources whose (in)dependencies are
not well known. With this respect, we give first results eventually leading to a practical

cautious merging rule.
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The second part is devoted to the problem of evaluating the quality of the information deliv-
ered by the sources. Since most of the time every source do not have the same reliability, it
is desirable, when possible, to know which ones are more reliables than others. Here, we are
concerned with those cases in which sources have previously given information about vari-
ables whose true value is now known. For these cases, we propose a general methodology
allowing to evaluate sources on the basis of their previous assessments, that aims at being as

objective as possible in its evaluation.

Chapter [5|concentrates on the (many) notions of independence that can link multiple input

variables Xj,..., Xy assuming values on finite domains 27,..., Zn.

In classical probability theory, all notions of independence formally reduce to the stochas-
tic independence, irrespectively of their interpretation. This is no longer the case when using
imprecise probabilistic models, for which there are as many distinct formal definitions of in-
dependence as there are distinct interpretations. Since the notion of independence is central in
the construction of joint uncertainty models from marginal ones (a situation that often happens
in risk analysis), we review and attempt to browse a general picture of independence notions in
imprecise probability theories. We then give first results indicating that event trees framework

is a promising framework when it comes down to interpret and use independence assessments.

Chapter [0] then briefly addresses the problem of decision making under uncertainty. In this
chapter, we quickly review different usual criteria used to determine optimal actions from a
set of possible actions (we assume that actions can be associated to a utility function), and we
then give some results about the practical computation of (lower and upper) expected utilities
when uncertainty models are lower and upper cumulative distributions (i.e., p-boxes) defined
on the real line. The peculiar problem of decision making in industrial risk analyses or safety

studies is then adressed.

Finally, Chapter[7]shows two illustrative applications developed with the help of SUNSET,
the software for uncertainty treatment developed at the Institut de Radioprotection et de Sireté
Nucléaire (IRSN). The first concerns the application of methods developed in Chapter [] to
results of uncertainty studies performed with nuclear computer codes simulating an accident
in a nuclear reactor core. The second concerns a numerical propagation technique developed
in the SUNSET software and called RaFu. The method is first described, before being applied

to a case-study concerning the design of a dam.

Some concluding words are then provided in Chapter 3]
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Chapter 3
Practical uncertainty representations

“Knowing ignorance is strength. Ignoring knowledge is sickness”
— Lao Tse (~ 500 B.C.)
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When we are not certain about the value assumed by a variable X in a space 2, there
exist several practical representations that can model this uncertainty. Such simple represen-
tations include, but are not limited to: sets, probability distributions [108]], possibility dis-
tributions [85]], imprecise probability assignments [42], random sets [[151]], probability boxes
(p-boxes for short) [104], random fuzzy variables [34] and, more recently, clouds [159].

Mathematically, all these representations can be interpreted as closed convex sets of (finitely)

additive probabilities, and are therefore less general than this latter representation. Although
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less generality implies less expressiveness, it also often allows for a more efficient handling
of uncertainty. Simplified representations are thus of importance when we have to trade ex-
pressiveness (possibly losing some information) against computational efficiency. They are
also instrumental in elicitation tasks and in the interpretation or representation of complex re-
sults. Moreover, in a number of cases, they will be sufficient to faithfully model the available

information.

With such a bunch of simplified representations, it seems natural to study their links as well
as to compare their respective expressive power. Such a study is the purpose of the present
chapter, in which we explore the relationships between various representations. Laying bare
relationships facilitates a unified handling and treatment of uncertainty, and suggests how tools

used for one theory can eventually be useful in the setting of other theories.

The main contribution of this chapter is to propose a generalised version of p-boxes and
to show that it constitutes the missing link between possibility distributions, usual p-boxes
and clouds. We first present and briefly recall the basic settings to represent uncertainty, the
representation studied in the sequel and the known links between them (Section [3.1). We then
introduce and study a generalised version of p-boxes, subsequently used to link between pos-
sibility distributions, p-boxes and clouds (Section[3.2). We then explore the recent formalism
of clouds and its link with other representations (Section [3.3)). We also study the extension of
some of our results to representations defined on the continuous real line (Section [3.4)), before

considering the combination of uncertainty representations into so-called hierarchical models

(Section[3.5)).

3.1 Non-additive measures and representations of uncertainty

As argued in Appendix [A] single probability distributions, as uncertainty models, cannot ad-
equately account for scarceness, imprecision or unreliability in the available information or

knowledge.

Alternative representations and theories considered in this work (i.e., imprecise probability
theory [203]], random (disjunctive) sets [151], possibility theory [85]) have the potential to
lay bare the existing imprecision or incompleteness in the information. This imprecision is
expressed by the means of a pair of (conjugate) lower and upper confidence measures on

events rather than by a single one.

In this section, we recall the main mathematical tools used to characterize these repre-



52 Practical uncertainty representations

sentations, before reviewing the main practical numerical representation tools available as of

to-date and the known links between them.

3.1.1 Capacities and transformations of capacities

Set-functions called capacities [25] are handy tools to represent uncertainty.

Definition 3.1 (Capacity). Given a finite space 2", a capacity on 2" is a function u, defined
on the power set ¢2(2") of 2", such that:

e 1(0)=0,u(Z) =1 (boundary conditions)

e ACB= lu(A) < u(B) (monotonicity)

A capacity such that
VA,BC 2, ANB=0,u(AUB) > u(A)+ u(B) 3.1

is said to be super-additive. The dual notion, called sub-additivity, is obtained by reversing

the inequality in Equation (3.1).

A capacity is said to be additive if the inequality in Equation is turned into an equality.
An additive capacity is formally equivalent to a probability measure, denoted P. When 2 is
finite, a probability P can also be expressed by its probability distribution p defined on 2~
such that p(x) = P({x}). ThenVx € 2", p(x) > 0, Y, c2 p(x) =1 and P(A) =Y ,ca p(x). We
note by IP 4~ the set of all probability distributions on 2.

Given a capacity u on 2, its conjugate capacity u¢ is defined by u“(E) = u(2°) —
H(EC) =1— u(E°) for any subset E C 2~ with E€ the complement of E. We call cautious
the super-additive capacities, since (E) + n(E€) < 1 for any subset £ C 27, and bold the
sub-additive capacities, since u(E)+ u(E€) > 1 for any subset E C 2". Note that additive

capacities (i.e., probability measures) are both cautious and bold.

When used to represent and model uncertainty (which is the case in this work), the value of
a capacity on a subset evaluates the degree of confidence in the corresponding event. Cautious
capacities are tailored for modeling the idea of certainty. Bold capacities may account for the

weaker notion of plausibility.
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A probability measure P in P4 is said to dominate a capacity u on 2 if and only if, we
have i (E) < P(E) for every subset E C 2". The core &, of a capacity y on 2" is the (closed

convex) set of probability measures dominating it, that is
Pu={PePy|VEC 2, u(E) <P(E)}. (3.2)

Note that the core of a cautious capacity can be empty, since cautiousness is a necessary but
not sufficient condition for a capacity to have a non-empty core. Necessary and sufficient con-
ditions for non-emptiness are provided by Walley [203, Ch.2], but checking these conditions
often involve to check an high number of inequalities, making them hard to use in practice.
An alternative to check the non-emptiness of the core is the use of specific characteristics of

capacities, such as n-monotonicity.

3.1.1.1 n-monotonicity

Choquet [25] defines n-monotonicity as follows:

Definition 3.2 (n-monotonicity). A super-additive (cautious) capacity (t on 2" is n—monotone,
where n > 0 and n € N, if and only if for any set &7 = {A; C 27|i € N,0 <i < n} of events
A;, it holds that

p(U A= ¥ ) a) (3.3)

Ao ICq A€l

The conjugate capacity (¢ of a n-monotone capacity is called n-alternating. If a capacity
is n-monotone, then it is also (n — 1)-monotone, but not necessarily (n 4 1)-monotone. An
co-monotone capacity is a capacity that is n-monotone for every n > 0. On a finite space, a
capacity is eo-monotone if it is n-monotone with n = |.Z"|. A n-monotone capacity or its dual

are also often called Choquet capacities of order n.

The two particular cases of 2-monotone (also called convex) capacities and co-monotone
capacities have deserved special attention in the literature [22} 203, |145]]. Indeed, 2-monotone
capacities always have a non-empty core and co-monotone capacities have interesting math-
ematical properties that greatly increase computational efficiency when manipulating them.

Most of the representations studied in this chapter have such properties.

It must be noticed that Choquet’s initial definition of n-monotonicity is very general and is

not restricted to events, contrary to what Definition [3.2|could suggests. De Cooman et al. [51]]
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consider a generalization of Definition [3.2] on lattices of bounded real-valued functions on
Z, and study yet a more generalized version of n-monotonicity in a subsequent work [52]],
essentially by dropping the normalization condition (¢t(2") = 1) of Definition Neverthe-
less, Definition will be sufficient in most parts of this work (n-monotonicity on lattices
of bounded real-valued functions is used in Appendix [F to study p-boxes defined on totally

ordered spaces).

3.1.1.2 Mobius inverse

Given a capacity u on 2, one can obtain multiple equivalent representations by applying
various (bijective) transformations to it [115]. Using such transformations can be of practical
usefulness when manipulating capacities. One such transformation, useful in this work, is the

Mobius inverse:

Definition 3.3 (Mobius inverse). Given a capacity i on 2, its Mobius transform is a mapping
m: @(X) — R from the power set of .2 to the real line, which associates to any subset E of
Z the value

m(E)= Y (~=1)F\¥lu(B)

BCE

And we have Y pc9-m(E) = 1, m(0) = 0, due to the boundary conditions on capacities.

Moreover, the following proposition holds:

Proposition 3.1. [22]] Let i be a capacity on X . Then, its Mdbius transform m is non-

negative if and only if L is co-monotone.

Otherwise, there are some events E for which m(E) is negative. The set-function m is

actually the unique solution [178 Ch.2.7] to the set of 2" equations

VAC Z.u(A)=) m(E),
ECA

given any capacity . The Mobius transform of a probability measure P coincides with its
distribution p, assigning positive masses to singletons only.

Remark 3.1. Mobius inverse can be applied to any mapping f : $(Z°) — R such that to this

mapping f is associated the mass function m taking, for any event E C 2, the value

my(E) =Y (—1)F\Plf(B)

BCE
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and this transformation remains bijective, since for any event E C .2~ we can retrieve f(E) by
computing

f(E)=) ms(B)

BCE

3.1.2 Practical representations in imprecise probability

We begin this section by general considerations about credal sets, before introducing the un-

certainty representations we’re going to study and relate together.

In Walley’s [203] theory of imprecise probabilities, uncertainty is represented by lower
bounds given over real-valued function of 2" (i.e. so-called lower previsions, see Appendix
for details). Such lower bounds have an expressive power equivalent to closed convex sets &
of (finitely additive) probability measures P, and constitute one of the most general existing
uncertainty model (although not the most general [206]). Such sets are commonly called

credal sets [136], and will be so in the present work.

As imprecise probability theory is very general, we can express all representations consid-
ered in this work in terms of credal sets, making the comparison between uncertainty repre-

sentations easier. To clarify this comparison, we adopt the following terminology:

Definition 3.4 (Representations relations). Let [F; and [, denote two uncertainty represen-
tation frameworks, a and b particular representatives of such frameworks, and &,, &, the

credal sets induced by these representatives a and b. Then:

e Framework [ is said to generalize framework [F; if and only if for all b € [, da € 'y
such that &2, = &7}, (we also say that [F; is a special case of [Fy).

e Frameworks [F; and [F; are said to be equivalent if and only if for all b € Fp, da € [y
such that &2, = &, and conversely.

e Framework [F; is said to be representable in terms of framework [ if and only if for all
b € F,, there exists a subset {ay,...,ax|a; € F1} such that &), = £, N...N P,

e A representative a € [F is said to outer-approximate (inner-approximate) a representa-
tive b € F, if and only if &, C 2, (¥, C )
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3.1.2.1 Lower/upper probabilities

In this paper, uncertainty described by lower probabilities (lower previsions assigned to events)
are sufficient to our purpose. We define a lower probability P as a super-additive capacity on
Z . The conjugate capacity noted P is the dual upper probability. This duality allows us to
work only on the lower (or the upper) bound. The credal set #?p induced by a lower probability

P is its core:
Pp={PEP,|VAC 2, P(4) > P(A)} (3.4)

Conversely, given a credal set &7, its lower envelope P, on events is defined for every event
AC Z as P,(A) = minpc  P(A). As a lower envelope is a super-additive capacity, it is a
lower probability. The upper envelope P*(A) = maxpe o P(A) is the conjugate of P,. In this
work, we consider so-called coherent lower probabilities P, that is, lower probabilities that

coincide with the lower envelopes of their core, i.e. for all events A of 2",

P(A) = min P(A).
P(A) p‘?%()

In general, the credal set Zp induced by the lower envelope P of an original credal set &
is such that &2 C &p, since Hp is a projection of & on events. To characterize general credal
sets, we need the more powerful language of lower bounds on expected values of bounded-
real valued functions, which are enough to completely characterize any credal set &2 (see
Appendix [A]and Walley [203]]). Nevertheless, as we will see, restricting to lower probabilities

is sufficient in many practical cases.

Describing #p by the values of P on every elements of the power set (.Z°) can be
very tedious and computationally expensive. Other means that can be useful to describe &p

include:

e The set extg, of extreme points of the convex set &p (See Walley [203, Ch.3.] for
general considerations and, among others, Quaeghebeur and de Cooman [169], Wall-

ner [208] for practical considerations)

e The set of constraints on sums of probability assignments on elements of Z:

vAC 2, P(A) < Y p(x) < P(A). (3.5)

XEA
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And we say that these constraints are consistent if the credal set #p is non-empty (i.e., there
exist a solution to the set of constraints (3.5)), and that they are fight if P is a coherent lower
probability (i.e., bounds of constraints (3.5)) cannot be reduced without ruling out some solu-
tions). Although both these descriptions can have a complexity as high as storing every value
of P, they can be useful to illustrate some points. Most practical representations do not exhibit

such a complexity. We now introduce those representations.

3.1.2.2 Probability boxes (p-boxes)

Recall that a cumulative distribution F is said to stochastically dominate another cumulative

distribution F, if only if Fj is point-wise lower than F>: F; < F;.

A probability box [[104] (p-box for short) is defined as a pair [F ,F] of (discrete) cumulative
distributions on R, such that F stochastically dominates F (F < F). A p-box [F,F] induces
the following credal set & 7:

‘@[E,f] ={PePr|VreR, F(r) < P((—oo,r]) <F(r)} (3.6)

It is useful to notice at this point that sets (—eo,r| are nested, thus ‘@[Ef} can be described
by lower and upper bounds on a collection of nested sets (already mentioned by Kozine and
Utkin [130]). This characteristic will be central in the study of generalized p-boxes. Con-

straints induced by a p-box are consistent and tight as soon as F < F.

Outer approximation Given a credal set & defined on R, it is always possible to extract the
corresponding p-box by considering its lower envelope restricted to events of the type (—eo, 7],
letting F(r) = P((—oo,r]), F(r) = P((—eo,r]), with P, P the lower and upper probabilities of
. By definition, the credal set 33[ 7] induced by this p-box is an outer approximation of P

(ie., ¥ C ‘@[E 7)) and t@[ﬁf] is the tightest outer approximation of &7 induced by a p-box.

Practical aspects Cumulative distributions are often used in elicitation processes to extract
(precise) probabilistic knowledge from experts [28]: p-boxes can directly benefit from such
methods and elicitation tools, with the advantages of allowing some imprecision in the repre-
sentation (e.g., allowing experts to give imprecise percentiles). So-called probabilistic arith-
metic [209] also provides a very efficient numerical framework for particular statistical calcu-

lations with p-boxes. Finally, p-boxes are sufficient to represent and summarize final results
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when only the violation of a threshold has to be checked (a usual situation in risk and safety

studies).

3.1.2.3 Imprecise probability assignments

Imprecise probability assignments are another simple uncertainty representation. An impre-
cise probability assignment on 2" is defined as a set of lower and upper bounds on elements
x of Z". It can be represented and identified by a set L of intervals L = {[I(x),u(x)]|x € 2"}
such that I(x) < p(x) <u(x) for all x € 27, with p(x) = P({x}). Imprecise probability assign-
ments are studied extensively by De Campos et al. [42], who call them probability intervals.

An imprecise probability assignment L induces the credal set
PL={PePyVxe 2, I(x) < p(x) <ulx)} 3.7)

21 is thus defined by a set of | 27| constraints bearing only on probability assignments. De
Campos et al. [42] have studied necessary and sufficient conditions for these constraints to be
consistent and tight (they call it respectively non-emptiness and reachability). These condi-

tions correspond, for all x € 2, to:

Z Ix) <1< Z u(x) consistency (non-emptiness)  (3.8)
xe& xe&
u(x) + Z I(y) <1andI(x)+ Z uly) >1 tightness (reachability)  (3.9)
yeZ\{x} ye2\{x}

and any set L of non-tight (but consistent) constraints can easily be transformed in a set L’ of
tight constraints, by letting I'(x) = infpe 5, (p(x)) and ' (x) = supp¢ 5, (p(x)). From now on,

we will always consider consistent and tight sets L, since others have little interest.

Given a imprecise probability assignment L, coherent lower and upper probabilities in-

duced by & on all events A C 2~ are easily calculated by the following expressions

P(A) =max() I(x),1- ) u(x)), P(A)=min() u(x),1- Y I(x)). (3.10)

XEA XEAC XEA XEAC

De Campos et al. [42] have shown that these lower and upper probabilities are Choquet ca-

pacities of order 2.
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Outer-approximation Similarly to p-boxes, given a credal set & on 2, it is always possi-
ble to extract the corresponding imprecise probability assignment L by considering its lower
envelope restricted to elements, letting /(x) = infpc », (p(x)) and u(x) = suppc 5, (p(x)) for
all x € 2. Anew, the induced credal set &7 is an outer approximation of &2, and it is the

tightest outer approximation induced by an imprecise probability assignment.

Practical aspects Imprecise probability assignments are very convenient tools to model or
represent uncertainty on multinomial data, where they can express lower and upper confidence
probability bounds. They are particularly fitted to the case where only a small size sample
is available [141]. On the real line, discrete probability intervals correspond to imprecisely
known histograms. Computational advantages offered by imprecise probability assignments
have been discussed at length by De Campos et al. [42] (some of them will be recalled in

subsequent chapters).

3.1.2.4 Random (disjunctive) sets

A discrete random set (see Appendix |A| for more details), noted (m,.# ), over a space 2~ is
defined as a mapping m : @(Z") — [0, 1] from the power set of 2" to the unit interval, with
Yecom(E)=1and m(0) =0. m is often called a basic probability assignment (bpa), and
we will sometimes use this terminology in this work. A set E receiving a positive mass is
called a focal element, and we note .# the set of focal elements. From this mass assignment ,
Shafer [[178]] defines three set functions, called belief, plausibility and commonality functions,

such that for every event A C 2":

Bel(A)= Y. m(E) (Belief).
EECA
Pl(A)=1-Bel(A°)= Y m(E) (Plausibility).
E.ENA+0
0(A) = Z m(E) (Commonality).
E,EDA

It can be checked [[178, Ch.2.3] that the belief function of a random set is an co-monotone
capacity, and that the associated mass assignment is its Mobius transform. Conversely, any

co-monotone capacity is induced by one and only one random set.
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Links with previous representations The belief function induced by a random set (m, %)
being an co-monotone capacity, it can be interpreted as a special case of a coherent lower

probability. In this case, a random set (m,.# ) induces the credal set

D7) =P EPy|VAC 2, Bel(A) < P(A) < PI(A)} (3.11)

We are not aware of any practical and general solution allowing to build, from a given
credal set &, a random set (m, %) such that the associated credal set &, #) is a tight outer
approximation of & (tight in the sense that any random set (m,.%) such that Q@(m 7y C
Z(m,7) would no longer induce an outer approximation of 9”). Due to the potential com-
plexity of the random set representation, this problem is far from obvious in the general case.

Solutions for particular cases can nevertheless be proposed.

Practical aspects In general, |@(.2")| — 2 values are still needed to completely specify a
random set, thus not necessarily reducing the complexity of the model representation with
respect to capacities. However, belief functions used in practice are often defined by only
a few positive focal elements, and do not exhibit such a complexity. Such simpler belief
functions can result from expert judgments or from statistical experiments, m(A) becoming

the probability of an observation or testimony of the form x € A.

As practical models of uncertainty, random sets have many advantages. First, as they
can be seen as probability distributions over subsets of 2", they can be easily simulated by
classical methods such as Monte-Carlo sampling, which is not the case for Choquet capacities
that are not o-monotone. On the real line, a discrete random set is often restricted to a finite
collection of closed intervals with associated weights, and one can then easily extend results

from interval analysis [[152] to random intervals [91} [118].

3.1.2.5 Possibility distributions

Possibility distributions are the primary mathematical tools of possibility theory (see Ap-
pendix @) A possibility distribution is a mapping 7 : 2~ — [0, 1] from a space 2 to the

unit interval such that (x) = 1 for at least one element x in 2.

From a possibility distribution 7 can be defined several set-functions [79], among which
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the possibility, necessity and sufficiency measures:

I1(A) = sup 7(x) (Possibility measures). (3.12)
X€A

N(A) =1-TI(A9) (Necessity measures). (3.13)

A(A) = in£ m(x) (Sufficiency measures). (3.14)
xXe

Their characteristic properties are: N(ANB) =min(N(A),N(B)) and [I{(AUB) = max(I1(A),I1(B))

for any pair of events A, B of 2. A possibility measure is usually said to be maxitive.

Given a degree a € [0, 1] the strong (Ag) and regular (Ay) o-cuts of a distribution 7 are

subsets respectively defined as

Ag={xe Z'|n(x) > a} (3.15)
Ag=1{x€ Z'|n(x) > o} (3.16)

These a-cuts are nested, since if o > 3, then Ay C Aﬁ. On finite spaces, the set of values
{m(x),x € 2"} is of the form 0op =0 < o) < ... < ogy = 1, meaning that in this case there is
only M distinct o-cuts.

Links with previous representations A necessity measure (resp. a possibility measure)
can be viewed as a belief function (resp. a plausibility function), whose associated random set
has nested focal elements (Already noticed by Shafer [178, Ch.10], who calls such random
sets consonant). A possibility distribution 7, defines a random set (m,.# ) having, for i =
1,...,M, the following focal sets E; with masses m(E;) [82]:

E,' = ez > O =A,
(re Z1n() > i} = Aq .
m(E;) = o — o

In this nested situation, the same amount of information is contained in the mass function
m and the possibility distribution 7(x) = PI({x}). In this case, the plausibility, belief and
commonality measures are respectively equivalent to the possibility, necessity and sufficiency

measure of the associated possibility measure.

Since the necessity measure is a particular belief function it is also an eo-monotone ca-

pacity, hence a particular coherent lower probability. If the necessity measure is viewed as a
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coherent lower probability, its possibility distribution induces the credal set

Pr={PEPy|VAC 2, N(A) < P(A) <TI(A)} (3.18)

It is useful to recall here a result proved by Dubois et al. [/8], and by Couso et al. [31] in
a much more general setting, which links probabilities P that are in &y with constraints on

o-cuts:

Proposition 3.2. Given a possibility distribution T and the induced convex set &y, then P €
Py if and only if we have, for all a in (0,1]:

l—a<P({xe Zn(x)>a})

This result means that the probabilities P in the credal set 75 can also be described in
terms of constraints on strong a-cuts of 7 (i.e. 1 — ¢ < P(Ag)). When 2 is finite, this comes

down to characterize &7, with M constraints that are lower probabilities on nested sets.

Outer approximation As for p-boxes and imprecise probability assignments, given a credal
set Z, it is relatively easy to extract a possibility distribution 7 from &2 such that the induced
credal set & is an outer approximation of &?. The procedure to build such a distribution
is given by Algorithm [I] This algorithm obviously depends on the rankings of elements of
2. There are | 27|! ways of choosing this ranking, potentially resulting in | 2|! possibility
distributions. Thus, unlike the case of p-boxes and imprecise probability assignments, there is
not a unique tightest distribution 7 extractable from & such that &2 C &7;. Nevertheless, the
possibility distribution 7 built through Algorithm|1]is the tightest such that &2 C &, given a
specific ranking of elements of 2. Up to now, we are not aware of existing efficient methods
to determine the ranking giving one of the most specific possibility distribution covering &.
We can nevertheless mention the work of Dubois and Prade [89]], who consider the problem
of building outer and inner consonant approximations (i.e., possibility distributions) to a given
random set. In this work, outer approximations are built by an algorithm similar to Algorithm([I]
(but restricted to random sets), and an algorithm to find the covering possibility distribution

having the minimal expected cardinalityE] is given.

"For a random set (m,.%), the expected cardinality |C|((m,.%)) is |C|((m, F)) = Ygc.z |E|m(E)
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Algorithm 1: Extraction from & of a possibility distribution 7 such that &2 C &,
Input: Credal Set & on 2" with |2"| =n
Output: Possibility distribution 7 such that &2 C &,
Take an (arbitrary) ranking {xj,...,x,} of the n elements x of 2~
fori=1,....,ndo
| Build sets A; = {x1,...,x;} forming a nested collection (i.e.,A; C... CA, = Z)
fori=1,....,ndo
| compute P(A;)
fori=1,...,ndo
L take 7'5()(,') = F(Ai)

Practical aspects |.2"| — 1 values are needed to fully assess a possibility distribution, which
makes it the simplest numerical uncertainty representation explicitly coping with imprecise or
incomplete knowledge. This simplicity makes this representation very easy to handle. This
also implies less expressive power, in the sense that, for any event A , either IT(A) = 1 or
N(A) =0 (i.e. intervals [N(A),II(A)] are of the form [0, ] or [B,1]). This means that, in
several situations, possibility distributions will be insufficient to exactly reflect the available

information.

Nevertheless, the expressive power of possibility distributions fits various practical situa-
tions. Indeed, they can be interpreted as a set of nested sets with different confidence degrees
(the bigger the set, the highest the confidence degree). Moreover, a recent psychological
study [170] shows that possibility distributions are convenient in elicitation procedures. On
the real line [78]], possibility distributions can model, for example, an expert opinion concern-
ing the value of a badly known parameter by means of a finite collection of nested confidence
intervals. Similarly, it is natural to view nested confidence intervals coming from statistics as
a possibility distribution. Another practical case where uncertainty can be modeled by possi-

bility distributions is the case of vague linguistic assessments concerning probabilities [45].

3.1.3 Sketching a first summary of relationships

Now that we have reviewed the main numerical simplified representations of uncertainty, it
is time to sketch a first drawing of the relationships between them. In the next sections, we
will complete this first summary, to finish with a figure encompassing generalised p-boxes and

clouds.

To sketch this first summary, we must first say a word about how imprecise probability as-
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signments and p-boxes relate to other models, that is random sets and possibility distributions.

3.1.3.1 P-boxes in the landscape of uncertainty representations

There is no direct relationship between p-boxes and possibility distributions (in the sense that
none can be seen as a special case of the other). Baudrit and Dubois [11] study in detail the
relation between the credal set & induced by a possibility distribution 7 and the credal set
P 7, induced by the p-box [F, F|,, extracted from .

Kriegler and Held [132] have recently shown that any p-box [F, F|] can be represented by an
equivalent random set (m,.% )[ F,F)» and provide an efficient algorithm to build such a random
set. However, as noticed by Kriegler and Held [[132] (and before that by Ferson et al. [103l]),
different random sets can induce the same p-box (i.e., random sets whose associated credal
sets have the same projections on events of the type (—oo,r]). This means that p-boxes are

special cases of random sets.

3.1.3.2 Imprecise probability assignments in the landscape of uncertainty representa-

tions

There is no direct relationship between imprecise probability assignments, random sets and
possibility distributions. Indeed, upper and lower probabilities induced by tight imprecise
probability assignments are only ensured to be order 2 Choquet capacities (i.e., they are not
necessarily order 3 Choquet capacities, although some of them are), while belief functions
and necessity measures are co-monotone capacities. In general, one can only approximate one

representation by the other.

Transforming an imprecise probability assignments L into a possibility distribution 7, such
that & C P, or, conversely, transforming a possibility distribution 7 into an imprecise
probability assignments L; such that &?; C &7 can easily be done through the methods
respectively described in Section [3.1.2.5] (Algorithm I]) and Section[3.1.2.3]

Similarly, it is simple to transform a random set (m,.7) into the tightest set L,, #) of
imprecise probability assignments such that &, z) C @Lm. %) (i.e. Ly, o) 18 an outer ap-

proximation of the random set). The method consists of taking for all x € 2":

I(x) = Bel(x) and u(x) = PI(x) (3.19)
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and since belief and plausibility functions are the lower envelope of the induced credal set

P (m,7)» We are sure that the so-built imprecise probability assignment L is tight.

The converse problem, i.e. to transform a set L of imprecise probability assignments into a
random set is studied by Lemmer and Kyburg [[135]]. They concentrate on transforming the set

L into a random set (m, .7 ) inner approximating L (i.e., P (m,7) C ZL). On the contrary, De-

noeux [60] extensively studies the problem of transforming a set L of probability intervals into
a random set (m,.7) that is an outer approximation (i.e., & C '@W)’ providing efficient

methods to achieve such a transformation.

3.1.3.3 Preliminary summary

The main relations existing between imprecise probabilities, lower/upper probabilities, ran-
dom sets, imprecise probability assignments, p-boxes and possibility distributions, are pic-
tured on Figure 3.1l From top to bottom, it goes from the more general, expressive and
complex theories to the less general, less expressive but simpler representations. An arrow

is directed from a general representation to a less general one.

To make the picture more complete, we add sets and single elements to it. A set 2 repre-
sents the fact that all we know is that variable X will take its value in .2, and nothing more.
In other word, except for the fact that it will be in the set 2", we are totally ignorant about
which values are more likely to occur than others. Such a state of ignorance can be modeled
by possibility distributions ((x) = 1 if x € 27, zero otherwise) and imprecise probability as-
signments (I(x) = 0,u(x) =1 if x € 2, u(x) = I(x) = 0 otherwise), and therefore by all the
other uncertainty representations mentioned above, except for single probability distributions.
More generally, it is modeled by the lower capacity that takes value 1 on 2", and zero on all
other events. A single value x models a state of complete certainty, since we’re sure that X = x.
It is equivalent to a set reduced to this single value (2 = {x}), and can be modeled by the
Dirac probability distribution P({x}) = p(x) = 1.

3.2 Introduction and study of generalised p-boxes

As recalled in Section |3.1.2.2] p-boxes are useful and practical representations of uncertainty
used in many applications. So far, they only make sense on the (discretized) real line and
their definition requires the natural ordering of numbers. This is a bit restrictive, and since the

model is already quite useful in this restrictive setting, extending the model to more general
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Credal sets

A
Coherent Lower/upper probabilities

A
2-monotone capacities

A
Random sets (ec-monotone)

Imp. Prob. Assignments

Possibilities

Probabilities

Single element

Figure 3.1: Representation relationships: summary A — B: B is a special case of A

settings is potentially interesting. Moreover, as we will see, such extensions can give a better
understanding of characteristic proper to such representations (e.g. the use of an implicit order
on Z).

In this section, we study such an extension to arbitrary and completely pre-ordered finite
spaces. We first define the extension of p-boxes to such spaces, before exploring its links with

possibility distributions, random sets and imprecise probability assignments.

3.2.1 Definition of generalized p-boxes

First recall that two mappings f and f’ from a finite ranked-set 2" = {xi,...,x,} to the real
line R are said to be comonotonic if there is a common permutation ¢ of {1,2,...,n} such
that f(xg(1)) = f(X5(2)) =+ = f(Xg(n)) and f/(xcr(l)> > f/(xcr(2)) e f/<x6(n)>' In other
words, f and f’ are comonotonic if and only if for any pair of elements x,y € 2", we have
f(x) < fy) = f'(x) < f'(y). We define a generalized p-box as follows:

Definition 3.5 (Generalized p-box). A generalized p-box [F, F] over a finite space 2 is a pair
of comonotonic mappings F,F, F: 2 —[0,1]and F : 2~ — [0, 1] from 2" to [0, 1] such that
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F is pointwise lower than F (i.e. F < F) and there is at least one element x in .2~ for which
F(x)=F(x)=1.

Since each distribution F, F is fully specified by |2"| — 1 values, it follows that 2|.2"| — 2
values completely determine a generalized p-box. Note that, given a generalized p-box [F, F],
we can always define a complete pre-ordering < 7 on 2" such that x<p py if F (x) < F(y)
and F(x) < F(y), due to the comonotonicity condition. If .2 is the (discretized) real line
and if S[Ef] is the natural ordering of numbers, then we retrieve usual p-boxes, showing
that Definition [3.5]is indeed a generalization of the usual notion of p-box. Potential useful
cases encompassed by this generalization are multidimensional (discrete) models defined on

R¢ with d > 1 (provided an appropriate pre-ordering on elements of R is given).

To simplify notations, we will consider that, given a generalized p-box [F, F|, elements x
of 2" are indexed such that / < j implies that x; < 7;x;, and that | 2°| = n. A [F,F]-downset,
denoted (x] ), will be of the form {x; € Z"[xi<p px}.

The credal set induced by a generalized p-box [F, F] can now be defined as

It induces coherent upper and lower probabilities such that F(x;) = P((xi]p ) and F(x;) =

P((xi]jp F))- Again, if we consider real numbers R and the natural ordering on them, then
Vr € R, (r]{p ) = (=, r], and the above equation coincides with Equation (3.6).

Let us denote by A; the sets (x;] F,F]’ for all i =1,...,n. These sets are nested, since
0CA C...CA,=2f Foralli=1,...,n, let F(x;) = o and F(x;) = B;. With these
conventions, the credal set ‘@[E,f] can now be described by the following constraints bearing

on probabilities of nested sets A;:
iZl,...,l’l OCiSP(Ai>§Bi (320)
withO=ay <oy <...<o,=1,0=B<Bi1<p<...<B,=1land oy < ;.

As a consequence, a generalized p-box can be generated in two different ways:

e Either we start from two comonotone functions F, F on the space 2", and the order on
4 is then induced by the values of F, F,

2Since there is a complete pre-order on 2", we can have x; =[F,F] Xitl and A; = A;;1, which explains the
non-strict inclusions. They would be strict if <[p,F) Were a linear order.
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Figure 3.2: Generalized p-box [F, F] of Example

e or a generalized p-box is built by assigning upper and lower bounds on probabilities
of nested sets, (i.e. sets A; built or not from a complete ordering on 2"), for instance

intervals.

The second approach is likely to be more useful in practical assessments of generalized p-

boxes.

Example 3.1. All along this section, we will use this example to illustrate results on general-
ized p-boxes. Consider a space 2" made of six elements {x,...,xs}. These elements could
be, for instance, successive components on a production line. For various reasons (cost, pro-
duction constraints, ...), when a component breaks down, the safety system only informs us
whether the broken component is in the set A; = {x1,x2}, Ap = {x1,x2,x3}, A3 = {x1,...,x5},
or the whole 2" (= A4). Asking an expert to evaluate the probability of breakdowns, he can
only give us lower and upper probability bounds for each of these sets:

P(A)) €[0,03]  P(A2) €[02,0.7]  P(A3) €[0.5,0.9]

Since these sets are nested, the uncertainty can be modeled by the generalized p-box pictured

on Figure[3.2}
X1 X2 X3 X4 X5 X6

03 03 07 09 09 1

[~

0O 0 02 05 05 1

Outer approximation From Equations we can easily derive a method that builds, from
any credal set 2, a generalized p-box [F,F| inducing a credal set 32[ FF outer-approximating
. This method is given by Algorithm[2] This algorithm shares many similarities with Algo-
rithm [T} It depends on the chosen ranking of elements of 2", and provide the tightest gener-
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alized p-boxes outer-approximating a given credal set, given a specific ranking of elements.
Also note that, in the case of generalized p-boxes, there is only |Z7|!/2 potential different
results, since choosing a ranking and the reverse ranking result in the same Constraints (3.20),

due to the duality between lower and upper probabilities.

Algorithm 2: Extracting from 22 a generalized p-box [F, F] such that 22 C ‘@[EF]

Input: Credal Set & on 2" with | 2| =n
Output: Generalized p-box [F, F| such that &2 C PrF
Take an (arbitrary) ranking {xi,...,x,} of the n elements x of 2~
fori=1,...,ndo
| Build sets A; = {xy,...,x;} forming a nested collection (i.e.,A; C... CA, = %)

fori=1,...,ndo
| compute P(A;) and P(A;)
fori=1,...,ndo

| take F(x;) = P(A;) and F(x;) = P(A))

3.2.2 Connecting generalized p-boxes with possibility distributions

As mentioned earlier, Kozine and Utkin [[130] discussed the problem of building p-boxes from
partial information. They already noticed that, for usual p-boxes, sets A; can be interpreted
as nested confidence intervals with upper and lower bounds. It is therefore natural to search
a connection with possibility theory, since possibility distributions can be interpreted as a
collection of nested sets with lower probability bounds. Given a generalized p-box [F, F|, the

following proposition holds:

Proposition 3.3. Any generalized p-box [F,F| on a finite set 2 is representable (see Def-
inition by a pair of possibility distributions Ttg, g, in the sense Py 7| = P Py,
where:

nf(xi):ﬁi and ﬂ'E(x,'):l—maX{(Xj‘j:O,...,i(Xj<OCi}

fori=1,....n, with on = 0.

Proof of Proposition[3.3] Consider the set of constraints given by Equation (3.20) and de-
scribing the convex set & ). These constraints can be split into two distinct sets: (P(4;) <
Bi)i=1,, and (P(AY) <1 — ;)i—1,,. Now, rewrite constraints of Proposition in the form
Vo € (0,1]: Pe Prifand only if P({x € Z|n(x) < a}) < a.
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The first set of constraints (P(A;) < f3;)i=1,, defines a credal set & that is induced by the
possibility distribution 77, while the second set of constraints (P(AS) < 1 — @)=, defines
a credal set &7, that is induced by the possibility distribution 7x, since Af = {x,...xn},
where k = max {j|ot; < o;}. The credal set of the generalized p-box [F,F], resulting from
the merging of the two sets of constraints, namely i = 1,...,n, fB; < P(A;) < @, is thus
PN Prp. O

If F is injective, it induces a complete order <[F.F)> and then 7g (x;) = 1 — oty

Example 3.2. The possibility distributions 7z, &g, for the generalized p-box defined in Exam-

ple[3.1]are:

X1 X2 X3 X4 X5 X6

T 03 03 07 09 09 1
boa 1 1 1 08 0.8 05

So, generalized p-boxes allow to model uncertainty in terms of pairs of possibility distri-
butions. In this case, contrary to the case of only one possibility distribution, the two bounds
describing uncertainty on a particular event A can be tighter, i.e. no longer restricted to the
form [0, o] or [B, 1], since the corresponding interval containing P(A) will be contained in the

intersection of intervals of this form.

An interesting case is the one where, for all i = 1,...,n— 1, F(x;) = 0 and F(x,) = 1.
Then, 7p =1 and PN P, = Pz and we retrieve the single distribution &7_. We recover
Py if we take forall i =1,...,n, F(x;) = 1. This means that any possibility distribution can
be viewed as a generalized cumulative distribution function F (it can be understood either as
an upper or a lower function of a generalized p-box) associated to the specific ordering the
possibility degrees induce on 2", and therefore that possibility distributions are special cases

of generalized p-boxes.
3.2.3 Connecting Generalized p-boxes and random sets
We mentioned before that p-boxes were special cases of random sets, in the sense that any

p-boxes could be mapped into an equivalent random set. The next proposition shows that this

result can be extended to generalized p-boxes:
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Proposition 3.4. Generalized p-boxes are special cases of random sets, in the sense that for
any generalized p-box [F,F] defined on X, there always exist a random set (m, >[Ef} such
that ‘@[EF] = @(m732)

[FF]

Proof. See Section[D.T]in Appendix O

In order to prove Proposition [3.4] we show that the lower probabilities on events induced
by a generalized p-box are the same as the belief function given by Algorithm To do
that, we first build the partition of the space 2" induced by sets A;, and we formulate lower
probabilities on events by means of elements of this partition. We then calculate lower bounds
of these lower probabilities on all events, and show that these bounds are reached. We then
check that the lower probabilities on all events coincide with the belief function induced by

the algorithm.

Algorithm 3|below provides an easy way to build the random set encoding a given general-
ized p-box. It is similar to existing algorithms [[132}[171] for usual p-boxes, and extends them
to more general spaces. The main idea of the algorithm is to use the fact that a generalized p-
box can be seen as a random set whose focal sets are obtained by thresholding the cumulative
distributions. Since the sets A; are nested, they induce a partition of 2~ whose elements are of
the form G; = A; \ A;_. The focal sets of the random set equivalent to the generalized p-box
are made of unions of consecutive elements of this partition. Basically, the procedure comes
down to considering a threshold 6 € [0,1]. When ¢y > 6 > a; and B, > 6 > B}, then, the

corresponding focal set is A; 1 \ A, with mass

m(A,~+1 \AJ‘) = min((xl-H,ﬁjH) — max(a,-,ﬁj). (3.21)

Example [3.3]illustrates the application of Algorithm 3]

Example 3.3. Consider again the generalized p-box given in Example[3.T|and let us build the
associated random set by applying Algorithm[3] We have:

G1 = {Xl,xz} G2 = {X3} G3 = {X4,XS} G4 = {x6}
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Algorithm 3: R-P-box — random set transformation

Input: Generalized p-box [F, F| and corresponding nested sets @ = Ag,Ay,..., A, = 2,
lower bounds ¢; and upper bounds f3;
Output: Equivalent random set
fori=1,....,ndo
L Build partition G; = A; \Aifl
Build set of values {y|l =1,...,.2n— 1} ={aii=1,...,n}U{Bili=1,...,n}
With 7 indexed such that y; < ... <y < ... <y, 1 =B =0, =1
Setog=Po=1%=0
Set focal set Eg = 0
fork=1,...,2n—1do
if Yie—1 = O then
| Ex=Er1 U Gipy
if Ye—1 = ﬁ,‘ then
| Ex=E1 \ G;
L Setm(Ey) =% — %1

and

0<0<0.2<03<05<07<09<1
<oy <m<f<y<f[h<kB<o

PW<N<PLIPBIUSBY%WH

which finally yields the following random set

m(E;) =m(Gy) =0 m(E;) =m(G1UG,) =0.2
m(E3) =m(G1UG,UG3) =0.1 m(Es) =m(G,UG3) =0.2
m(Es) =m(G,UG3UGy) =0.2 m(Eg) =m(G3UG4) =0.2

m(E7) =m(Gy) =0.1

This random set can then be used as an alternative representation of the provided information.
This representation lays bare the high imprecision of the information. This imprecision can

only be alleviated by seeking more information.

Proposition [3.4] shows that generalized p-boxes are special cases of general random sets.

Generalized p-boxes are thus more expressive than single possibility distributions and less
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expressive than random sets, but, as emphasized in the introduction, less expressive (and, in
this sense, simpler) models are often easier to handle in practice. As shown by the following

remark, we can expect it to be the case for generalized p-boxes.

Remark 3.2. Let [F, F] be a generalized p-box over 2", and G; be the elements of the partition
induced by nested subsets A;, for i = 1,...,n. Let us call a subset E of 2 full if it can be
expressed as an union of consecutive elements Gy, i.e. E = U,{: ; Gi, with 0 <i < j <n. Then,

we have an explicit expression for the induced lower probability of any full subset E:
P(E) =max(0, 0; — Bi—1). (3.22)

Now, for any event A, let A, = (Jg4 E be the lower approximation of A by union of elements
of the partition, with E all maximal full subsets included in A. We know that P(A) = P(A.).
Then, the explicit expression for P(A) is

which remains simple to compute and just becomes a sum of lower probabilities of those

subsets formed of unions of consecutive Gy included in A.

This simple remark shows the potential advantages of using generalized p-boxes rather
than general random sets, since the computation of lower probabilities is faster than checking
which focal elements E; are included in a given event A. Other computational aspects of

generalized p-boxes related to other problems will be studied in subsequent chapters.

So far, results in this section mainly exploit the fact that a collection of nested subsets
on a space 2 induces a partition on this space, useful when computing lower probabilites
of events. In the following we explain the links between this partition and the complete pre-
ordering S[Ef] as well as the two possibility distributions 7z, 7. First notice that Equation
can be restated in terms of the two possibility distributions 7z, 7, rewriting P(A,) as

i—1

J
(A+) = max(0, Nz, (| Gr) — Tz (|J G)),
k=1 k=1

[

where Ny (A),I1; (A) are respectively the necessity and possibility degree of event A (given
by Equations (3.13))) with respect to ;. It makes P(A.) even easier to compute.

We can also directly derive the random set equivalent to a given generalized p-box [F, F|:
letusnote 0 = < 1 < ... < ¥y = 1 the distinct values taken by F, F over elements x; of 2~
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(note that M is finite and M < 2n). Then, for j = 1,...,M, the random set defined as:

Ej={xi€ Z|(mp(x;) > v;)) N(1 = 7p(x;) <7;)}
m(Ej) =Y —Yj-1

(3.23)

is the same as the one built by using Algorithm [3] but this formulation lays bare the link
between Equation (3.17) and the possibility distributions 7oz, 7.

3.2.4 Generalized p-boxes and imprecise probability assignments

As in the case of random sets, there is no direct relationship between imprecise probability
assignments and generalized p-boxes, in the sense that none of them generalizes the other.
The two representations have comparable complexities, but do not involve the same kind of
events (singletons for imprecise probability assignments, and nested collection of sets for gen-
eralized p-boxes). Nevertheless, given previous results, we can state how a set L of imprecise
probability assignments can be approximated into a generalized p-box [F, F], and vice-versa.

We can also study more complex links between the two.

3.2.4.1 Approximations between the two representations

Let us first consider a set L of imprecise probability assignments on a space 2~ and some in-
dexing of elements in 2. Foralli=1,...,n,letl(x;) = [; and u(x;) = u;. A generalized p-box
[F ,f]/ outer-approximating the set L of imprecise probability assignments can be computed
by means of Equations (3.10) of Section [3.1.2.3]in the following way:

F'(xi) =P(A;) = of =max( Y [;1— Y w) (3.24)
Xi€A; Xi¢A;

F/(xi) = B(Al) = ﬁi/ = min( Z u;, 1-— Z li)
XjGAi xi¢Ai

where P, P are respectively the lower and upper probabilities of £ for events A;, given by
Equations (3.10). Each permutation of elements of .2~ would provide a different generalized p-
box. There is no tightest outer approximation among them, although Equations (3.24) do give
the tightest generalized p-box for a given permutation. Note that Equations (3.24) correspond

to the application of Algorithm [2|for the specific case of imprecise probability assignments.

Now we consider a generalized p-box [F, 17] with nested sets A; C ... C A,,. The set L’ of
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probability intervals on elements x; outer-approximating [F, F| is given by:

)

(x,-) = lz{ = max(O, o; — Bifl) (3.25)
P(x;) = u; = B — 0y

where P, P are the lower and upper probabilities of ‘@[Ef]’ given by Equation 1) with
Po = op = 0. This is the tightest set of imprecise probability assignments induced by the

generalized p-box and outer-approximating it.

Of course, transforming a set L of imprecise probability assignments into a generalized
p-box [F,F] and vice-versa generally induces a loss of information, as already noticed in
Sections|3.1.2.3|and[3.2.1|for the general problem of finding an outer approximation in term of

generalized p-boxes or of imprecise probability assignments. The two following propositions

quantify this loss.

Proposition 3.5. Given an initial set L of imprecise probability assignments over a space Z,

and given the two consecutive transformations
Imp. prob. ass. L —gzg p-box [F ,f]/ —gzy Imp. prob. ass. L" (3.26)

we have P21 C Pyn, and the differences between bounds of intervals in the sets " and L are

given, fori=1,...,n, by

=17 =min(l;,0+ Y (i —1),04+ Y, (wi—0),(i+ Y, wj)—1,1—Y L) (327

Xi€A;_1 X,EA? Xﬁéx,- xi e
x;jeX
u;/_ui:min(o-i- Z (u,'—l,'),()-i- Z (ui—li),l—(u,--i- Z lj), Z ui—l)
Xi€A;_1 X,‘EA? xﬂéx,- X €X
XJE%

with Ay = 0. Under the assumptions that set L is consistent and tight, these differences are

positive.

Proof. See Section D.I]in Appendix D] O

Proposition 3.6. Given an initial generalized p-box [F,F) over a space %', and given the two

consecutive transformations

(3.28)

]//

p-box |[F,F| —gzs Imp. prob. ass. L' —gzg p-box [F,F

we have that Pp 7| € &y, and the differences between values of [F JF| and [F,F]" are,

[FF]
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fori=1,....n
i—1 n—1
Fn)—F' () =min( Y. (05— ;). Y (@5 B)) (3.29)
j=1 j=i+1
i—1 n—1
F'(x) = F(x;) =min( Y (0= B)), Y (o;—P)))
j=1 j=i+1
Proof. See Section[D.T]in Appendix O

Example illustrates both the transformation procedure and the fact that this procedure
implies an information loss.
Example 3.4. Let us take the same four imprecise probability assignments as in the example

given by Masson and Denoeux [141], on the space 2" = {w,x,y,z}, and summarized in the
following table

w X y Z
[ 0.10 034 025 O
u 0.28 0.56 0.46 0.08

we then consider the order R such that w <g x <r y <g z. After application of Equations
(3.24), we obtain the following generalized p-box

!

F' F
A= {w) 0.10 0.28
Ay = {w,x} 0.46 0.75
Az ={w,x,y} 092 1
Ay =X 1 1

and if we generate imprecise probability assignments from this generalized p-box by ap-
plying Equations (3.25)), we obtain the set L”

w X y Z
1" 0.10 0.18 0.17 0
u” 028 0.65 0.54 0.08

a result which is less informative than the first imprecise probability assignments.
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When no natural order exists on 2, as many as | 2"|!/2 different generalized p-boxes can
be generated from an imprecise probability assignment L. As in the case of Algorithm|I] the
problem of picking a ranking on elements x of 2~ such that the generalized p-box generated
L is one of the most precise (in the sense of expected cardinality or of other information

measures [128])) is not trivial, and remains an open problem.

3.2.4.2 Linking the two representations

We’re now going to relate an imprecise probability assignment with the |.27|! generalized p-
boxes that can be generated from it. Let X the set of all possible permutations o of elements
of 2, each defining a linear order. A generalized p-box according to permutation & is denoted

[F ,f]’c and called a o-p-box. We then have the following proposition:

Proposition 3.7. Let L be a set of imprecise probability assignments, and let [F ,17]/6 be the
o-p-box obtained from L by applying Equations . Moreover; let L. denote the set of
imprecise probability assignments obtained from the 6-p-box [F ,f]; by applying Equations
(3.25). Then, the various credal sets thus defined satisfy the following property:

Zr= Zpr. = Pu (3.30)
0%y oels
Proof. See Section D.I]in Appendix D] O

Concretely, Proposition [3.7] means that, given initial information modeled by a set L of
imprecise probability assignments, this information can be entirely recovered by considering
the set of all o-p-boxes, varying all permutations. In other words, imprecise probability as-
signments are representable by generalized p-boxes. Since there are | 2Z7|! such permutations,
representing a set of imprecise probability assignments L by a set of generalized p-boxes
does not look very interesting at first glance. In practice, L can be exactly recovered if a re-
duced set .7 of | 27| /2 permutations is used to generate the generalized p-boxes, provided that
{xX6(1),0 € S} U{xg(n),0 € S} = Z'in , that is the set of first and last elements of permu-
tations in . covers the whole domain 2. Since gZ[EF] = Wﬂf N Pz, (Proposition , the
following corollary directly follows from Proposition [3.7}

Corollary 3.8. Let L be a set of imprecise probability assignments, and let [F ,17]/6 be the
o -p-box obtained from L by applying Equations (3.24), then we have:

L= ﬂ (‘@”Eam‘@”ﬂ)’

CELy
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Figure 3.3: Representation relationships: summary with generalized p-boxes A —
B: B is a special case of A. A --» B: B is representable by A.

where @@G , ‘@”fa are respectively the possibility distributions corresponding to F 5 and F o
(by Proposition[3.3)).

And this corollary allows us to model the information of an imprecise probability assign-
ment by means of a set of possibility distributions. Also note that, since generalized p-boxes
are special cases of random sets, Proposition[3.7]also provides a means to characterize impre-
cise probability assignments by a set of random sets (although perhaps not in an optimal way,
in the sense that there could be other sets of random sets characterizing imprecise probability

assignments, with a smaller cardinality).

Figure [3.3] summarizes the results obtained for generalized p-boxes by introducing them
into the first summary given by Figure 3.1, New results related to the study of generalized

p-boxes and to our findings are in bold.
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3.2.5 Computing with generalized p-boxes: first results on propagation

In this section, we provide some first results investigating computational aspects of generalized
p-boxes. In particular, we study the problem of propagating a p-box defined on 2~ through
a model (here a function) 7 : 2" — % with X an input variable and ¥ = T'(X) the output

variable. First recall that a generalized p-box [F, F| can be represented in three different ways:

e By a set of n constraints (3.20) such that

i=1,....n oG <PA;)<Bi

withO=ap <oy <..<o,=1,0=F<pB<Pp<..<B,=land o; < ;.

e By an equivalent random set that can be built by considering a threshold 6 € [0, 1] and
such that when 11 > 60 > o; and 8,1 > 6 > B; the corresponding focal setis A; 1 \A},
with weight

m(Air1\Aj) =min(04t1, Bj+1) — max(az, Bj).

e By two possibility distributions ¢, 705 respectively modeled by random sets (m, .7 )
such that, fori =0,...,n—1,

Ma(Aip1) = 041 — 0 and my (A7) = Bip1 — i

and each of these three different representations suggests a different propagation technique.

The first solution, propagating the nested sets and their confidence bounds consists of
computing for each set A; the propagated sets T'(A;), and to consider the generalized p-box
induced by the constraints:

Vi=1,...,n, o < P(T(A})) < B; (3.31)

where @;, B; are the confidence bounds originally related to the set A;. Given this propagated

generalized p-box (it is still a generalized p-box, since sets T(A;) are also nested), we can
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build the counterpart of the random set given by equation (3.21)), which is here:

0 €[0,1]
m(T(Ai1)\T(A;)) =
ﬁj_H >0 > ﬁ] mln(al+17ﬁ]+l) (ahﬁ])

and we note this random set (m,.# )T([Ef])'

The second solution, directly propagating the focal elements of the random set given by

equation (3.21)), gives the following random set:

0 €[0,1]
m(T(Aip1\Aj)) =
min(Qy1,Pj+1) —max(0;, pj
Bj+1>0>p;

that is potentially different from the one given by the first propagation. We note this second

random set (m, % )7 (7))

The third solution consists of propagating both possibility distributions by the so-called
extension principle [80]. This is equivalent to propagate the respective focal elements of
each distribution through 7', which gives us the random sets (m,. )75,y and (m,.7 )7y

respectively having, fori =0, ...,n— 1, the following masses and focal elements

my (zp) (T (A7) = Bir1 — Bi and my (7 (T (Ait1)) = Qi1 — 0

and, if we take from these two random sets the counterpart of the random set given by equation
(3.21)), we end up with the following random set:

6 <€[0,1]
m(T (Aiy1) \T(A9)) =
Bt 2O 2 O in(se1, By o) — max(a, )
min{ i1, Pj+1) —max( o, P;
Bj+1> 6> B;
that we note (7,.7) 7z, 7.)-

We can already note that the three random sets (m, 7 )z, 7 (1% ) 1 ((m, 7)) (M F ) 117 )
have the same bpa and that only focal elements differ. To compare the results of the three prop-

agations, we thus have to compare the informative content of their respective focal elements.
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In this perspective, the following proposition is helpful:

Proposition 3.9. Let A and B be two subsets of a space 2 such that A C B, and let f be a

function from Z to another space % . Then, we have the following inclusion relations:

F(B)\S(A) € f(B\A) C f(B)\ f(A%)

and inclusion relationships become equalities if f is injective

Proof. We will first prove the first inclusion relationship, then the second one, each time

showing that we have equality if f is injective.

Let us first prove that any element of f(B)\ f(A) isin f(B\A). Let us consider an element
yin f(B)\ f(A). This implies:

y € f(B) NN f(x) € f(B)

y € f(A) f(x) € f(A)

and this x is in B and not in A (i.e. in B\ A), which implies that y = f(x) is in f(B\ A). This
means that f(B) \ f(A) C f(B\A), and we still have to show that this inclusion can be strict.
To see it, consider the case where one of the element x in B\ A is such that f(x) takes the same
value as f(x’), where X’ is in A, thus this particular f(x) is in f(B\A) and notin f(B)\ f(A)
(since by assumption it is in f(A)), showing that the inclusion can be strict. This case does not

happen if f is injective (since if f is injective f(x) = f(x') if and only if x = x').

To prove the second inclusion relation, first note that f(B\A) = f(BNA¢) and that (f(B) \
FA9)Y) = (f(B)N f(A)). Known results immediately give f(BNA) C f(B) N f(A€). Strict
inclusion happens in the case where we have an element x of X in B and in A, and another
element x’ notin A and not in B (i.e. X is in A€) for which f(x) = f(x’), thus we have that x and
x’ are not in BN A, but are respectively in B and A°, and thus f(x) is in f(B) N f(A°). Again,

this case cannot happen when f is injective (since in this case, x # x’ implies f(x) # f(x')). [
The above proposition tells us that, when f is not injective, we have in general

(m, F) r(e,7)) € (M F )1 (7)) € (1T )1 1y

thus showing that (m,.% )7 ) is more optimistic than (m, % )7, #)), Which is itself more

optimistic than (m,.%# )T( . And in the case where T is injective, all these propagations

p )
are equivalent. However, restricting ourselves to injective functions can be very limiting. For
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instance, if 2" and % are subset of R, requiring injectivity of T is equivalent to limiting

ourselves to strictly monotone functions from R to R.

The question is then, if f is not injective, why should we choose one propagation rather
than the other?

From a purely theoretical standpoint, computing (m, % )T((% 7)) the result of an exact
propagation, is of course the best course of action. However, computing (m,.# )T((m’ 7))
can be difficult, since a maximal number of (n+1)2/2 non-nested sets have to be propagated.
(m, F )T(ﬂ@ﬂr) appears more attractive from a computational standpoint, since it requires to
propagate only 2n sets at most, whose nestedness can be used advantageously. Indeed, let
T : RN — R be a (non-linear) function from R to the real line. Given the sets A9 C A| C
... € Ay, assume the global minimum and maximum of T are respectively in A; \ A;_, and
in A;\ Aj_1, and their respective values are known. In the propagation, we no longer have
to compute the lower bounds of all T'(Ay),T (Af) such that k > i > [ nor the upper bounds
of all T(Ay),T(Af,) such that K > j > I’. That is, by reusing function evaluations, we can

avoid additional computations. However, (m,.%# )T( ) only provides an outer approxima-

77.'577[?
tion of (m, 7 )y (n,z))- (m,F ) F)) provides an inner approximation of (m,.# )z, 7))
and is even easier to compute, since at most n nested sets have to be propagated to com-
pute it. Nevertheless, (m,.%# )T([F F)) can give a non-null weight to the empty set, and thus be

incoherent.

Eventually, if faced with a practical problem, the best solution is to compute (m,.%) T((m, 7))
if possible. If not possible, computing (m, . # )T(EF.,ftf)’ yields (m, # )T([E.f]) for free (since for
computing the former we need to propagate sets A;). So, another solution is to bracket the in-

formation contained in (m,.%)7((,, &) using (m,.7)z( and (m, F )7 p)- Computing

TEEJEF) ’
(m,F ). F)) only is not cautious.

The above results give us some first insights about how generalized p-boxes can be compu-
tationally handled. It also highlights the potential interests of the results relating generalized
p-boxes with other uncertainty representations. As we shall see, those results related to p-

boxes can also be used for particular instances of Neumaier’s clouds [159].

3.3 Clouds

Clouds have been recently introduced and studied by Neumaier [159] as practical uncer-

tainty models. He proposes clouds as a convenient tool to model and treat uncertainty in
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high-dimensional problems where information is scarce and imprecise. In his original pa-
per [159], Neumaier study very briefly the relationships with other models, simply mentioning
that clouds seem to have, in general, poor relationships with other uncertainty representations
(such as credal sets and random sets). We will show in this section that such a statement
is debatable, since clouds do have strong links with previously studied representations. In
particular, we will show that generalized p-boxes are equivalent to a specific sub-family of

clouds.

We begin by recalling the definition of clouds, and undertake a study similar to the one

achieved for generalized p-boxes.

3.3.1 Definition of clouds

Definition 3.6 (Cloud). A cloud is defined as a pair of mappings 6 : 2" — [0,1]and 7 : 2" —
[0,1] from the space 2 to [0, 1], such that § is point-wise lower than 7 (i.e. 0 < m), with
m(x) = 1 for at least one element x in 2", and §(y) = O for at least one element y in 2. § and

7 are respectively the lower and upper distributions of a cloud.

Mappings 8,7 forming the cloud [, 8] are mathematically equivalent to fuzzy member-
ship functions. A cloud [r, 0] is thus mathematically equivalent to an interval-valued fuzzy
set (IVF for short) with boundary conditions (7(x) = 1 and 8(y) = Oﬂ More precisely, it is
mathematically equivalent to an interval-valued membership function whereby the member-
ship value of each element x of X is [0(x), 7(x)]. Since a cloud is equivalent to a pair of fuzzy
membership functions, at most 2|.2"| — 2 values (notwithstanding boundary constraints on &
and 7) are needed to fully determine a cloud on a finite set. Two subcases of clouds considered
by Neumaier [[159] are the thin and fuzzy clouds. A thin cloud is defined as a cloud for which
0 = m, while a so-called fuzzy cloud is a cloud for which 6 = 0.

Given a cloud [, 6], Neumaier [159] defines the credal set & 5) induced by this cloud
on 2 as:

Prs ={PePyP{xe Z16(x) > a}) < 1—a<P({xe Z|n(x) > a})} (332

And, interestingly enough, this definition gives a mean to interpret IVF sets in terms of credal

sets, or in terms of imprecise probabilities, eventually ending up with a behavioral interpreta-

31n general, IVF do not have to have elements x,y such that 77(x) = 1 and 5(y) = 0. Neither does a cloud, but
a cloud not satisfying them would result in an empty credal set
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tion of IVFE.

When 2 is finite, let 0 = % < 71 < ... < Yu = 1 be the ordered distinct values taken by

both § and 7 on elements of .27, then denote the strong and regular cuts as

By = {x € Z|n(x) > ¥} and By, = {x € Z7|n(x) > 7} (3.33)
for the upper distribution 7 and

Cr={xe Z|6(x)>y}and Cy, = {xec 2'|0(x) > 7} (3.34)

for the lower distribution 8. Note that in the finite case, By = By, and Gy, = Gy, with
Ym+1 = 1, and also

QZCYMQC'}/MilggCYOZ%

and since 0 < 7, this implies that Cy, C By, hence Cy, C By—, forall i=1,...,M. In such a
finite case, a cloud is said to be discrete. In terms of constraints bearing on probabilities, the

credal set &, 5) of a finite cloud is described by the finite set of M inequalities:
i=0,....,M, P(Cy)<1-7<P(By) (3.35)

under the above inclusion constraints.

Note that some conditions must hold for &, 5/ to be non-empty in the finite case. In
particular, distribution 6 must not be equal to 7 everywhere (i.e. 6 # 7). Otherwise, consider
the case where Cy, = By~ (= By,), that is 7 and 6 have the same ¥;-cut. There is no probability
distribution satisfying the constraint 1 —¥,_; < P(Cy,) <1—7;since ¥;—1 < ¥%. So, finite clouds
cannot be thin. Example [3.5]illustrates the notion of cloud and will be used in the next sections
to illustrate various results.

Example 3.5. Let us consider a space 2" = {u,v,w,x,y,z} and the following cloud [, d],
pictured in Figure [3.4] defined on this space:

u v w X y b4
/4 075 1 1 075 0.75 0.5 (3.36)
0 05 05 075 0.5 0 0
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14 A A
0.75 + A * A A
0.5 >* >k * A *: 0
AT
0.25
% % % % sk
0 u v w x Yy z X

Figure 3.4: Cloud [, §] of Example

The values ¥; corresponding to this cloud are

0<05<0.75<1

P<nNn<r<py

and the constraints associated to this cloud and corresponding to Equation (3.35)) are

P(Cy, =0) <1—1<P(By=0)
P(Cy, = {w}) <1-0.75 < P(Bz = {v,w})
P(Cy, = {u,v,w,x}) < 1-0.5 < P(By = {u,v,w,x,y})
P(Cy=2)<1-0<PBy=2)

3.3.2 Clouds in the setting of possibility theory

As for generalized p-boxes, we first relate clouds with possibility distributions. To do it, we
first consider the case of fuzzy clouds [rr,6]. In this case, § =0 and, Cy, =0 fori=1,..., M,

which means that constraints given by Equations (3.33) reduce to
i=0,...,M 1—%<P(By)

which induces a credal set equivalent to &z (direct from Proposition [3.2). This shows that

fuzzy clouds are equivalent to possibility distributions.
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3.3.2.1 General clouds and possibility distributions

The following proposition is a direct consequence of the preceeding observation:

Proposition 3.10. A cloud [, 0] is representable by the pair of possibility distributions 1 —

and 7, in the following sense:

f@[mg] =PrNP s

Proof of Proposition Consider a cloud [r,d] and the constraints (3.35) inducing the
credal set g[n—’g}. As for generalized p-boxes, these constraints can be split into two sets of
constraints, namely, for i =0,...,M, P(Cy) < 1 -7 and 1 — ¥ < P(By;). Since By; are strong
cuts of 7, then by Proposition[3.2] we know that these constraints define a credal set equivalent

to Y.

Note then that P(Cy,) < 1—7; is equivalent to P(Cy,“) > ¥ (where Cj, = {x € 2|1 — 8(x) > 1 —%}).
By construction, 1 — 0 is a normalized possibility distribution. By interpreting these inequali-
ties in the light of Proposition 3.2} we can see that they define the credal set &7, _s. By merging
the two sets of constraints, we get P 51 = Pz NP _s. O

This proposition shows that, as for generalized p-boxes, a cloud is representable by a pair
of possibility distributions [96]]. This similarity between clouds and generalized p-boxes is
explored in Section This result also confirms that a cloud [7,d] is equivalent to its
mirror cloud [1 — 7,1 — §] (where 1 — 7 becomes the lower distribution, and 1 — & the upper
one), as already mentioned by Neumaier [[159]]. Example [3.6] pursues Example [3.5] and shows
the two possibility distributions induced from the cloud.

Example 3.6. We consider the same space 2~ and the same cloud as in Example Then,
possibility distributions 7,1 — § are:

u v w X y Z
/4 075 1 1 0.75 0.75 0.5
1-6 05 05 025 05 1 1

3.3.2.2 Using possibility distributions to check non-emptiness of 7| 5

Since not all clouds induce non-empty credal sets (e.g., a thin finite clouds), it is natural to

search conditions under which a cloud [r, §] induces a non-empty credal set Pz5)- Such
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conditions can be derived by using the links between clouds and possibility distributions.

Chateauneuf [21] has found a characteristic condition under which the credal sets associ-
ated to two belief functions have a non-empty intersection. We can thus apply this result to a
pair of possibility distributions and get the following necessary and sufficient condition for a

cloud [r, 8] to have an non-empty credal set:

Proposition 3.11. A cloud [, 8] has a non-empty credal set if and only if

VAC 2 > min &
C ,rgggﬂ(x)_ryrgg ()

Proof of Proposition 3.11] Chateauneuf’s condition applied to possibility distributions 7; and
m reads VA C X, I1;(A) + 11, (A€) > 1. Choose ; = w and mp = 1 — J. In particular IT(A€) =
1 —minygy 8(y). O

Note that a naive test for non-emptiness based on this characterization would have expo-
nential complexity. In the case of clouds, it can be simplified as follows: suppose the space
2 ={x1,...,x,} is indexed such that 7(x;) < 7(x;)--- < m(x,) = 1 and consider an event
A such that max,cq (x) = 7(x;). The tightest constraint of the form max,c4 7(x) = 7(x;) >
minyz4 6(y) is when choosing A = {x1,...x;}. Hence, in the case of clouds, Chateauneuf

condition comes down to the following set of n — 1 inequalities to be checked:

j=1,...,n—1 x(x;) > mind(x;). (3.37)

j>i
This gives us an efficient tool to check the non-emptiness of a given cloud, or to build a non-
empty cloud from the knowledge of either § or . For instance, knowing &, the cloud |7, 6]
such that 7(x;) = min;~; 8(x;),j = 1,...,n— 1 is the most restrictive non-empty cloud that
we can build, assuming the ordering 7w(x;) < m(x3)--- < w(x,) = 1 (changing this assumption

yields another non-empty cloud).

Now, consider the extreme case of a cloud for which Cy, = By forall i = 1,...,M in Equa-
tion (3.35). In this case, P(By) = P(Cy) =1 —y forall i = 1,...,M. Suppose distribution
7 takes distinct values on all elements of 2". Rank-ordering 2" in increasing values of 7(x)
(Vi,(x;) > m(x;—1)) enforces O (x;) = m(x;—1), with d(x;) = 0. Let 8 be this lower distribu-
tion. The (almost thin) cloud [8z,7] satisfies Equations (3.37), and since P(By) = 1 — ¥,

the induced credal set &|; 5 contains the single probability measure P with distribution
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p(xi) = m(x;) — w(x;—1) for all x; € 27, with mw(xg) = 0. So if a finite cloud [r, 5] is such
that if 8 > Oy, it has empty credal set; and if § < &y, then the credal set is not empty.

Conditions given by Equations can be easily extended to the case of any two pos-
sibility distributions 7,7, for which we want to check whether &, N Yz, is ensured to be
empty or not. Such an extension is meaningful only if the setting of clouds does not cover all
the cases where &5, N Py, # 0. To check that this is the case, we first recall that given any
two possibility distributions 71, 2, we do have P in (7 7,) © Py N Py, but in general not

the converse inclusion [[88]]. From this remark, we can conclude that

o Pp N Pg, # 0 assoon as min(my, T ) is a normalized possibility distribution.

e Not all pairs of possibility distributions such that &z N P, # 0 derive from a cloud
[1 — m, m]. Indeed the normalization of min(7;, ;) does not imply that 1 — m, < 7.

Another example is given by the two possibility distributions 71, 7, defined on 2" = {w, x,y,z}
such that m;(w) = 0.5, m(x) = 1, m(y) = 0.5, m(z) = 0.3 and m(w) = 0.3, m(x) = 0.5,
m(y) =1, m(z) =0.5. P, N Pr, is not empty (distribution p(x) = 0.5, p(y) = 0.5 is inside
both credal sets), and neither [1 — mp, 1| nor [, 1 — m;] is a cloud.

Note that there may exist clouds [r, 8] with non-empty credal set while 0 (x) = 7 (x) for
some element x of 2. For instance, if for all x € 27, 6 (x) = m(x) if 7(x) < 1 and §(x) =0 if

m(x) = 1, it defines a non-empty credal set since sup,. o min(7w(x),1 —o(x)) = 1.

3.3.3 Generalized p-boxes as a special kind of clouds

Previous results show that, similarly to generalized p-boxes, clouds correspond to pairs of
possibility distributions. Moreover, the constraints defining a finite cloud are similar to the
ones defining a generalized p-box on a finite set, as per Equations (3.20). The lemma below

lays bare the nature of the relationship between the two representations:

Proposition 3.12. Let [, 0] be a cloud defined on 2. Then, the three following statements

are equivalent:

(i) The cloud [, 8] can be encoded as a p-box [F, F) such that P 5 = PrF

(ii) 8 and m are comonotonic (8(x) < d(y) = m(x) < m(y))
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(iii) Sets {By;,Cy,|i,j=0,...,M} defined from Equations and form a nested

sequence (i.e. these sets are completely (pre-)ordered with respect to inclusion).

Proof of Proposition [3.12] We use a cyclic proof to show that statements (i), (ii)), are

equivalent.

(i)=(ii) Since p-boxes and clouds are both representable by pairs of possibility distribu-
tions, then if (i) holds, we have Pz 5 = &\ s N Pn = Py N Pnp = P)p ) With [F,F]
the p-box equivalent to the cloud [r,d]. Using the Proposition and the definition of a
generalized p-box, 1 — 7 = 0 and Tz = 7 must be comonotone, hence @):>.

(i)=-() we will show that if does not hold, then (ii) does not hold either. Assume
sets { By, Cy, li,j=0,...,M} do not form a nested sequence, meaning that there exists two sets
Cy,, By with j <is.t. Cy, ¢ By and By; ¢ Cy,. This is equivalent to asserting x,y € 2 such
that §(x) > 7;, m(x) < ¥, 8(y) < y; and m(y) > %. This implies §(y) < 6(x) and 7(x) < 7(y),
and that 8, 7 are not comonotonic.

:> Assume the sets By; and Cy, form a globally nested sequence whose current
element is A;. Then the set of constraints defining a cloud can be rewritten in the form
o < P(Ay) < Bi, where o = 1 — 7 and B = min{1 —¥;|Bz CCy, } if Ay =By; fr=1—7
and oy = max {1 —7;|By; C Cy,} if Ay = Cy,. This ends the proof O

Proposition indicates that only those clouds for which 0 and 7 are comonotonic can
be encoded by generalized p-boxes, and from now on, we shall call such clouds comonotonic.
To completely relate comonotonic clouds and generalized p-boxes, it remains to express a
given comonotonic cloud |7, §] as a generalized p-box [F, F]. As both clouds and generalized
p-boxes correspond to pairs of possibility distribution, we can define # = 7 and 0 = 1 — 7F,
where &, 7 are the distributions of the cloud and 77,1 — 7F are the possibility distributions
describing the generalized p-box equivalent to the cloud [x, §]. By using Proposition[3.3, F,F

can then be computed for all x in Z":
F(x) = x(x) and F(x) = min{8(y)|[y € 27,6(y) > 6(x)} (3.38)

Conversely, note that any generalized p-box [F,F| can be encoded by a comonotonic cloud,
simply taking 6 = 1 — ¢ and 7 = 77 (See Proposition , meaning that generalized p-
boxes are special cases of clouds and are equivalent to comonotonic clouds. Also note that
a comonotonic cloud [7, 8] and the corresponding generalized p-box [F, F] induce the same

complete pre-orders on elements of .2, that we will note <rF remain coherent with
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previous notations. We will consider that elements x of 2" are indexed accordingly, as already

specified.

In practice, this relation between comonotonic clouds and generalized p-boxes means that
all the results that hold for generalized p-boxes also hold for comonotonic clouds, and con-
versely. In particular, a comonotonic cloud [7, 8] can be encoded as an equivalent random
set, and if we adapt Equations to the case of the comonotonic cloud [, 8], we get the

random set (m,.% ) with focal elements E; such that for j =1,...,.M

Ej={xe 2|(n(x) > y) A (Sx) <7)} (3.39)

m(E;) = v —¥j-1

Note that in the formalism of clouds this random set can be expressed in terms of the sets
{B3,Cy|i=0,...,M}. Namely, for j=1,...,M:

Ej =By \Cy, =By \Cy, (3.40)

m(Ej) =¥ —vj-1

Example [3.7]illustrates the above relations on the cloud |7, §] used in Example [3.5] which

1S comonotonic.

Example 3.7. From the cloud of Example Cy, C Gy, C By C Gy C By C By, and the
constraints defining &, 5) can be transformed into

0 <P(Cy, = {w}) <0.25

0.25 <P(Byp = {v,w}) <0.5
0.25 <P(Cy, = {u,v,w,x}) <0.5
0.5 <P(By; = {u,v,w,x,y}) < 1.

1

They are equivalent to the generalized p-box [F, F| pictured on Figure

u v w X y z
0.75 1 1 075 075 0.5 (3.41)
05 075 1 05 0.5 0

[~ =
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Figure 3.5: Generalized p-box [F, F] corresponding to cloud of Example

The following ranking of elements of 2~ is compatible with the two distributions (see

Figure [3.5)):
ESER Y SIEF Y TIER SR Y SEF W
The corresponding random set, given by Equations (3.40) or (3.39), is:

m({xs,x¢}) = 0.25
m({x2,x3,%4,x5}) = 0.25
m({x1,x2})=0.5

These results provide insight in uncertainty representations based on pairs of comonotonic
possibility distributions. They emphasize different views of the same tool. Comonotonic
clouds being special cases of clouds, it is then natural to wonder if some of the results pre-
sented in this section extend to clouds that are not comonotonic (and consequently called
non-comonotonic). In particular, can uncertainty modeled by a non-comonotonic cloud be

exactly modeled by an equivalent random set?

3.3.4 The Nature of Non-comonotonic Clouds

We will now study the case of non-comonotonic clouds. For this kind of clouds, Proposi-
tion [3.10] linking clouds and possibility distributions still holds, but non-comonotonic clouds
are no longer equivalent to generalized p-boxes, thus results valid for comonotonic clouds can-

not be used anymore. As we shall see, non-comonotonic clouds appear to be less interesting,
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at least from a practical point of view, than comonotonic ones.

3.3.4.1 Characterization

One way of characterizing an uncertainty model is to find the maximal natural number # such
that the lower measure induced by this uncertainty model is always n-monotone. This is how
we will proceed with non-comonotonic clouds. Let [, 8] be a non-comonotonic cloud, and
Zz,5) the induced credal set. The question is: what is the (ensured) n-monotonicity of the
associated lower probability P of &, 5?7 To address this question, let us start with an example:

Example 3.8. Consider a space 2~ of five elements {v, w,x,y,z} and the following non-comonotonic
cloud [r, 8] pictured on Figure

vV oow X y Z
T 1 1 05 05 025 (3.42)
0 0 05 025 O 0

This cloud is non-comonotonic, since 7(v) > 7(x) and 8(v) < 6(x). The credal set &y )

can also be defined by the following constraints:

P(Cy, ={w}) <1-0.5<P(Byp = {v,w})
P(Cy, = {w,x}) <1-0.25 < P(By; = {v,w,x,y})

with 5 = 0.5 and 1 = 0.25. Now, consider the events By,Cy, “, By NCy,“, B UCy,“. We can
check that

P(By,) =0.5 B(C;]) =0.25
B(B% ﬁC;] ={v}) =0 B(B% UC7C/1 ={v,wyz})=0.5

since at most a 0.5 probability mass can be assigned to x. Then the inequality P(By, N C%) +
P(By, UCy, ) < P(By,) + P(Cy, ) holds, which shows that the lower probability induced by the

cloud is not 2-monotone.

This example is sufficient to show that at least some non-comonotonic clouds induce lower
probability measures that are not 2-monotone. The following proposition gives a general

characterization of such non-comonotonic clouds:
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Figure 3.6: Cloud [r, 0] of Example

Proposition 3.13. Let [, 5] be a non-comonotonic cloud and assume there is a pair of events
By;,Cy, in the cloud s.t. ByNCy, & {By,Cy,,0} and By UCy, # 2 (i.e., By;,Cy, are just over-
lapping and do not cover the whole space Z") . Then, the lower probability measure of the

credal set P g) is not 2—monotone.

Proof. See Section[D.2]in Appendix O

The proof comes down to showing that for any non-comonotonic cloud with a pair By, Cy,
of events such that By NCy, # {By;,Cy,,0} and By UCy, # 2 the situation exhibited in the
above example always occurs, namely the existence of two subsets of the form By and Cy,“
for which 2-monotonicity fails. Proposition|3.13|also shows that non-comonotonic clouds sat-
isfying this proposition cannot be viewed as random sets. Note that, although comonotonic
clouds and clouds described by Proposition [3.13] cover a large number of possible discrete
clouds, there remain "small" subfamilies of non- comonotonic clouds not covered by Propo-
sition @ That is, clouds such that, for any pair of events By,Cy, we have By NCy, €
{By, Cyj,(Z)} or ByUCy, # 2. Since such subfamilies are very peculiar and present poor in-
terest, we will not explore them further here. Some considerations about the clouds satisfying
B3N Cy, € {By;,Cy,;, 0}, that we call nested-disjoint, are given in Appendix

Since non-comonotonic clouds appear less tractable than comonotonic ones, it is desirable
to provide tools that would make them more convenient to use. Such tools are given in the next
two sections, in the form of guaranteed outer and inner approximations of the exact probability

bounds induced by a non-comonotonic cloud. To this aim, we rely on previous results.
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3.3.4.2 Outer approximation of a non-monotonic cloud

Given a cloud [7, 8], we have proven that &), 51 = Pr N P _s, where 7 and 1 — 3§ are
possibility distributions. As a consequence, the upper and lower probabilities of &, 5) on any
event can be bounded from above (resp. from below), using the possibility measures and the
necessity measures induced by 7 and 7 = 1 — 8. The following bounds, originally considered
by Neumaier [159], provide, for all event A of 2", an outer approximation of the range of
P(A):

max(Na(A), Ny _s(A)) < P(A) < P(A) < P(4) < min(TTz(A),TT;_5(4)),  (343)

where P(A),P(A) are the lower and upper probabilities induced by | 5;. Remember that
probability bounds generated by possibility distributions alone are of the form [0, ] or [c, 1].
Using a cloud and applying Equation lead to tighter bounds of the form [o, 8] C [0, 1],
and thus to more precise information, while remaining simple to compute. Nevertheless,
these bounds are not, in general, the infinimum and the supremum of P(A) over &, 5) (i.€.,
max(Nz,N;_g) is not the lower envelope of Pizs))- To see this, consider the following ex-

ample:

Example 3.9. Let [, 8] be a cloud defined on a space 2", such that distributions 0 and 7 takes
up to four different values on elements x of 2~ (including 0 and 1). These values are such that
0= <7 <% <7y =1,and the distributions 8, 7 are such that

m(x) = 1 if x € By;
= pif x € By \ By
=1 if x € By;.
O(x) =P ifx € Cy;
=7 ifx € Cy \Cy;
=0ifx ¢ Cy,.

Since P(By;) > 1 =7 and P(Cy,) < 1 — 7, from Equations (3.35), we can check that P(By; \
Cy) = P(BzNCy ) =% — 11. Now, by definition of a necessity measure, Ny (By; N Cy,€) =
min(Nz (By;),Nx(Cy,°)) = 0 since I1z(Cy,) = 1 because Cy, C By and Iz (By;) = 1. Consid-
ering distribution &, we can have N;_5(Byz NCy,“) = min(N;_s5(By),N;_5(Cy,)) = 0 since
Ni_s(By;) = As(B% ) = 0 and Cy, € By (which means that the elements x of .2~ that are in
B¢ are such that 6(x) = 0). Equation can thus result in a trivial lower bound (i.e. equal
to 0), different from P(Byz NCy,°).
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Bounds given by Equation (3.43), are the main motivation for clouds, after Neumaier [159].
Since these bounds are, in general, not the infinimum and supremum of P(A) on Pz.5]> Neu-
maier’s claim that they’re only vaguely related to Walley’s previsions or to random sets is
not surprising. If a cloud is comonotonic, Equation remains valid but becomes less
useful. Indeed, since comonotonic clouds are equivalent to generalized p-boxes, we can eas-
ily compute exact values of lower and upper probabilities of & 5], €.g. via the random set
representation (see Remark [3.2).

3.3.4.3 Inner approximation of a non-comonotonic cloud

The previous outer approximation is easy to compute and allows to make some of Neumaier’s
claims clearer. Nevertheless, it is still unclear how to practically use these outer bounds in
subsequent treatments (e.g., propagation, fusion). The inner approximation of a cloud |7, §]
proposed now is a random set, which is easy to exploit in practice. This inner approximation

is given by the following proposition:

Proposition 3.14. Let [, 8] be a non-comonotonic cloud defined on a space Z". Let us then
define, for j = 1,....M, the following random set (m, % ):

Ej={xe Z|(n(x) 2 7)) A((x) <¥)} (3.44)

m(E;) =Y —¥j-1

where 0 = < ...Y; <... <Yy =1 are the distinct values taken by 8,7 on elements of X,
E; are the focal elements with masses m(E;) of the random set. This random set is an inner
approximation of [, 8], in the sense that the credal set gz(m%o;) induced by this random set is
such that @(mﬁ) - ’@[7&5]'

Proof. See Section [D.2]in Appendix O

In the case of non-comonotonic clouds satisfying Proposition [3.13] the inclusion is strict.
This inner approximation appears to be a natural candidate, since on events of the type
{B7,Cy,, B \Cy,[i=0,... ,M;j=0,...,M;i < j} it gives exact bounds, and is exact when
the cloud [, 8] is comonotonic. This finishes our study of non-monotonic clouds. It remains

to study the links existing between clouds and imprecise probability assignments.
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3.3.5 Clouds and imprecise probability assignments

Since in many cases a cloud is either equivalent to a random set or does not lead to 2-monotone
capacites, there is no direct relationship between clouds and imprecise probability assign-
ments. Nevertheless, we can study how to transform a set of imprecise probability assign-
ments into a cloud. Such a transformation can be useful when one wishes to work with clouds

even if information is obtained in terms of sets of imprecise probability assignments.

There are mainly two paths that can be followed to do this transformation:

e the first one is to use the fact that clouds are equivalent to pairs of possibility distribu-
tions, and to extend existing transformations that transform a set of imprecise probability

assignments into a single possibility distribution.

e The second uses the correspondence between generalized p-boxes and comonotonic

clouds, and simply apply the results obtained for generalized p-boxes.

Section proposes a transformation following the first path, while Section ex-

plores the second one and compares the two approaches.

3.3.5.1 Exploiting probability-possibility transformations

The problem of transforming a probability distribution into a quantitative possibility distri-
bution has been addressed by many authors (see Dubois and Prade [94] for an extended dis-
cussion). A consistency principle between (precise) probabilities and possibility distributions
was first informally stated by Zadeh [219]: what is probable should be possible. It was later
translated by Dubois and Prade [81) 98] as a mathematical constraint. Given a possibility dis-
tribution 7 obtained by the transformation of a probability measure P, one should have, for all
events A of 2:

P(A) <TII(A) (3.45)

In this case, the possibility measure II is said to dominate P, and the transformation from
probability to possibility then consists of choosing a possibility distribution amongst the ones
inducing a possibility measure dominating P. Dubois and Prade [78, 98] propose to add the

following ordinal equivalence constraint, such that for two elements x,y in 2

p(x) < p(y) = w(x) < x(y) (3.46)
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and to choose the least specific possibility distribution (7’ is more specific than 7 if 7’ < 1)

respecting these two constraints.

Dubois and Prade [81]] showed that the solution exists and is unique. Let us consider proba-
bility masses such that the order on probability masses is p; < ... < p, with p; = p(x;). When
all probability masses are different, Dubois and Prade probability-possibility transformation

can be formulated as
i
=Y pj (3.47)
j=1

with m; = w(x;). When some elements have equal probability, the above equation must be
used on the ordered partition induced by the probability weights, using uniform probabilities
inside each element of the partition. Note that the above transformation is equivalent to apply
Algorithm [I] with elements ranked accordingly to the increasing order of their probability

masses.

Reversing the ordering of the p;’s in the above formula yields another possibility distribu-
tion T; = Z;f:i pj, with T; = 7(x;). Letting § = 1 — 7, distribution § is of the form & intro-
duced in Section that is, [, 8] is a cloud such that §; = 7;_; for all i > 1, with § =0
and &; = O(x;). It is the tightest cloud containing P, in the sense that & (n) N £ (%) = {P}.
This shows that, at least when probability masses are precise, transformation into possibil-
ity distributions can be extended to get a second possibility distribution such that this pair of
comonotonic distributions is equivalent to a cloud. Moreover, the fact that (n) N P (%) =
{P} shows that the cloud models exactly the same information as the (precise) probability
distribution. & corresponds to the application of Algorithm |1} this time with a ranking corre-
sponding to the decreasing order of probability masses. The generalized p-box [F, F] associ-
ated to the cloud [dr, | is the one built through Algorithm [2| with a ranking corresponding to

the increasing order of their probability masses.

When working with imprecise probability assignments, i.e. with a set L of imprecise
probability assignments, the order induced by probability weights on 2 is a partial order <j,
(actually, an interval order) defined by:

X<y <= u(x) <I(y) (3.48)

and two elements x, y are incomparable if intervals [I(x),u(x)],[I(y),u(y)] intersect. The prob-
lem of transforming a set L of imprecise probability assignments into a possibility distribution

7, such that &7 C #, by extending Dubois and Prade transformation is studied in detail by
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Masson and Denoeux [141]. We first recall their method, before proposing its extension to

clouds.

Let %7 be the set of linear extensions of the partial order <;: a linear extension <;€ 67,
is a ranking of 2~ compatible with the partial order <;. Let o; be the permutation such that
0;(x) is the rank of element x in the linear extension <;. Given this partial order, Masson and
Denoeux [[141] propose the following procedure transforming the set of imprecise probability
assignments into a possibility distribution:

1. For each linear order <;€ %7, and each element x, solve

P P(y (3.49)
() {POIVEZ} 5, () <o) v

under the constraints

Y P(x)=1
xe&
Vxe 2, I(x) < P(x) <u(x) (3.50)

2. The most informative distribution 7 dominating all distributions 7/ is:

n(x) = max 7! (x). (3.51)

</E¥

This procedure ensures that the resulting possibility distribution 7 dominates every probability

distribution contained in &Z;. In other words, the convex set &, is such that #; C ;.

To extend this transformation to a pair of possibility distributions equivalent to a cloud, we
consider that the possibility distribution 7 given by Equation (3.51)) is the upper distribution of
a cloud [r, 8]. To build the lower distribution d of a cloud containing Z;, we need to build a
second possibility distribution s such that &7, C &z and such that the pair [1 — 75, 7] defines
a cloud (with 1 — g = §). To achieve this, we propose to use the same method as Masson and
Denoeux [141]], simply reversing the inequality under the summation sign in Equation (3.49).

The procedure to build 75 then becomes
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1. For each order <;€ %7 and each element x, solve
l
T5(x) = max Z p(y) (3.52)
POIVE2} 6, () <an )
—1— min Y p0)=1-8%) (3.53)
{p(y)lye 2’} o1(y)<0(x)
with the same constraints as in the first transformation.
2. The most informative distribution dominating all distributions 717(’3 (x) is:
75 (x) = 1 — §(x) = max 75(x) (3.54)

<|EC

Example [3.10]illustrates this procedure.

Example 3.10. Let us take the same four imprecise probability assignments as in the example
given by Masson and Denoeux [141], on the space 2" = {w,x,y,z}, and summarized in the

following table

w X y Z
[ 0.10 0.34 0.25 0
u 028 0.56 046 0.08

The partial order is given by L, < Ly;L; < {Ly,L,,,Ly}. There are three possible linear

extensions <;€ 61,

<) = (L, Ly, Ly, Ly)
<l2 = (LZ?LW?L)C?L}’)

<? = (LZ7IW7LWJLX)

corresponding to the following 75’s:

< ms(w) mws(x) ws(y) ms(z)
1 1 0.16 0.63 1
2 1 0.9 0.46 1
3 0.75 0.5 1 1
max 1 0.9 1 1

and, finally, the obtained cloud is:
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w X oy Z
T 0.64 1 1 0.08
o 0 0.1 O 0

where 7 is the possibility distribution obtained by Masson and Denoeux [141] for the
same example by applying the first transformation. Note that the cloud is only a little more
informative than the upper distribution taken alone (indeed, the only added constraint is that
p(x) <0.9).

We can verify the following property:

Proposition 3.15. Given a set L of imprecise probability assignments, the cloud [1 — 7tg, 7|
built from the two possibility distributions T, T obtained via the above procedures is such that
the induced credal set 32[1*7157”] contains ;. In the degenerate case of a precise probability

distribution, this cloud contains this distribution only.

Proof of Proposition The two possibility distributions 7, w5 are such that & C Y5
and &, C Pz, by construction, so &1, C (Pr N Pry). The final result is thus more precise
than a single possibility distribution dominating &;. When L reduces to precise masses {p},
the transformations give the following possibility distributions (elements of 2" are ordered in

accordance with the order of probability masses):

n(x) =Y pj (3.55)
J<i
and
ng(xi):ij:I—ij:1—5(xi)=1—7t(x,-,1). (3.56)
J>i j<i

Hence, the only probability distribution in the cloud [r, 8] is given by p; = 7(x;) — (x;—1)-
[

This method allows to get a cloud encompassing the information contained in any set
of imprecise probability assignments. It directly extends known methods used in possibility

theory, and can benefits from the efficient algorithm provided by Masson and Denoeux [141].



Practical uncertainty representations 101

3.3.5.2 Using generalized p-boxes

We have previously shown that generalized p-boxes and comonotonic clouds were equivalent
representations. Thus, another method consists of directly using transformations from impre-
cise probability assignments to generalized p-boxes and get an approximation as a comono-

tonic cloud, simply by applying Algorithm 2]

Consider the following example:

Example 3.11. Let us consider the same probability intervals as in example and the fol-
lowing order relationship R on the elements: z <g w <g y <g x. We can then build the general-
ized p-box [F, F| associated to this order (using Equations ), and then take the comono-
tonic cloud [, 8] associated to this p-box (by using transformations in Proposition [3.3). The
following table summarizes the obtained distributions

w b y Z

F=nx 0.36 1 0.66 0.08
0.1 1 0.44 0
0 044 0.1 0

SR

And, by Proposition 3.5]and results related to generalized p-boxes, we know that the credal
set #|; 5) induced by this cloud is such that &7, C & 5 and that we can recover the infor-
mation modeled by a set L of imprecise probability assignments by means of at least | 27| /2
clouds built by this method.

Both methods transform a set L of imprecise probability assignments into a cloud [r, §]
such that &), C P 5], thus guaranteeing that no extra information is added in the transfor-

mation.

In general, since finite clouds can model precise probability distributions without any loss
of information, the cloud resulting from any transformation of a discrete probability distri-
bution should contain this probability distribution only. Both methods proposed here satisfy

these requirements in the finite case.

However, if we compare the clouds resulting from Examples [3.10] and [3.T1] it is clear
that the cloud resulting from the second method (Example [3.T1]) is more precise than the one
resulting from the first one (Example [3.10). Moreover, using the first method, it is in general
impossible to recover the information provided by the original set L of imprecise probability
assignments. This shows that the first method can be very conservative. This is mainly due to

the fact that even if the method considers every possible ranking of elements, it is only based
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Figure 3.7: Representation relationships: summary with clouds A — B: B is a
special case of A. A --» B: B is representable by A

on the partial order induced by imprecise probability assignments. Also, it is not based on the
use of upper probabilities, as Algorithm [2]is.

If a ranking of elements is naturally present in a considered problem, then the second
method seems to be the best solution. If no natural order is present, it is hard to justify the
fact of considering one particular order rather than another one, and the first method should
be applied. In this case, one has to be aware that a lot of information can be lost in the
process. One may also use the ranking inducing one of the most precise comonotonic clouds,
but we already mentioned that this question remains open. Also, it is not sure than the second
method can always produce a more informative result than the first one. Figure|3.7|completes
Figure[3.3|by inserting both general clouds and comonotonic clouds into it. As for the previous
figures, new relationships resulting from the present work are in bold.
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3.4 A word on continuous representations on the real line

In many applications, the available information concerning some parameters is defined on the
(continuous) real line. Even if in practice the computational processing of such models will
require sooner or later a discretization of the real line, thus coming back to the finite case, the
continuous representation is in many cases mathematically convenient and often highlights
interesting properties. Analytical formulations and closed forms can also be useful to build

efficient numerical methods or algorithms.

Thus, although the major part of this work deals with discretized models or with models
defined on finite spaces, we think that it is both interesting and important to devote some atten-
tion to models defined on the continuous real line. We restrict ourselves to the study of models
defined on measurable spaces, because non-measurable sets are unlikely to occur in applica-
tions, and to avoid mathematical subtleties arising with the consideration of countably additive
probabilities on infinite spaces (Countable additivity for generalized p-boxes is considered in
Appendix [F). Whether countable additivity should be considered or not by uncertainty theo-
ries remains a matter of debate, which is far beyond the scope of this work (see Miranda [144]

for a short discussion).

3.4.1 Practical continuous representations on the real line

In this section, we briefly review how some of the models defined in Section3.I]can be defined

on the real line.

P-boxes The definition of p-boxes essentially remains the same, instead that the cumulative
distributions F,F are allowed to be continuous distributions defined over the real line. The
credal set ‘@[Eﬂ associated to such a p-box is then the set of probability densities p whose
cumulative distributions F are between F, F (i.e. F(r) < F(r) < F(r) for all r € R).

Imprecise probability assignments When defined on the continuous real line, imprecise

probability assignment L become lower and upper density functions / and u, such that
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and the credal set & associated to this imprecise probability assignment is the set of all
(normalized) density functions that lie between / and u. Other models defined in terms of
lower/upper density functions and based on ratio of probability densities are considered by
Walley [203, Ch.4.6.]

Random sets As in Section [3.1.2.4} random sets will be noted (m,.%), the only difference
being that m is now a probability density defined on [0, 1] and that to each value o € [0, 1]
is associated a focal element Ey. Equations for belief and plausibility measures of an event

A C R simply become

1
PIA) = | Ve 0 m()d

1
Bel(A) — /O 1cg,) m(e)da

with 1( A) the indicator function which has value one if A is true, zero otherwise. If m is a

uniform density over [0, 1], above equations simply become:

I
Pl(A):/O LanE,+0) dt

1
Bel(A) :/0 I(ACEa) da.

Smets [[186] considers a more peculiar case, where focal elements E, are restricted to closed
intervals of R. The interest of only considering closed intervals is the possibility to derive an-
alytical formulas that extend various notions of finite random sets while remaining tractable.
Moreover, as mentioned in Section [3.1.2.4] in practical applications random sets defined over
the reals are often restricted to closed intervals. Continuous random sets still induce corre-

sponding credal sets.

Possibility distributions We define a possibility distribution on the real line as a lower semi-
continuous mapping 7 : R — [0, 1] such that 7(x) = 1 for at least one value x € R. In this case,
relationships between possibility distributions, random sets and credal sets continue to hold.
In particular, a possibility distribution 7 can be represented by a continuous random set with a

uniform mass density m over [0, 1] and the multi-valued mapping o0 — 7y, with & € [0, 1] and
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Ty, the o-cut of 7. Similarly, the credal set &5 induced by the possibility distribution 7 can
still be described through its ¢t-cuts. In particular, Proposition [3.2]still holds. Also, when 7 is
such that every a-cut is a closed interval, it can be embedded straightforwardly in Smets [186]]

framework.

In the next section, we show that the main results of Sections[3.2] and[3.3|extend to models

defined on the continuous real line.

3.4.2 Continuous clouds on the real line

We consider clouds defined on a bounded interval [r, 7] of the real line. First, let us recall that,
as in the discrete case, a cloud [, 8] defined on the real line is a pair of distributions such that,
for any element r € R, [8(r),7(r)] is an interval and there is an element r for which §(r) =0,
and another ' for which (') = 1. Thin clouds (x = 8) and Fuzzy clouds (6 = 0) have the
same definition as in the case of finite spaces. The credal set & 5 induced by a cloud on the

real line is such that:
ﬁ[ﬂm ={PePr|P{reR|o(r)>0a})<1—a<P{reR|x(r)>a})}, (3.57)

where P is a o-additive probability distribution.

As Proposition [3.2| has been proven for possibility distributions 7 defined on very general
spaces [31]], and since the proof of Proposition [3.12]extends directly to continuous models on
the real line, results whose proof is based on these propositions also hold on the real line. In

particular, the following statements still hold:

e if (7, 6] is a cloud, 1 — &, 7 are possibility distributions, and & 51 = P5 N Py,

e if [F, F]is a generalized p-box defined on the reals, then ‘@[Ef] = Pnp N Pr. with, for
all r € R:
g (r) =F(r)

and
np(r) =1—sup{E()|F e R;E(F) < E(r)}

with 7g(r) = 0.

e generalized p-boxes and comonotonic clouds are equivalent representations.
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Fig.[3.8/C: Weakly comonotonic cloud

Figure 3.8: Illustration of (weakly) comonotonic and non-comonotonic clouds on the
real line.

Note that, for clouds on the real line, we can define a weaker notion of comonotonicity:
a (continuous) cloud [r, 8] is said to be weakly comonotonic if the sign of the derivative of
distributions 0, 7 is the same in every point r of the real line R. Being weakly comonotonic
is not sufficient to be equivalent to a generalized p-box, since if 7 and § are weakly comono-
tonic, then it is possible to find two values r and ' such that 6(r) < 8(') and #(r) > 7(r').
In this case, the (pre-)ordering jointly induced by the two distributions is not complete, and
the definition of comonotonicity given in section is not satisfied. Figures [3.8|A, [3.8|B
and [3.8]C respectively illustrate the notion of comonotonic, non-comonotonic and weakly
comonotonic cloud on the reals. Figure [3.8] A illustrates a comonotonic cloud (and, conse-
quently, a generalized p-box) for which elements are ordered according to their distance to the
mode m (i.e., for this particular cloud, two values x,y in R are such that x <ipFY if and only

if [m—x| > |m—y|).

We can now extend the propositions linking clouds and generalized p-boxes with random

sets. In particular, the following result extends Proposition [3.13]to the continuous case:

Proposition 3.16. Let the distributions [, 8] describe a continuous cloud on the reals and
e@[n,g] be the induced credal set. Then, the random set defined by the Lebesgue measure on
the unit interval o, € [0, 1] and the multimapping &« — E¢ such that

Eq={reR|(n(r) > a)A(S(r) < @)} (3.58)
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describe a credal set gz(m,,?)[n . which is an inner approximation of Py s (c_@(mj)[n 5 C
9271,6)
Proof. See Section[D.2]in Appendix O

The proof comes down to using sequences of discrete clouds outer- and inner-approximating
[8, 7| and converging to it, and then to consider inner-approximations of those discrete clouds
given by Propositio This proposition has two corollaries:

Corollary 3.17. Let [rt, 8] be a comonotonic cloud with continuous distributions on the real
line. Then the credal set Py 5) induced by [rt,0] is equivalent to the credal set induced by
a continuous random set with uniform mass density, whose focal sets are of the form, for
a < [0,1]:

Eq={reR|(z(r) > o) A (8(r) < &)} (3.59)

To obtain the result, simply observe that the inner-approximation of Proposition [3.14] be-
comes exact for discrete comonotonic clouds, which are special cases of random sets. In
particular, this is true for the sequences of discrete comonotonic clouds outer- and inner-
approximating [, 8] and converging to it. So, this sequence of random sets converge to a
continuous random set at the limit. Another interesting particular case is the one of uniformly

continuous p-boxes.

Corollary 3.18. The credal set '@[FF] described by two continuous cumulative distribu-
tions F,F forming a regular p-box on the reals is equivalent to the credal set described by
the continuous random set with uniform mass density, whose focal sets are sets of the form

[x(a),y(c)] where x(a) = sup{x € R|F (x) < a} and y(at) = inf {x € R|F (x) > a}.

This is because strictly increasing continuous p-boxes are special cases of comonotonic
clouds (or, equivalently, of generalized p-boxes). To check that, in this case, Eq = [x(a),y(@)],
it suffices to consider the possibility distributions 7x, 7 and to see that inf,cr (75 (r) > o) =
x(et) and sup, (1 — mp(r) < o) = y(a). The strict increasingness property can be relaxed to
intervals where the cumulative functions are constant, provided one consider pseudo-inverses

when building the continuous random set.

From a practical and computational perspective, these results are appealing. For example,
they can facilitate the computation of lower and upper expectations over continuous general-

ized p-boxes (see, for examples, results of Section [6.2)). Another interesting point is that all
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the framework developed by Smets [186]] concerning belief functions on reals can be applied
to comonotonic clouds (generalized p-boxes). Results given in this section extend and give
alternative proofs to some results given by Alvarez [5] concerning continuous p-boxes. A the-
oretical study of generalized p-boxes defined on a complete chain and of the associated set of
finitely additive probabilities is given in Appendix [F} Among other things, this study checks to
which extent the results presented above extend to this more general setting. The main results

of this study are that:

e such generalized p-boxes still induce lower probabilities (and previsions) that are oco-

monotone, and can therefore be expressed through particular Choquet Integrals,

e they can be approximated by sequences of finite discrete degenerate p-boxes (somehow

extending proposition [3.17)),

e cquivalence with random sets only hold for some practical subcases. This is mainly due
to the fact that such extensions also consider confidence measures on non-measurable

sets.

3.4.3 Thin continuous clouds

In the case of thin clouds, constraints defining the credal set, given by Equation (3.35)), re-
duce to P(m(x) > o) = P(n(x) > a) = 1 — a for all & € (0,1). Recall that on a finite space
Z these constraints are generally conflicting, because for some a, P({x € Z"|x(x) > a}) >
P({x € Z'|n(x) > a}) will hold. When the thin cloud is a distribution defined on the real line,

this is no longer a difficulty, and the following proposition holds:

Proposition 3.19. If  is a continuous possibility distribution on the real line, then its credal
set PN P _y is not empty.

Proof of Proposition Let F(x) = IT((—o0,x]), with x € R. F is the distribution function
of a probability measure Py such that for all o € [0, 1], Pr({x € R|7(x) > ot}) = 1 — o, where
the sets {x € R|m(x) > a} form a continuous nested sequence (see [[78] p. 285). Such a

probability lies in &;. Moreover,
Pr({x e R|m(x) > o}) = Pr({x € R|n(x) > a})

due to uniform continuity of 7. We also have
Pr({xeR|x(x) > a}) =1-TI({x e R|x(x) > a}) =1 —A({x € R|n(x) > a}) again due to
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uniform continuity. Since
1 —A({x € R|m(x) > a}) = supyyiz(x)>a} | — (%), this means Py € Z(1 — 7). O

A thin cloud is a particular case of comonotonic cloud. It induces a complete pre-ordering
on the reals. If there are no ties, meaning that this pre-order is linear, it means that for any
a € [0, 1], there is only one value r € R for which 7(r) = a, and that #; N &|_ contains
only one probability measure. In particular, if the order is the natural order of real numbers,

this thin cloud reduces to a usual cumulative distribution.

When the pre-order has ties, it means that for some o € [0, 1], there are several values in
r € R such that 7(r) = a. Using Corollary 3.17, we can model the credal set P € (1 — 1)

by the random set with uniform mass density, whose focal sets are of the form
Eq={reR|n(r)=a} (3.60)

In this case, we can check that the belief measure of this random set is in accordance with
Equation (3.33), since Bel({r € R|z(r) > a}) = 1 — o for any a € [0, 1].

Finally, consider the specific case of a thin cloud modeled by an unimodal distribution 7
(formally, a fuzzy interval). In this case, each focal set associated to a value « is a doubleton
{x(a),y(a)} where {x|n(x) > a} = [x(ct),y(cr)]. Noticeable probability distributions that
are inside the credal set modeled by such a thin cloud are the cumulative distributions F
and F_ such that for all o in [0, 1], F; ' (o) = x(e) and 1 — F~' (o) = y( ) (they respectively
correspond to the case where the mass density of the random set is concentrated on values x( )
and y(a)). All probability measures with cumulative functions of the form A - Fy + (1 —A4)-F_
also belong to the credal set (for A = %, this distribution corresponds to the case where mass
density is evenly divided between elements x(a) and y()). Other distributions inside this set

are considered by Dubois et al. [78].

3.5 Combinations of uncertainty representations into higher

order models

In the preceding sections, we have presented, studied and linked a number of uncertainty
representations: sets, possibility distributions, probability distributions, generalized p-boxes,

clouds, probability intervals, random sets, credal sets.
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In applications, it is common to encounter combinations of uncertainty representations
studied in this work. For example, a random set can be seen as a probability distribution
bearing over sets (i.e., as a combination of probability distributions and sets). In this section,
we give a brief review of the literature about such models. We then give more attention to

fuzzy random variables and recall their basics.

3.5.1 A quick review of the literature

The combinations mentioned above are often referred as hierarchical models in the literature.
Such hierarchical models arise when there is a ’correct’ or ’ideal’ uncertainty model on some
variable X, but there is some uncertainty concerning what this ’ideal’ first order model actually
is. This uncertainty is itself modeled by a so-called 2" order model. It is not difficult to
conceive how 3" d,4th, ... order models can be defined likewise. However, in practice, ond
order models are by far the most often used, and the higher the level of a model, the more
difficult it is to give it a meaningful interpretation. In this section, we only do a short and non-
exhaustive review of existing hierarchical models related to representations studied in previous

sections:

e Bayesian 2" order models are for sure the most commonly encountered hierarchical
models. In this case, both the 1% and 2"¢ order models are precise probabilities. Ro-
bustness studies [[16] or combination of expert opinions [28]] are two practical examples
where Bayesian hierarchical models are often used. A common example of such a model
consists in a random variable following a normal distribution whose uncertainties on the

mean and variance are themselves modeled by normal distributions.

e Desirability functions, introduced by de Cooman [44]] and based on Walley’s [203]] the-
ory of imprecise probabilities, constitute a very general 2"¢ order model where both
the 1* and 2"? order models are allowed to be credal sets. This model encompasses,
among other representations, fuzzy random variables, type-2 fuzzy sets, Bayesian mod-
els, imprecise probabilities. Note that this model is less general then the one defined
by Walley [203, CH.5.], since desirability functions only allows credal sets induced by

coherent lower probabilities at the 2"? level.

e Fuzzy random variables [221} 168 32, 45] , which are formally equivalent to (normal-
ized) fuzzy belief structures [214, 217, [83]], also consitute popular models. Although
they’ve been originally interpreted as a 1% order model by Puri and Ralescu [[168]), they
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can also be given a 2"¢ order interpretation [32]. This 2" order model is, for example,
used in so-called hybrid uncertainty propagation techniques, studied in Section
(see Baudrit et al. [12] and Cooper et al. [29]). They also come up as the result of
an information fusion process studied in Section 4.2l They can also be instrumental in

statistical inferences [20]

e Sets of random sets are considered by Augustin [7], who call them generalized ba-
sic probability assignment, and by Miranda et al. [[146], who link this model to Wal-
ley’s [203]] lower previsions by giving them a behavioral interpretation. Instead of con-
sidering a precise basic probability assignment over sets, this model considers (closed
convex) sets of precise basic probability assignments. Although Augustin [[7]] shows
that, formally, it is mainly equivalent to 1*" order credal sets, this model is of practical
importance, as assigning imprecise weights to subsets can be a convenient way to elicit
and represent beliefs. Denoeux [38] studies, under the TBM interpretation (see Ap-
pendix [A)), interval-valued probability basic assignments over random sets, which can

be seen as a special case of the model considered by Augustin [7]].

e Type-2 fuzzy sets [218] [143]] are other examples of 2 order models, where the 2"¢
order models are fuzzy sets and the 1% order models are interval-valued fuzzy sets.
Note that, if we interpret the 2"¢ order model as a possibility distribution and the 1
order model as a cloud, then previous sections indicate us how Type-2 fuzzy sets could
be interpreted in terms of imprecise probabilities. Evaluating the potential of Type-2
fuzzy sets as imprecise probabilistic models is an open question, and is out of the scope

of this work.

e Denoeux [S9]] also studies, under the TBM interpretation, the case of fuzzy-valued im-
precise fuzzy belief structures, where uncertainty on the basic probability assignments,
bearing themselves on fuzzy sets, is described by means of fuzzy sets. To each levels
o € [0,1] of the fuzzy sets describing the uncertainty on the basic probability assign-
ments, he associates a set of random (fuzzy) sets described by interval-valued probabil-

ity basic assignments.

In the next section, we give more details about the basics of a hierarchical model that will
be used in the sequels of this work and, as noticed above, appears in practical treatments of

uncertainty, namely so-called fuzzy random variables or fuzzy belief structures.
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3.5.2 Fuzzy random variables

Let 2 be the spaceﬁ on which variable X can take its values. A random fuzzy variable on
Z is here defined as a (discrete) mapping m : 4(0(:/; 2°) — [0,1] where p(f ) is the set of
all fuzzy sets F that can be defined on .2~ and such that Yic T )m(F ) = 1. We assume
here the number of fuzzy focal elements to be finite. This deﬁmtlon is equivalent to a basic
probability assignment assigned over fuzzy sets rather than on simple sets. For this reason, we
denote (m,.% ) a random fuzzy variable, with Z = {F € (% °)|m(F) > 0} the set of fuzzy
sets having a (strictly) positive mass, and call elements of this set focal elements of the random

fuzzy variable.

3.5.2.1 Interpretation as a 1°" order model

We consider a fuzzy random variable (m, :/5\;) of n focal elements defined on a finite space 2~
and an (arbitrary) indexing F; of focal elements (i = 1,...,n). Let {p=0<y<...<yw=1}
be the range {Fj(x)|x € 2", i=1,...,n} of distinct values taken by the focal elements. The
15" order model corresponding to this fuzzy random variables is the random set which, for

i=1,...,nand j=1,...,M, have the following focal sets E; y,

Eiy, ={xe Z|F(x) >y}

_ (3.61)
m(Eiy,;) = m(F) (Vi — ¥j-1)

Plausibility and belief measures on any event A C .2~ are then given by:

Pl ), (A) = X mEg) e cam = X mF) Y (0= %101, )

i=1,...n i=1,...n j=1,..M
Jj=1,.. 7M
Bel, Z m(Eiy;)1 Eiy,CA) — ) m(F}) ) (y/'_yjfl)l(E,-,ijA)
i=1,. 7 i=1,...n j=1,...M
j=1..M
or, equivalently, by
Pl(m,ﬁ)l(A)Zi:lZ /1 (E;ynA0) dY—l ;nm(F')ilelgF'(x) (3.62)
Bel,, = Y m(F /IE,ycA dy= Y m(F,)supF(x) (3.63)
i= ]7 N / = 17 L XEAC

“We assume this space is finite or measurable
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with I_Dﬁ and Py the upper and lower probabilities of the credal set &7 induced by the focal
element f,

We can also link a fuzzy random variable to a continuous random set. In order to do this,
let us define, foralli=1,...,n, the value o; as o; = Z;ZI mj, with g = 0. Let us now consider
a fuzzy random variable (m,.% ) and the associated continuous random set (m,.# ). defined by

a uniform density m over [0, 1] and the mapping
Ya € ((Xi,OCi+1], i=1,....,n, ¢ — Egy :Ei,q),-((x) (3.64)

where ¢;(at) = “-% is a linear function mapping (o, 041] to (0,1], and E,¢( «) is the set
given by Equatlon (3.59) of Corollary [3.17} for the focal element F; of (m J) and for level

¢;(a¢). We can then formulate the following proposition:

Proposition 3.20. Let ( ) be a fuzzy random variable and (m, 3'7) . the associated contin-
uous random set (m J) on Z'. Then (m, J) is equivalent to the 1°' order interpretation of
(m,F), and we have, For all events A C 2 :

Bel A)=Bel, 5 (A) and Pl 5 (A)=Pl, > (A)

(m, 7 (4) .

C

where Bel, ~ Pl ~ arethe belief and plausibility measures of (m, ,%C, and Bel ) Pl 5

(m, 7).~ (7).,
are the belief and plausibility measures given by Equations (3.63) and (3.62)).

Proof. Let us note B; = ¢;(a) and notice that doc = m; d; for all i = 1,... n. Then,

Pl 7 (A):/ LanEq+0) dO = Z/ (ANE; 4,(¢) 70) A&

¢ Qi1

=Zmi/0 LanE, 5, +0) 4Bi = Y m(E)I_’E(A)
i=1

i=1,...n
=Y ) sup B

i=1,....,n x€A°

which is equivalent to Equation (3.62). Since plausibility and belief measures are dual mea-

sures, the proof is finished. 0

The above discussion shows that, as a 1% order level, a fuzzy random variable can be

viewed as:

e aregular random set, either finite (Equation (3.61))), or continuous (see Mapping (3.64)))
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e a convex combination of the focal elements F; with their associated weights m; (Equa-

tions (3.63) and (3.62)).

Conversely, Proposition [3.20] indicates that any random set can, in principle, be mapped into
a corresponding fuzzy random variable (eventually degenerated into a classical random set

when no focal elements are nested).

Equations (3.62)) and (3.63) coincide with Yen’s [217] definition of the plausibility and

belief measures for fuzzy belief structures (Note that Yen’s proposition is based on optimiza-

tion criteria, and not on some imprecise probabilistic derivation). We can also notice that
they’re coherent with Smets definition of a fuzzy event [[182]] (they reduce to Smets definition
when focal sets are crisp). The above generalizations of plausibility and belief measures to
fuzzy random variables (or to fuzzy belief structures) have thus strong theoretical justifications
and appear to us as the best choice. Nevertheless, other choices are possible: Denoeux [59],
following Zadeh [220], prefers a generalization of plausibility and belief measures based on
min —max operators, on the basis that this generalization is less sensible to small changes in
the fuzzy focal elementﬂ Yager [212] also proposes to replace the min —max operators by

any combination of t-norms and t-conorms.

This 1% order interpretation of fuzzy random variables corresponds to the interpretation
of Puri and Ralescu [168]. We now briefly describe other interpretations of fuzzy random
variables as 2"? order models, and explore the links between such interpretations and the 1*

order interpretation of this section.

3.5.2.2 Interpretations as a 2"¢ order model

—~

A fuzzy random variable (m,.%# ) defined on 2" is equivalent to a basic probability assignment
over a set of fuzzy sets. There are two ways of interpreting it as a 2"¢ order model: either
we consider that the basic probability assignment is the 2"¢ order level model, and the 1*
order level model is then a fuzzy set known with uncertainty, or we consider that our 2™
order level model is a fuzzy set, describing our uncertainty about what could be the 1 order

representation.

First interpretation Let us consider an arbitrary indexing F,, i=1,...,n of the focal el-

ements in .7 and m; = m(f,) the associated basic probability assignments. Then, the first

SThis is not surprising, since the generalization proposed here is based on linear operators, which are more
sensible than maxitive ones
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interpretation of (m,.7) as a 2" order model means that we consider that there is a prob-
ability m; that our first order model describing uncertainty on a variable X assuming values
in 2 is F; (nothing more, nothing less), inducing the corresponding credal set ‘@fi' In this
case, equations and indicate that the lower and upper probabilities of the 1* or-
der model can be seen as the mean over m of the lower probabilities induced by the 1*" order
models of this interpretation. In the case of random sets, the first order model reduce to a

classical set.

Second interpretation The second interpretation means that the nested sets on which is
defined a fuzzy set become credal sets rather than sets of values. If the first order model is
defined over 27, the second order fuzzy set consists in lower (or, equivalently, upper) con-
fidence bounds given to collection of nested credal sets. We then retrieve the usual notion
of 2" order possibility distribution defined over credal sets. Given a fuzzy random variable

—~

(m,.F), to a cut of level a of this 2" order possibility distribution then corresponds the credal

(m,7)
random set (see also Equation (3.61)):

set &, ~ ,to which is given a confidence degree 1 — o and that is induced by the following

Eiqg={xe€ %ﬁ(x) > o}

m(Eio) = m(F)

This interpretation of fuzzy random variables has recently received a lot of attention from
various authors, and we refer to De cooman [45]], Walley [205], De Cooman and Walley [53]],
Couso and Sanchez [34]], Baudrit er al. [10] for theoretical discussions of this model, and

Ferson and Ginzburg [[102]] and Baudrit ef al. [12] for more practical considerations.

3.6 Conclusions and perspectives

We’ve seen above that there exists a whole range of uncertainty representations, going from
very general models (e.g. credal sets) to more specific ones (e.g. possibility distributions).
More general models (random sets, credal sets), by their higher expressiveness and generality,
have a unifying power that is used here to relate the different models. Less general models
have the advantages of being easier to handle than more general ones and are of great practical
importance for elicitation tasks and to make uncertainty treatments more tractable (and thus

applicable to more problems). At the very least, when resources are limited, they can provide
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quick gross approximation that can, in some cases, be sufficient to provide satisfying answers.
It also often happens that available information can be modeled by simpler representations,
and in these cases there is no need to use more complex models. This is why we think that the
study and evaluation of such simpler models is of great importance, especially in applications.

With respect to this objective, the main results of this section can be summarized as follows:

e The introduction and study of a generalized form of p-box that bridges the gap between
possibility distributions and p-boxes, while remaining a special case of random sets.
This model looks promising for two reasons: first, its interpretation in terms of lower
and upper confidence bounds on nested sets makes it attractive for elicitation procedures,
and second, it can be a good compromise between possibility distributions and random
sets, offering more expressiveness than the former and having an higher computational

tractability than the latter.

e The study of clouds, that have been related to other uncertainty representations, a study
that was only partially done by Neumaier [159]. In particular, we have shown that
comonotonic clouds are equivalent to generalized p-boxes, and that non-comonotonic
clouds are likely to be less interesting representations, at least from a practical point of

view.
As practical perspectives to this section, we can cite:

e the potential usefulness of clouds and of generalized p-boxes still largely remains to
be evaluated, however promising these models may look. In particular, computational
aspects have to be explored, similarly to what De campos et al. [42] have done for impre-
cise probabilistic assignments. Section[3.2.5|provides first results of such an exploration,
for the specific problem of uncertainty propagation. Investigating other computational
aspects (i.e. information fusion) is partially done in subsequent chapters, and is part of

our on-going research.

e The instrumentality of clouds and generalized p-boxes in elicitation procedures also has
to be evaluated, possibly using some previous studies done with possibility distribu-
tions [[170]].

e Practical applications of clouds and generalized p-boxes. In this perspective, a first
application is done by Fuchs and Neumaier [111], where they use multi-dimensional

comonotonic clouds in a robustness study.

More theoretical perspectives include, but are not restricted to:
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e The evaluation of type-2 fuzzy sets as (2" order) imprecise probabilistic models, by
using results related to clouds, which are formally equivalent to interval-valued fuzzy

sets.

e The study of clouds and generalized p-boxes in more general settings, for instance by
interpreting them through Walley’s [203] lower previsions and by considering finitely
additive probabilities on infinite spaces. Appendix [D] where generalized p-boxes de-
fined on complete chains are studied, shows that results holding on finite spaces do not
always extend to more general cases. The extension of such results is also the topic
of on-going research work, done in collaboration with Enrique Miranda and Matthias
Troffaes.

e The study of an "imprecise possibility theory", where sets of possibility distributions
dominating an uncertainty measure are considered rather than single possibility distri-
butions. Such a study seems natural to us, and in the spirit of Augustin’s [7] generalized
basic probability assignments (sets of random sets) and of Walley’s [203] lower previ-
sions (sets of probabilities). Moreover, some of the results of this chapter (for example,
Propositions [3.10} [3.3|and Corollary [3.8)) suggest that such a study could be useful.

e The general characterization of non-empty credal sets representable by pairs of pos-
sibility distributions. We have seen that clouds do not cover all such cases, and that
some subcases of clouds remain unexplored. In particular, it would be useful to check
under which conditions such credal sets induce eo-monotone lower probabilities (i.e.
random sets), and when it is not the case, if the induced lower probability is always not

2-monotone (as it is in Proposition [3.13))

Material contained in this chapters can be found in papers [67, (74, 70, [71} 169, 68, 164]
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Chapter 4
Treating multiple sources of information

“When you have eliminated the impossible, whatever remains, however improbable, must be
the truth”
— Conan Doyle (1859-1930)
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In practical applications, it often happens that multiple sources (experts, sensors, databases,. . .

provide information about the value that could assume a variable X (e.g. model parameter,
physical quantity, ...). In such a situation, two different but correlated problems are (i) the
construction of a synthetic interpretable model or message from these multiple pieces of infor-
mation, and (ii) the evaluation of the information quality. In this work, we restrict ourselves
to cases where uncertainty is represented numerically, and where it bears on "objective" vari-
ables, that is variables whose value is, at least in principle, observable (i.e., we do not consider

the problems of reaching a subjective consensus or of aggregating preferences)

The construction of a synthetic model is commonly referred to as information fusion. It
consists in aggregating information coming from different sources into a single representation.
This representation is then easier to use or analyze in subsequent treatments than scattered in-
formation. In general, this representation is required to be both informative and more reliable
than information taken from a single source. If these two goals are relatively easy to achieve
when information brought by the sources is consistent, this is not the case when inconsis-
tencies between sources occur. Moreover, the fact that sources can be dependent (e.g. two
experts having common backgrounds), more or less reliable, biased,. ..added to the fact that
information can come in a great variety of shapes makes the problem even more difficult to
solve. Two of the most important problems encountered in information fusion are to cope with
conflicting information and to deal with potentially dependent sources. After a brief reminder
of basics of information fusion in uncertainty theories (Section[4.1]), we provide in this chapter
some results regarding these two problems. To deal with inconsistencies in the information,
we propose to use the logical notion of maximal coherent subsets (MCS) [[173] (Section {4.2]).
This notion appears as a very natural way to conciliate the two objectives of gaining infor-
mation and of remaining in agreement with all sources. Regarding the problem of dependent

sources, we study, inside random set theory, the merging of sources whose dependencies are
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badly known. Some preliminary results are given, that should eventually lead to a practical

cautious merging rule (Section4.3).

Assessing the quality of the information delivered by a source is another recurrent problem
when receiving information from multiple sources. When multiple sources provide informa-
tion, it is natural to wonder which are the more reliable among them. If subjective assessments
of reliability are admissible in some situations, they are not in industrial risk analysis or safety
studies. We thus propose in this chapter methods to assess sources reliability from previous
situations where the same sources have given information about some other variables (Sec-
tion[4.4). These methods are inspired from probabilistic and possibilistic evaluation methods
respectively proposed and discussed by Cooke [28] and Sandri et al. [174]. Once the sources
reliability is known, it can serves various purposes (be used in information fusion process, in

code validation procedures [[196]], ...).

4.1 Basics of Information fusion in uncertainty

There are mainly two ways to characterize a fusion operator: by its behavior or by the proper-
ties it satisfies. In Section[d.1.1] we introduce a classification of fusion operators which draws
from previous works of Bloch [[18] and of Dubois and Prade [93| [86]. In Section d.1.2] the
main properties that a fusion operator can satisfy are recalled. Section |4.1.3|studies the main
operators used in the different imprecise probability theories considered in this work (i.e., pos-

sibility theory, random sets, imprecise probabilities), and gives a brief account of their links.

All along this section, ¢ will denote a general fusion operator, and we assume sources
provide their information about a variable X taking its values on a domain Z". We also note
[N] the subset {1,...,N} of natural numbers from 1 to N.

Since the formal definitions of fusion rules and properties differs between uncertainty the-
ories, we start by informal formulations of such behaviors and properties, and then to provide
formal definitions within each of the uncertainty theories considered in this work (i.e. possi-

bility theory, random set theory, imprecise probability theory).

4.1.1 A classification of fusion operators

Fusion operators can follow three main kinds of behaviors:
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e conjunctive: a conjunctive operator is the counterpart to a set intersection. The uncer-

tainty in the information resulting from a conjunction is less than the uncertainty of each
source alone. A conjunctive operator makes the assumption that all sources are reliable,
and usually results in very precise information. If there is some conflict in the informa-
tion (i.e. at least one source is not fully reliable), then the result of the conjunction can

be poorly reliable, or even empty.

disjunctive: a disjunctive operator is the counterpart to a set union. The uncertainty in
the information resulting from a disjunction is higher than the uncertainty of all sources
together. A disjunctive operator makes the assumption that at least one source is reli-
able. The result of a disjunctive operator can be considered as very reliable, but is also

often (too) poorly informative.

Trade-off: the result of a trade-off operator lies between conjunctive and disjunctive
behaviors. Trade-off operators are typically used when sources are partially conflicting.
As its name indicates, It tries to make a trade-off between disjunction and conjunction so
as to achieve a good balance between informativeness and reliability. In the following,

we will distinguish two compromise operators:

— adaptive: an operator will be called adaptive if the fusion result depends on the
context (Bloch [18] calls them context-dependent). The aim of such an opera-
tor is to go from a conjunctive behavior to a disjunctive behavior as the conflict
(disagreement) among sources increases. Adaptive operators reduce to disjunction
(conjunction) in case of total conflict (agreement) between sources. In-between,
they act as trade-off operators. Methods using maximal coherent subsets studied

in Section [4.2) are good representatives of adaptive operators.

— non-adaptive: a compromise operator is non-adaptive when it always acts the
same way, irrespectively to the context. Arithmetic weighted mean (or convex
combination) is a popular and typical example of such operators, and is undoubt-

edly the most widely used compromise operator in practice.

4.1.2 Mathematical properties of fusion operators

It is common to require a fusion operator ¢ or the result of the fusion process to satisfies

some mathematical properties, considered as desirable by the analyst. In this section, we sub-

sume and discuss the main properties encountered in the literature. The proposed list heavily
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draws on the works of Walley [202] in the framework of imprecise probabilities and of Ous-
salah [161]] in the framework of possibility theory. We will thus use their terminologies in the
sequel. To fix ideas, let Oy, ..., Oy be the N uncertainty models representing sources opinions,
indexed in an arbitrary way and with O; representing the information provided by source i. We
denote O;.jy 1= ¢(0;,...,0j) the result of applying the fusion operator to representations i to
Jj. Concepts of empty result; inclusion; convexity and convex hull; total and partial conflict;
total and partial consistency that we use to define some properties will then be declined for

each uncertainty theory.

Property 1) Total Consistency (Cons.): this property is satisfied when the core (Equa-
tion @ of the lower uncertainty measure induced by the result O;.y) is non-
empty. Total Consistency comes down to eliminate any conflict in the result,
either by the fusion process itself or by removing it by post-processing. This
property is commonly required when subsequent inferences or decisions have
to be made. As total consistency comes down to eliminate the existing con-
flict in the information, this property is not desirable if we want to keep track
of it (this is the case, for example, with the Transferable Belief Model [[189]).

Property I ) Associativity / Aggregation of aggregates [202] (Ass.): ¢ is associative if
©(01,...,0y) = @(@(0q,...,0ny_1),0n). Associativity allows information
to be fused step-wise (first O; with O, then the result with O3, etc.). This
property is important, for instance, if sources provide information at different
times and individual pieces of information cannot be stored while waiting
for all sources to have delivered information. Otherwise, we do not regard
associativity as important, not to say appealing, as it can drastically limits the
range of possible fusion operators (see Walley [202]). Note that associativity

is also convenient in computations.

Property I11 ) Commutativity / Symmetry [202] (Comm.): ¢ is commutative if ¢(Oy,...,0n) =
?(Os(1),---,O0g(n)), With 0 a permutation of [N]. We regard commutativity
as essential when there is no information allowing to distinguish the sources

between them.

Property IV ) Idempotence (Idem.) : ¢ is idempotent if ¢(0,0) = O. The property of
idempotence can be regarded as a cautious attitude with respect to the poten-
tial dependency between sources. If all sources provide the same informa-
tion, then idempotence ensures that there will be no reinforcement effect, that
is the likelihood of values that sources consider more likely to occur is not

reinforced.
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Property V)

Property VI)

Property VII )

Property VIII )

Property IX)

Weak zero preservation [161] / Unanimity [202] (W-Z-P): ¢ satisfies this
property if an element is considered impossible by the fusion result when
it is so by all sources. This property ensures that the fusion operator only
accounts for sources information and do not add implicit information in the
result, making some values suddenly possible without any source supporting
this opinion. This property seems compelling to us, and should be required.
This property is called strong zero preservation by Oussalah [161]] El, but we
choose to call it weak, since it puts less constraints on the result than its (here)

strong counterpart.

Strong zero preservation [[161] / Conjunction [202] (S-Z-P): ¢ satisfies this
property if an element is considered impossible by the fusion result when it
is so by at least one source. Requiring this property enforces ¢ to have a
conjunctive behavior, and only makes sense when sources agree together. It

can be considered as dictatorial, as one source can make a value impossible.

Weak maximal plausibility [161] / Indeterminacy [202] (W-M-P): ¢ verifies
this property if an element considered possible by all sources is also con-
sidered possible by the fusion result. This property is trivially satisfied if
sources are totally conflicting (as there is no elements considered possible by
all sources). In other cases, this property ensures a minimal consistency with

the information given by the sources, and we thus consider it as desirable.

Strong maximal plausibility [[161]] / Total reconciliation [202] (S-M-P): ¢ sat-
isfies this property if an element considered possible by at least one source
must also be considered possible by the fusion result. Requiring strong max-
imal plausibility enforces ¢ to have a disjunctive behavior, and the fusion
result to be fully consistent with the information delivered by every source. It
is very strong, and not desirable if we want to have the possibility to reduce

uncertainty via the fusion process.

Information relevance [163]] / Reconciliation and Strong Reconciliation [202]
(Recon.): ¢ satisfies reconciliation property if the conjunction of O(;.y) with
any representation O;, i € [N] is non-empty (i.e. if O(;.y) is partially consis-
tent with every sources). It satisfies strong reconciliation property if, for any
subset I C [N] such that the conjunction of representations O;, i € I (whose

result is denoted Oy) is non-empty, the conjunction of O(y.y) with Oy is not

IDelmotte [55]] also requires this property in the framework of possibility theory, and formulates it in terms
of supports of possibility distributions
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empty. Strong reconciliation requires the fusion result to be partially consis-
tent with all partially consistent subsets of sources. Unless there are some
reasons to discard some sources, strong reconciliation appears as a natural

requirement.

Property X ) Insensitivity to complete and relative ignorance [202]] (InsIgn.): Consider
O@.nyanda N + 1?" source supplying information. ¢ satisfies insensitivity to
complete ignorance if ¢(O(;.y),On+1) = O(;.y) When Oy | represents com-
plete ignorance. ¢ satisfies insensitivity to relative ignorance if Oy is less
informative than all the other sources taken together (i.e. if it includes the

disjunction of Oy,...,On).

Property XI) Convexity (Conv.): this property is satisfied if O(;.y) is convex when Oy, ...,On
are. In general, satisfying convexity increases computational tractability, but
there are no obvious reasons to always require it. Note that if the final result
of the fusion is not convex, it is always possible to take its convex hull (losing

some information in the process, but gaining computational tractability).

Property XII ) Robustness / Continuity [202] (Robus.) : ¢ satisfy robustness or continuity
if a small change in the opinion of one source only causes a small change in
O(1.n), a small change being usually defined with respect to a distance func-
tion d. Since a model of the available information can often be regarded as
approximative, robustness is often considered as desirable, particularly when
the fusion procedure is some part of an automatic process. Nevertheless, there

is no obvious reasons to always require this property.

These properties are rather general and can be formulated for each uncertainty theory con-
sidered here, but other (more ad hoc) properties that generalize less easily can be consid-
ered with respect to a particular theory (e.g. sensitivity to the core in possibility theory [S5],
strong Pareto in imprecise probabilitiy theory [202], insensitivity to refinement in evidence
theory [[188l]).

When building or choosing a fusion operator, a natural thing to do is to determine which
properties it should follow. As the importance of properties can vary with the problem to solve,
we can only provide some guidelines about which properties should or should not be satisfied.
Our opinion is that satisfying Weak Zero Preservation (Property [Vl W-Z-P) and Weak Max-
imal Plausibility (Property W-M-P) is a minimal requirement to ensure that the fusion
operator do not add some extra information and that it does not discard values supported by all

sources. If no information about the sources (e.g. reliability) allows to differentiate them, then
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satisfying the properties of Commutativity (Property Comm.) and of Strong Reconcilia-
tion (Property Recon.) should be required. We consider Insensibility to relative ignorance
(Property [X] InsIgn.) as strongly desirable, since if it is not verified, the fusion result is likely
to quickly become too imprecise to be really useful. Strong zero preservation (Property
S-Z-P) is desirable only when all sources are partially consistent with each others. Conversely,
Strong maximal plausibility (Property S-M-P) is desirable when all sources are totally
conflicting, and that none can be discarded. Total consistency (Property [IL Cons.) should be
required when some inferences or decision must be drawn from information, but regarding
it as a general minimal requirement is debatable, since it may be interesting to keep track of
inconsistencies in the information. Idempotence (Property Idem.) is desirable when no
reinforcement effects are wanted (e.g., when sources cannot be considered independent). The
main advantage of Associativity (Property [, Ass.) and of convexity (Property [XI, Conv.) is to
alleviate the computational burden, but we do not regard them as always desirable for a fusion
operator. Although Robustness (Property Robus.) is often required, we do not regard it as

desirable, except in automatic procedures, where it is important to ensure a certain robustness.

The above argumentation is based on the rational basis that a fusion operator should aim at
gaining information (Properties W-Z-P[V] S-Z-P[V1] InsIgn.[X)) while remaining coherent with
the sources (Properties Recon. W-M-P [VII]) and with the information we have (or do not
have) about their relations (Properties Comm. Idem. [TV). We consider that inconsistency
is an information in itself, and thus should not be automatically removed (Property Cons. [,
and that practical considerations only comes after rational ones (Properties Ass.[[I, Conv. [XI|
Robus. [XII).

However, there is no real consensus among researchers about which properties should be
regarded as essential, desirable, optional or not desirable, and in which context they should be
so. For instance, Walley [202]] regards total consistency (Property [I) as fundamental, as it is
central in his behavioral theory, while it is central in the Transferable Belief Model developed
by Smets [[189] to consider total consistency as optional as long as no decisions have to be
taken. Denoeux [61] and Smets [[188] often regard associativity (Property [[I) as strongly de-
sirable, if not essential. In possibility theory, Oussalah et al. [163] and Delmotte [S5] consider
robustness (Property as critical.
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4.1.3 Basic fusion operators in uncertainty theories

In this section, we review the main basic fusion operators in the various imprecise probability
theories considered in this work. We also give a word about their links and about basic fusion

operators with generalized p-boxes, pursuing our study of this representation.

First, let us relate in a general way our classification of fusion operators given in Sec-
tion [4.1.1] with properties of Section4.1.2]

As said in the previous section, conjunctive operators are retrieved by requiring Strong
Zero preservation VIl Such operators are sensible choices only when the result of conjunction
is non-empty (i.e. all sources are partially consistent with each others). Conjunctive operators
usually satisfy the properties of Convexity Insensibility to Ignorance [X] Weak Maximal
Plausibility Strong Reconciliation [[X] and obviously Weak Zero Preservation [V] Total
consistency [[ and Robustness [XII] are in general not satisfied (Total consistency when there is
no conflict at all among sources). In any cases, they do not satisfy Strong Maximal Plausi-
bility As said above, conjunctive operators should be chosen when sources are strongly

consistent.

Disjunctive operators are retrieved by requiring Strong Maximal Plausibility They
satisfy properties of Strong Reconciliation [[X] Total Consistency [[, Robustness [XII| and force-
fully Weak Maximal Plausibility They do not satisfy Properties of Insensibility to partial
Ignorance[X] Strong Zero Preservation|[VI|and Weak Zero preservation[V] In general, they also
do not satisfy Convexity Given the argumentation of Section about the desirability
of properties, disjunctive operators are, in general, to be discarded, except when all sources

are totally conflicting with each others.

Adaptive trade-off operators generally satisfy properties of Total Consistency [IL Insensi-
bility to partial Ignorance [X]| Weak Zero Preservation [V] Weak Maximal Plausibility and
Strong Reconciliation They do not, in general, satisfy Properties of Maximal Plausibil-
ity [VIII} Strong Zero Preservation[VI], Convexity [XI|and Robustness and are very difficult
to conciliate with Associativity [[IL They represent good solutions to the fusion problem, but

can be limited by the potential computational burden associated to them.

Non-adaptive compromise operators generally satisfy properties of Total Consistency [I,
Weak Zero Preservation [V Weak Maximal Plausibility Convexity Robustness
and Strong Reconciliation They do not, in general, satisfy Properties of Strong Maximal
Plausibility Strong Zero Preservation |VI| and Insensitivity to partial Ignorance [X] The

mean, a representative of non-adaptive compromise operators, is undoubtedly the most widely



128 Treating multiple sources of information

and commonly used fusion operator. Given two numbers x,y and associated weights A, A,,

the general form of a mearﬂ ¢ is given by the functional equation

Acf (x) + Ay f () )
A+ A,

O(x,, Ax, Ay) =f‘1( (4.1)
where f(x) is a continuous and strictly monotonic function, with ! its inverse. See Aczel [4,
Sec.5.3.2] for a full characterization. Although mean operators can be convenient to aggregate
subjective opinions or preferences of a group, we will argue in the sequel that they are not well

fitted to the case when information concern a variable whose true value is not well known.

In the next sections, we review how are defined the main operators in probability theory,
imprecise probability, random set theory and possibility theory, and how properties defined in
Section are particularized for each theory.

4.1.3.1 Probability theory

Let 2 be the space of interest. In probability theory, N probability distributions pi, ..., py
are built from the sources information, and the fusion result Pj.yy = @(P},...,Py) must be
another probability distribution on Z". Two main approaches exist to solve the problem: the
first concerns direct aggregation methods, using most of the time mean operators satisfying
Equation (4.T)), while the second uses a Bayesian approach to fuse probabilities. Cooke [28]]
provides a long and critical survey of the various methods. Shorter and critical reviews are
provided by French [110]], Genest and Zidek [113]] and more recently by Clemen and Win-
kler [26]. Bayesian methods will not be considered here, since we regard them as more re-
lated to prior information revision and updating problems than to fusion problems. Examples
of Bayesian methods are given by Winkler [211], who considers the use of natural-conjugate
distributionﬂ Morris [155], Mosleh and Apostolakis [[156], who mainly considers normal
models, and Lindley [[137].

For direct aggregation methods, Cooke [28, Ch.11] considers a family of operators that he
calls r-norm, and which constitutes a subfamily of the general equation where f(x) =x".
Inside this family, only the arithmetic weighted mean (r = 1), often called linear pooling,
and the geometric weighted mean (r = 0), often called logarithmic pooling, have appealing

properties. If A,...,Ay are non-negative weights summing to one, they respectively reads,

’In the sense that the result is between x and y
3Natural-conjugate distributions are families of likelihood and prior distributions such that the prior and
posterior densities belongs to the same family, thus making calculations easier
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forall x € 2,
N
P (x) = ;lipi(x) (4.2)
and
u A
P () = k[ [ i)™ (4.3)

with k& a normalization constant. The main arguments for using logarithmic pooling is that
it is more coherent with Bayesian methods and it is the only operator having the so-called
independence preservation property, an argument which has been criticized by many au-
thors [28, [110] (See Genest et al. [112] for a study of logarithmic pooling). Linear opin-
ion pooling is the only operator to possess the marginalization property, meaning that it does
not matter whether we apply it to the distributions p; or to the induced measures P; (i.e.,
Pi:n)(A) = Xxea P1:v)(x) = XL AiPi(A)). This means that the fused probability of an event
depends only on the source probabilities for this event, and is not influenced by the probabili-
ties of other events. See McConway [142]] and Cooke [28] for more details. Walley [202]] also
shows that, inside a behavioral theory of (precise) probability, the arithmetic weighted mean is
the only fusion procedure (including Bayesian ones) that satisfies the property of Weak Zero
Preservation [V] All these arguments show that, inside a probabilistic approach, the arithmetic

weighted mean appears as the most appealing and sensible operator to fuse probabilities.

There are no disjunctive or conjunctive operators in probability theory, only trade-off op-
erators, although some authors [191] consider the arithmetic mean as disjunctive and the nor-
malized product as conjunctive. However, neither the arithmetic mean nor the normalized
product do respectively satisfy Strong Maximal Plausibility and Strong Zero Preserva-
tion Moreover, if i1, llp denote two additive probabilities over Z°, we have min(u, tp) <
o1, 1p) < max (U, Up), whether @ is the arithmetic mean or the normalized product.

Potential shortcomings of using the arithmetic mean (which is by far the best option inside
probability theory) is given by the following example: consider two experts giving their opin-
ion about the potential value of a real-valued variable X. Suppose the first gives an opinion
centered around small values, and the other around high values. Aggregating their opinion by
the arithmetic mean would give a distribution whose mean would be between the two values, a
value none of the expert considers as possible. There is no means with probabilistic modeling
to convey the idea that either the opinion that X is small or that it is high is right, and that

both cannot be right at the same time. This is not the case for other theories that allow for
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imprecision in their representations. We will now give a review of the main operators used in

each of them.

4.1.3.2 Imprecise probability theory

We consider that information delivered by the N sources is modeled by the credal sets Z,..., Pn
on a domain 2. Again, we will often limit ourselves to credal sets &p defined by coherent
lower probability measures P, as they are more tractable in practice. Given a set of probabil-
ities & (convex or not), we will denote by 7(&?) its convex hull (i.e., the set of all convex

combinations of its extreme points ext )

Conjunction Given credal sets &, ..., Py, their conjunction ‘@”(IM is defined as
N
P =12 (4.4)
i=1
and we say that the credal sets Z,..., &y (and associated sources) are conflicting if gzﬂ(m)

is empty. Credal sets whose intersection is not empty are said to be non-conflicting. If
credal sets Zp,,..., Pp, are induced by coherent lower probabilities Py,..., Py and are non-
conflicting, then the credal set Zp_ 1) induced by Pmax (1) = max(Py,...,Py) only gives
> Pp . Although

an outer approximation of ﬁpm( ﬂl 1 &p,, and we have @pmax( w2 PP
on events, exactly computing

Pp
- :N)
this lower probability usually requires the resolution of (.2") linear programs [40} 42].

i is still induced by a coherent lower probability Pm

If the credal sets &,,..., <, are given by imprecise probability assignments, then de

Campos et al. [42] have shown that the conjunction &), = ﬂﬁil 1, again corresponds to

(1:N)
a credal set induced by an imprecise probability assignment, and that this imprecise probability

assignment is given, for every element x € 2", by:

ey 0 = {gm (li(x )>’1_ye§\xirenﬂi£ﬂ (w:(y))}
ULy (x) = {llél[[gl]] (ui(x)),1 —yeg\xgm (L)}

where lLﬁ(uv) and ULy, 3T the lower and upper bounds of the imprecise probability assign-

ment inducing @L“(I:N) .



Treating multiple sources of information 131

Disjunction Given credal sets &7y, ..., Py, their disjunction ’-@U(uv) is defined as
N
‘@U(lzN) = U P 4.5)

in practice, it is mathematically convenient (and equivalent from a behavioral point of view [202])
to consider the convex hull (2, ) of . When the credal sets Pp,,..., Pp, are

o) =AU 22, wil
not, in general, be induced by a coherent lower probability. Nevertheless, we can easily com-

induced by coherent lower probabilities, their disjunction .7 ( p |

pute the tightest lower probability inducing a credal set outer approximating .77 ('@BUU;N) ).

It is given by P, —— min(Py,...,Py) and the induced credal set ﬁgmin(w) is such that

:N)

gzﬂmi“( 1:N)

> H (@BU(I_N>). Similarly, if the credal sets & ,..., %, are induced by im-
precise probability assignments, then .77 (‘@Lu(w)) = fV: 1 Z1,;) will not, in general, be
induced by an imprecise probability assignment. However, the tightest imprecise probability

assignment L,,, inducing a credal set &},

out

outer approximating 7% (,@LUU_N)) is simple to

compute, and is given, for every x € 2, by

Low (x) = lgl[[%l]] (li (x))

Uour (X) = gm(ui (x))

where /;, u; are the bounds of the imprecise probability assignment ;.

Convex combination Given the credal sets Z,..., Py, their respective sets of extreme
points exty,...,exty, and non-negative weights A;, ..., Ay summing up to one and associated

to the credal sets, their convex combination is defined as

Py = .E%Vﬂ L, (4.6)

and ‘@Z(I:N) is equivalent to the credal set associated to the set extz(l:N) ={Yic IN] Aipi|pi € ext;}
of extreme points built from the convex combination of extreme points of Z,..., Py. If
credal sets #p,, ..., Pp, are induced by coherent lower probabilities, then their convex com-
bination @BZ(]:N) is easy to compute and is induced by the coherent lower probability Py ) =
Yic[N] AiP;, with P; the coherent lower probability inducing #p,. Similarly, if the credal sets
2y,,..., Py are induced by imprecise probability assignments, then their convex combina-

tion '@LZ(I-N) is still induced by an imprecise probability assignment Ly \.n such that, for every
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Property Formulation Property Formulation
1| Cons. P g 70 VI W-M-P Pouw 2 P,
ASS' ‘@(P(I:N) - (P(‘@(P(LNA)? PN) VHI S-M-P ‘@(P(LN) 2 %(‘@U(u\l))
1| Comm. :@(P(HV) = (p(gzc(l), oy e926(]\/)) IX|Recon. VK, (‘@(P(l:N) N ﬂiEK 321) 7& ]

V| 1dem. o(P,P) = nslgn. (P s Pnr1) = P,
if ZNn41 2 Py
%W—Z—P Py CH (P |ﬁ Conv. Lo = (P
VI S-Z-P Lo € P XI[Robus.  d(Pg,., B%UW)) — 0 as
d(P:, 7)) —0
with P4 = @(Z,., Zy)

Table 4.1: Properties of Section for credal sets &1,...,Zy with @ the fu-
sion operator, Pg .. = @(Z,...,) .,K C [N] any maximal subset such that
(Niek <) # 0 and d the supremum norm between credal sets.

xex

Iy @) =Y, Aili(x))

i€[N]

uZ(l:N)(x) - Z Ai(ui(x))

i€[N]

Table {. 1| summarizes how properties of Sectiond.I| particularize to the case of credal sets
(most formulations are equivalent to those given by Walley [202]). Recall that, given two

credal sets &, &, the supremum norm reads

d(P,Z) =max{ sup inf ||Pj—P|, sup inf ||P,—P|}
Piep D€ Pyep PIED
with [|P| — P,|| = supgc o |P1(E) — P,(E)|. Conjunction is found back if we require both
properties and [V1, while requiring properties [V]and enforces to take the convex hull

of the disjunction.
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4.1.3.3 Random set theory

We consider now that information is given by N random sets (m, . #),,...,(m,.% ) defined on
Z . In order to define usual fusion operators on random sets and to relate them to properties
of Section .1.2] we must first choose a particular relation of inclusion between random sets,
with respect to which will be defined the fusion operators. We choose here to concentrate
on the s—ordering and on the associated notions of inclusion and of specialization, because
this ordering has a unifying characteristic when compared to the others, and seems the more
"natural" ordering within random set theory. See appendix |C| for more details about orderings
and inclusion notions of random sets. If the notion of convex sets on 2~ makes sense, given
a random set (m,.% ), we define its convex hull 5#((m,.%#)) as the random set which have the

same bpa m, but where every focal element E € .% is replaced by its convex hull 7 (E).

Given N random sets (m,.#),,...,(m, % )y, we define a joint basic probability assignment
(bpa) m(;.y) defined on 2 N as a joint distribution having m;, i = 1,..., N for marginals, with
m; the bpa of the random set (m,.#);. Thatis, forall j€1,...,Nandi; € {1,...,|@2(Z)|},
m1.y) is such that:

m(lzN)(- X E,'j) = Z m(l:N)(Ei1 X ... X E,'j X ... X E,'N) = m]'(E,'j) (47)
isenijm 1 €41, | @2(2)]}
l]+],7lN€{177‘p(%)|}

note that m(;.y) can receive positive mass only if E;, is in .Z; for j =1,...,N.

Conjunction Given N random sets (m,.#),,...,(m,.Z),, a conjunction can be obtained by

the following procedure:

1. Build a joint bpa m;.y) satisfying Equation (4.7).

2. Allocate each joint mass my.y)(x_ E;) to the set NY_|E;, with E; € F; for j =
1....N.

Note that, in the above procedure, the empty set can have a non-null mass (when it is the case,
Property [I| of total consistency is not satisfied). The empty set is thus equivalent to a random

set where the empty set has a mass equal to one.

We note .Zn (1) the set of all possible bpa resulting from a conjunction of the marginal ran-
dom sets (m,.#),,...,(m,# )y, and (m,ﬁ’)m(w) a particular random set of ./, . A0,

can be characterized by four different situations:
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1. A~

mn

(1) contains only normalized random sets, that is, for every (m, % )%.N) € '///ﬂ(m)’
(v (0) = 0. It means that for all sets {Ej{j =1,...,N, E; € F;}, we have ﬂ_[]y:lEj #
0. The random sets (m,.%),,...,(m,.#), are then said to be logically consistent or

totally consistent

contains both subnormalized and normalized random sets. It means that there

2. Mo,
are sets {E;|j=1,...,N, Ej € %} such that ﬂZJVZIEj = (), but that there are also some

random sets (m,ﬁ)m( € M1y, such that mn . (0) = 0. In this case, Random sets

1:N

(m,F),...,(m,F)y are said to be non-conflicting.
3. //ﬂ(n x) contains only subnormalized random sets. It means that all random sets (m, F )m(th> €
M.y, are such that mn ., (0) > 0. Random sets (m, F),,...,(m,F)y are then said

to be conflicting.

4. All random sets (m, 9)%_1\,
(m, F)y,...,(m,F)y are then said to be totally conflicting, and the associated set '/[ﬂ(uv)

: in #n ., are such that mn . (0) = 1. Random sets

is said to be empty.

We also say of conflicting and non-conflicting random sets that they are partially consistent, in
the sense that the result of a conjunctive combination of these random sets does not necessarily
satisfies the property of total consistency, but the joint bpa mass can be assigned to other sets
than the empty one.

If random sets are interpreted as hierarchical uncertainty representations where the 1%
order level models are credal sets modeling ignorance on focal sets and the 2" order models
are precise probabilities, then a random set conjunction defined above comes down to build
a precise joint probability as 2@ order model while conjunctively merging the corresponding
1¥" order models with Equation (@4). In this case, the joint precise probability at the 2" level

is often interpreted as a convenient means to model the dependencies between sources.

If random sets are interpreted as 1*' order imprecise probabilistic models, then the con-
junction defined above appears less justified, and using Equation (4.4) seems to be a better
choice (However, we’ll see in Section 4.1.3.5|that we can link this equation to ///”U: N)).

One of the commonest combination rule used with random sets is obtained when bpa’s

my,...,my are judged to be independent. We note by (m,.%) : the specific conjunc-

Oa:N
tive random set obtained with this assumption. We then have, for any collection of sets
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{Ejlj=1,...,N,E; € F}}
N
me, . (MY E)) H (4.8)

Where me,, 1s the bpa of (m, )@(lw)' The well known Dempster [S7] combination rule can
then be retrleved by uniformly redistributing the mass mg, M) (0) among focal sets E € F, (1)

of (m,# )@U'N)’ thus normalizing the conjunction result. We note (m,.# )®(1‘N) the random
set resulting from such a normalization. This makes the fusion result totally consistent, but if

Mo,y (0) > 0, the belief measure associated to (m, F) no longer verifies Bel,,, 7) >

®(1:N) Ny T
max;—1,.. n{Bel, g[)i}, similarly to what happens in probability theory for the product aggre-

gation rule. Evenly distributing the mass m, 0) among focal sets is not the only way

1) (
of making the conjunction result totally consistent, and other authors have argued that other
normalization operators appear more reasonable in some cases (see Smets [188] for a recent
and critical survey). Most of the conjunctive combination rules proposed in the literature con-
sist in choosing a particular random set in ///ma:N) , based on different rational arguments (for
example, Cattaneo [19] proposes to minimize first the conflict, that is the mass allocated to
the empty set, and then to maximize the imprecision, while Denoeux [61] uses a cautious

approach based on Smets [184] canonical decomposition).

Disjunction Given N random sets (m,.#),,...,(m,.% )y, a disjunction can be obtained by

the following procedure:

1. Build a joint bpa m .y satisfying Equation E}

2. Allocate each joint mass m(y.y) (X2 E)) to the set UYL E;, with E; € F; for j =
1,...N.

We note %U(l; ) the set of all possible bpa resulting from a disjunction of the marginal random
sets (m, F)y,...,(m,F)y, and (m,?)u(w) a particular random set of ...,

Augustin [7] considers another possible disjunctive combination of random sets (m, %), . ..

he proposes to take the convex hull of the union of all marginal bpas m,...,my, and to con-
sider the resulting set of bpas as the result of the disjunction. This is equivalent to apply
Equation (4.3) to the credal sets induced by random sets (m,.%),...,(m, F)y.

Convex combination Given N random sets (m,.%),..., (m,.#), and associated non-negative

weights A;,..., Ay summing to one, the random set (m, # >Z(1:N) resulting from their convex



136 Treating multiple sources of information

Property Formulation Property Formulation
Moy 1.x, 0)=0 VII|W-M-P (m,ﬂ)(p%m Cs (m ﬂ)%m
(1710, =0 P gy Zhy) VIISMP - (m, T B (1, F )y
(m,gz)q,(lN)—w((m,y)(,m,.,(m,y)a(m) [X|/Recon. {(m, 0‘) _— Yu{(m,#),lie K}

are not tot. conflict. VK
o((m, F),(m, 7)) = (m.7)  NInslgn.  g((n)

(p(I:N)’(mvfg)NJrl):(m 7') (I:N)

if (m, %), o 5 (m, F )y
VIW-ZP (T Cs Ty, !ﬁCOHV- (1, F) gy = 2 (1, F ) )
- - d\ 6\
VISZP  (m,F)g, Cs(mF)g,  [XURobus. d((m, ) o (M F ) ) =0

sd((m, F);,(m, F);) = 0
((

Wlth y) (P mvy\)h 7( 73\);\/)

Table 4.2: Properties of Section 4.1.2| for random sets (m,.%),,...,(m,.#), with
¢ the fusion operator, (m, %), O (p(( F) s (M, F);), mg, and Fg . the

associated bpa and focal sets ((pm and ¢, denote the conjunction and dlSJlll’lCthIl as-
sociated to m(p(l:i)). K C [N] denote any maximal subset such that .#, is non-empty

(i.e., random sets {(m,.#),|i € I'} are not totally conflicting), and d a distance measure
between random sets [[125]].

combination has a bpa my ., which, for every subset E C 27, has value
N
E)=Y Lmi(E). (4.9)
i=1

Table.2]summarizes how properties of Sectiond.2]particularize to the case of random sets
and the notion of inclusion associated to s-ordering. ¢ consists here of building a joint bpa
mq.y) and then to distribute the mass m(I:N)( ;V ,E;) among combinations of conjunctions
and disjunctions of sets E;, with E; € % for j=1,...,N. ¢, and ¢ denote the conjunction

and disjunction associated to the joint bpa obtained by the ¢ operator.

4.1.3.4 Possibility theory

We consider that information delivered by the N sources is modeled by possibility distributions

7y,..., Ty on a domain 2Z°. Recall that a distribution 7; is said to be included in another
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distribution m, (77 C m) if m, > m;. Given a possibility distribution 7 and its a-cuts 7y, its
convex hull J#(7) is obtained by taking the convex hull of each a-cut, that is J7(7)y =
€ (my) for any o € [0,1] (provided the convex hull of an ¢-cut is defined). The empty set
is here equivalent to 7(x) = 0 for all x € 2". Given a set of possibility distributions, their
respective cores (i.e. level 1 a-cut) and supports (i.e. level O a-cut), they are said to be:
totally conflicting if the intersection of their supports is empty; partially conflicting or partially
consistent if the intersection of their supports and cores are respectively non-empty and empty;

totally consistent if the intersection of their cores is non-empty.

Conjunction Given N possibility distributions 7y, ..., 7y, their usual conjunction is given,
forall x € 27, by

T vy (%) = Tiz1, NT(X) (4.10)

where T is a triangular norm [127], or t-norm for short. A t-norm is a function T : [0, 1] X
[0,1] — [0,1] that is associative, commutative, non-decreasing in each variable and has 1
as identity element (i.e., T (x,1) = x). The most commonly used t-norms are the minimum
and the product. The minimum is the largest point-wise t-norm and the only one to possess
the idempotence property, making it the most conservative (and, therefore, cautious) con-
junctive operator in possibility theory. The product is often associated to an assumption of
independence between sources. Note that distributions 7y,...,my are totally conflict, par-
tially consistent and totally consistent when and only when Tomin ) is respectively such that:
Tomin 1.y (x) =0 forall x € Z7; Toningp.y) < 1 and is positive for at least one element x € 2

Tomin 1.y, (x) =1 for at least one element x € 2.

Disjunction Given N possibility distributions 7y, ..., 7y, their usual disjunction is given, for
allx € 2, by

T () = Lim1 T (X) 4.11)

(l:N)(

where L is a triangular conorm, or t-conorm for short. A t-conorm is a function L : [0, 1] X
[0,1] — [0, 1] that is associative, commutative, non-decreasing in each variable and has O as
identity element (i.e., L (x,0) = x). T-conorms are dual to t-norms, in the sense that, to any

t-norm T can be associated its complementary t-conorm L such that

L(x,y)=1-T(l—x,1—y) (4.12)
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and conversely, to any t-conorm is associated its dual t-norm. The most commonly used t-
conorm is the maximum t-conorm, which is the smallest point-wise t-conorm, the dual of the

minimum t-norm and the only t-conorm to possess the idempotence property.

Convex Combination Given N possibility distributions 7y, . .., Ty and associated non-negative
weights A1,..., Ay summing up to one, the possibility distribution Y ) resulting from their

convex combination is given, for every value x C 2" by

N
7y ) (X) = Zixim(x). (4.13)

Table 4.3 summarizes how properties of Section [4.1.2] particularize to the case of possi-
bility distributions (most formulations are equivalent to those given by Oussalah [161]). For
the robustness property, we consider the distance between two possibility distributions 7y, >

given by

| Lo min(z (x), m(x))

Y e max(m (1), ma(x)

(4.14)

and, when 2~ is continuous, sums simply become integrals. Note that this distance is based
on a similarity measure considered by Pappis and Karacapilidis [164]] for fuzzy sets, and also

reduce to the Jacquard index when possibility distributions model classical sets.

4.1.3.5 Links between basic rules

In this section, we recall some of the links existing between the basic fusion rules of each

uncertainty theories.

Possibility distributions and random set theory First, recall that, given a random set
(m,.#) defined over a space 2, its contour function is given by the values PI({x}) for all
elements x € 2. This contour function is formally equivalent to a fuzzy set, which is normal-

ized if and only if there is an element x € 2" that is in every focal set of (m,.7).

Now, if 7;, 7, are two possibility distributions, and (m,.# )., (m,7),, the corresponding

%)
random sets with nested focal sets, then Dubois and Yager [[101] show that the random sets

(m, 7). . and (m,F)

oo . with nested focal sets corresponding to the possibility distributions

Tlma;
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Property Formulation Property Formulation

IICons.  Ixe 2 st.mp,, =1 [VI[W-M-P Ty > Tmingyp

ASS- Toan) = (P(n(P(lqu)’nN) VI S-M-P o1y = Tomaxy.p)
I Comm. 7y, = (%51, To(v))  [IX|Recon. VK, min(mp(w),minie]( ) #£0
IV|{Idem. o(m,m)=r InsIgn. O (T, ) TN+H1) = Ty

if vy > To1.v)

V|W-Z-P Ty < Tomax i) |z Conv. o = 2 (Tpy))
VI|S-Z-P Ty < Tamin oy, XTI Robus. d(n(,,(]:N),n(’p(lzN)) —0asd(m,n)) —0

. / _ / /
with M) = ¢(my,., my)

Table 4.3: Properties of Section for possibility distributions 7y, ...,y with @
the fusion operator, 7y, = @(1,..., 7). K C [N] denote any maximal subset such
that min;cg 7; # 0, and d the distance measure between possibility distributions given

by Equation (#.14).

Tomingy.0) and Timax 1.5, Can be obtained in the following way:

o Let{0=17% <7 <...<7yu} be the set of all distinct values taken by 7}, m, over 2 .

e Build a joint bpa M) such that m(Ey, z, X Ey. n,) = ¥ix1— ¥ foralli=0,....M —1,
with Ey, . the strong y;-cut of distribution 7;.

e To get Tomin.5)»Tomax; 2) consider respectively the conjunctive and disjunctive allocation

of M-
In other words, the minimum t-norm and maximum t-conorm in possibility theory are equiv-
alent to consider random set conjunctions and disjunctions with a complete (positive) correla-
tion between -cuts. The extension to N possibility distributions follows from the associativity
and commutativity of t-norms and t-conorms. Note that it is generally possible to find a con-
junctively fused random set (m,.# )0(1:2) built from (m, #) . ,(m,F), thatis different from
(m,F) (1) @8 its contour function. In this latter case, (m, 7 )m(m) is not

equivalent to the nested random set induced by Ty, and we have (m, .7 )ﬂmm Cp (m, F )m(

- and still has 7y,

1:2)

Dubois and Yager [101] also relate different specific joint bpa whose conjunctive or dis-
junctive allocations allow to retrieve a contour function having the same values as the applica-
tion of other t-norms or t-conorms. In this latter case, some information is lost when restricting

to the contour function. For instance, the contour function of the random set (m,.%#) cor-

®(1:N)
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responding to the product of marginal bpas is the same as the possibility distribution M1 ob-
o 1 o
| Cpr (m, F )®<1:N)’ with (m, .7 )”H -

the random set with nested focal sets induced by T (1) - See Dubois and Yager [101] for an

tained with the product t-norm, but we have (m, % )7rH

I:N
ampler discussion. A similar result holds for the convex combination: given N random sets
(M, F ) sy (m, F)
weights A1, ..., Ay, the contour function of the random set (m,.%# )Z(m) is equal to the possi-
bility distribution 7y . (this is simply due to the fact that Ply . ({x}) = N LPLi({x}) for
every x € Z), and we still have (m, %) Cpr (m, ﬁ)z(l " with (m, 52)7:2 the random

: (1:N)

ny induced by N possibility distributions 7j,..., 7Ty and non-negative

77.'):( 1:N)

set with nested focal sets induced by Ty 1) -

Possibility distributions and credal sets Recall that, given two possibility distributions
7, defined on a space 2, the induced credal sets Yy, , Pz, are such that &z, C Py, if
and only if ) < mp.

Some elements of comparison between possibilistic conjunction and credal sets conjunc-
tion are already given in Section[3.3.2.2] Given N possibility distributions 7, ..., 7y and the
w S MY, 2, [88]. This is
also true if min is replaced by any other t-norms, since min is the largest possible t-norm. A

respective induced credal sets Yy, ,..., Py, we have ‘@ﬂmin(

sufficient condition to have f@,;min(w) =Y., P, will be given in Section4.1.3.6

Regarding disjunction, the credal set & : induced by the possibility distribution

(L:N
Timax 1.y is the tightest credal set induced by a lower coherent probability such that .77 (Uiil Pr;) C
‘@”m‘d’((uv) . This is due to the maxitivity property of possibility measures. As for random sets,
one could relate a credal set resulting from disjunction, conjunction and convex combination
to the contour function induced by this credal set, which would be given by the values P({x})

for all x € 2. Studying those relations remains an open problem.

Random sets and credal sets We consider N random sets (m,.#),,...,(m, %)y defined
over the space 2" and the induced credal sets &, #) ..., P (n,#),- It has been showed by
Chateauneuf [21] that, in general, the conjunction of credal sets 3%(% P ﬂf-vzl Pim, T,
is no longer representable by a random set, and does not coincide with a conjunctively fused
random set built from (m, #),,...,(m,.%)y. Chateauneuf [21] also shows that the credal
set t@m(mj

M

) is equivalent to the set of all normalized random sets (m(0) = 0) that are in

(I:N)

Relating random set disjunction with the credal set @U(m = (Uf-vzl P (m,7) ) cor-

F(1:N) i
responding to the convex hull of the disjunction of credal sets @(mj), eens @(mf/“),v 1s more
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is
’""?\)(I:N)
not in general an co-monotone capacity, and thus will not be induced by an equivalent ran-

difficult. On the one hand, it is known that the coherent lower probability of ,@U(

dom set. On the other hand, the set ///U(mv) of all disjunctively fused random sets does not

seem to be related to ﬂu(m Py

and where two sources provide the uniform probability as their opinion: & (m7

. To see this, simply consider the case where 2~ = {x1,x}
) will be
the uniform probability, while the random set such that m(2") = 1 will be in ., (i.e.
ignorance on .2"). Credal set disjunction can nevertheless be related to Augustin [[7] proposi-
tion recalled in Section since considering the convex hull 72 (Y., m;) of all bpas of

(m,F)y,...,(m,F )y is equivalent to Z

m‘g[)(l:N
The relation between the convex combinations of random sets (m, #),,...,(m,.% )y and
of the induced credal sets t@(m“g;)l,...,(@(m’ Ty is more direct. If A;,...,Ay are the non-

negative weights summing to one associated to the sources, then the random set (m,.% >Z<1-N)

resulting from the convex combination is the random set inducing the credal set 92( 1)
These relations and the previous sections show that, although there exist some congru-
encies between basic fusion rules of each uncertainty theories, results will in general not be

directly related.

4.1.3.6 Fusion rules for clouds

Let [7,d],...,[m, 6]y be N clouds defined over a space 2~ and modeling sources uncertainty.
Due to their relationships with possibility distributions (Property [3.10), it seems natural to

define their basic fusion rules as follows:

e Conjunction: we define the conjunction [, §], of the clouds [r,d],,...,[r, 8]y as

N
(7,8], = [y ) = [r}li{l(ﬂi),rggllx(&)]. 4.15)

NNy

Note that this conjunction is different from the one usually considered for Interval-
Valued Fuzzy Sets. Nevertheless, it is coherent with the fact that conjunctive fusion

operators should reduce uncertainty (in the sense that &, 5, & Pins), foranyie
TN T

[N]), and also with the notion of conjunction used with bipolar information [15]].

¢ Disjunction: we define the disjunction [r, 8], of the clouds [x, ], ..., [, 0]y as
N N
7, 5]U(1:N> = [0 1.y U 1y | = [max (), min(5;)] (4.16)

i=1 i=1
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e Convex combination: given non-negative weights A;,...,Ay summing up to one and
associated to sources, we define the convex combination of the clouds [, d],,...,[®, 8]y
as

N N
[7[, S]Z(I:N) - [TEZ(I:N) ) SZ(I:N)] - [Z Aini’ Z Aiéi] (4 17)

These operations still result in clouds, even if conjunction and convex combination may re-
sult in clouds that do not satisfy the boundary conditions usually associated to clouds (i.e.,
the existence of elements x and y in 2" such that §(x) = 0 and 7(y) = 1, see Section [3.3).
Satisfying these boundary conditions corresponds to satisfying coherence (Property [l of Sec-

tion 4.1.2)). The conjunction is said to be empty if the resulting cloud [, 6]ﬂ<1-zv) is such that,
for at least one element x € 2", we have T (x) < SQ(IM (x). Note that, even if all clouds
[7,8],,...,[m, 8]y are comonotonic (see Section [3.3.3), then there is no guarantee that the

clouds resulting from one of the above operations will still be comonotonic. The next propo-

sition indicates a sufficient condition for the resulting clouds to be comonotonic.

Proposition 4.1. Consider N clouds [r,0],,...,[®, 8]y whose mappings {6, m|i=1,...,N}

are all comonotonic. Let < F.F| be the coarsest pre-order on 2~ refining all the pre-orders

(I:N)

S[th,...,g[ﬁfm respectively induced by clouds [r,8],,...,[®,0]y. Then, the following
clouds:
N N
[ﬂ’-’ 5](7(];1\]) = [nm(lzN)’Sm(l:N)] = [I}ll{l(nl),l’{lzalx(Sl)] (418)
N N
7, 5]U(1:N) = [EU(LNVSUU:N)] = [I?:alx(nl)7rlr£fl(51)] (4.19)
N N
[7[’5]2(1;1\/) = [7[2(1:1\1)762(1:1\1)] = [Z{ Aimt;, Zillﬁi] (4.20)
i= i=
are comonotonic and induce the pre-order S[E,f] (1) on Z .
Proof. The fact that all mappings {;, m;|i = 1,..., N} are comonotonic ensures that there exist
a coarsest pre-order <IFF] (1) on 2 refining all the pre-orders S[Eﬂl’ ceey S[EF]N'

Now, let us consider the pre-order <[FF] and any pair of elements x and y in 2~ such

(1:N)
that xS[Ef](]‘N)y. This means that &;(x) < §;(y) and m;(x) < m;(y) foralli=1,...,N.

Due to the monotonic property of t-norms and t-conorms, and in particular of minimum
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and maximum, we have the following inequalities:

N N
min(7;(x)) < min(7;(y))

i=1 =1

max(8(x)) < max(8(y))

i=1 i=1

max (7 (x)) < max(7(»))
N N
rln:i?(&(x)) < Iin:i{l(&(y))

therefore, the respective pre-orders S[Ef]m and S[Eﬂu induced by clouds [, 5]%'

(1:N) (1.N) N)

yand x<zz) ~y. Since this is true for every
— (1:N)

, ip and <. =

(IZN) _[E7F]m(1:N) _[E7F]U(1:N)

the same pre-orders. The same holds for the cloud |7, 8] o’ since the arithmetic weighted

and [, 5]U(1:N> are also such that xS[Eﬂ%'N)

possible pair of elements x,y € 2, it follows that SIFF] are

mean is also a monotone operation. [

We now study relationships between basic fusion rules for clouds and the other uncertainty

theories.

Relations with possibility theory. Clouds conjunctions, disjunctions and convex combina-
tion are respectively equivalent to applying the minimum t-norm, maximum t-conorm and
arithmetic weighted mean separately to possibility distributions 7y, ..., my and 1 —&y,...,1 —

Oy and then to consider the associated cloud.

In this spirit, an obvious generalization of the conjunction and disjunction of clouds would

be to consider a t-norm T and its dual t-conorm | and then to respectively define the associ-

ated conjunctively and disjunctively fused clouds [, 5]T(1:N>, (7, 3] Lo 8
[nvS]T(]:N) = [n.T(l;N)?ST(l;N)] = [Téil(ni)7j—?]:1(6i)] (421)
[77:7 6]J_(1:N) = [ni(l;N)’al(l;N)] = [J-i'il (71;1-)7—[_{.\]:] (61)] (4.22)

and, by Equation (4.12)), above conjunction and disjunction are respectively equivalent to ap-
ply T and L separately to possibility distributions 7y,...,my and 1 — dy,...,1 — dy, and then
to consider the associated cloud. Note that such operations are totally consistent with possi-
bility theory, since when clouds [«,d],,...,[r,0]y are fuzzy (§; = 0,i = 1,...,N), then we

retrieve the usual conjunctions, disjunctions and convex combinations of possibility distri-
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butions 7y,...,7my. The above equations are still coherent with fusion operators defined in

bipolar possibility theory [15]. Also, since t-norms and t-conorms are monotonic operators,
Property [4.1] still holds for any [, S]T“:N), 7, 5]L(1;N)'

Relations with random set theory. Recall that if all clouds [r,d],..., 7, 8] are comono-
tone but induce non-compatible orderings g[th,...,g[EﬂN (i.e., each pair of mappings
[7,68];, i=1,...,N is comonotone, but two mappings 7;, T;, j 7 i can be non-comonotone),
the clouds [, 5]%;1\/)’ (7, S]U(m)’ 7, 6]Z<1;N) resulting from conjunction, disjunction and con-
vex combination will not forcefully be comonotone. Since most non-comonotonic clouds
cannot be represented by an equivalent random set (Proposition [3.13), there is no direct re-
lationships between clouds fusion rules and random set fusion rules that always hold. Nev-
ertheless, when comonotonic clouds [r,6],,...,[®, 8], satisfy Proposition we have the
following relation

Proposition 4.2. Consider N clouds [r,6],,...,[r, 8]y satisfying the conditions of Proposi-
tion and S[Ef](l:N) the pre-order induced from [1t,0],,...,[m,8]y. LetO=p <y <...<
Yu = 1 be the distinct values taken by [r,6),,...,[®, 0]y, and E; ; the set given by Equation
3.39) for cloud [,8];. We note (m,F) s ,(m, F) 5 5 and (m, F)

[7,0]
01N Y1:N)
dom sets respectively induced by the clouds [r,$],, [T, 6]%-1\1) and [n,ﬁ]u(w). Then, clouds

the ran-

[T, 6]0(1:N> and [T, S]U(I:N) can be built in the following way:

® Build a joint bpa mj suchthatm(Ey jx...XEn ;) =Yj—Yj—1forall j=1,....M

5]
(1)

can respectively be retrieved by taking the conjunctive and disjunctive allocation of

7,8] (1)

o The random sets (m,F )z 51, (m,F )iz g~ induced by [, 8]
’ e RY)

Navy’ [TC’ Ua:v)

m[n—’(ﬂ(l:N).

~and

Proof. Given the cloud [r, §];, we note 7; the distribution 1 — &;. We also note (m, 7).

(m, F )z, the following random sets:

En j={xe Z|m(x) = v} Ez,j={x€ Z[mi(x) = 1 -yj1}
m(Ex,j) = v — ¥j-1 m(EﬁiJ) =YY
Note that (m, 7)., (m, 7 )z, are the random sets induced by the possibility distributions 7;, r;
and are given by Equation (3.17).

We will only provide the proof for the conjunction, the proof for the disjunction being

similar. First, let us consider the cloud |7, é]ﬁ(m resulting from the conjunction. The random
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set (m, F )[n 5, induced by this cloud (which is comonotonic, by Proposition reads,
THOMN)
forj=1,...,M:

E[ﬂ?ﬁ]m.,j = {x € %‘ (mini:h“’N 717,'()6)) > ’)/j/\ (maxi:17.,.7N 51()6)) < '}/J}

m(Ez5). ;) =Y —Yj-1

with Ez 51 ; the focal sets and m(E[,wg}m ;) its mass. Given an index j, we have the following

equalities:

Eniy, = e 21 min (1) 2 0 (Lmax (8600 < 7}

i N

— (e 21 (min, (700)) 2 g ee 271 (Lmax (500)) <750

=1,...,.N i=1,...,

— (e 21 ( pin (800)) = b ee 271 (Lmin (709 ) 2 1- 70

i=l1,...,

and by using the relation between the minimum in possibility theory and random sets (see

Section4.1.3.5)),

=< M {xeﬂflﬂi(X)Z?’j}>ﬂ< N {xe%m(x)zl—yj_l})

i=1,...N i=1,...N

= N (xeZm >yinfxe 211§ >1-71})
i=1,..N

= ﬂ {xe Z'm(x) > v\ 6i(x) <7y}
i=1,..N

and, since E; j = {x € Z"|m(x) > y; A 6i(x) < ¥;}, this finishes the proof. O

Proposition4.2]is similar to the link between possibilistic conjunction and random set con-
junction. It also comes down to consider random set conjunctive and disjunctive allocations,
while assuming a complete correlation between o-cuts, and in the case of fuzzy clouds, we re-
trieve the result of Dubois and Yager [101]. Note that, if clouds do not satisfy Proposition 4.1}

then the procedure described in Proposition {1.2] give the random sets inner approximating

[T, 5]0(1-1\/)’ [”’S]U(m) (see Proposition 3.14).

Relations with credal sets. As for possibility theory, clouds resulting from the conjunction
and disjunction generally induce respectively smaller and larger credal sets than the credal set

conjunction and disjunction. This is formalized by the next proposition
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Proposition4.3. Let Py 5, ..., P 5), be the credal sets induced by the clouds [7,68],...,[m, 8]y
[, 6]

we then have the following relationships with clouds [T, 5]%‘

N)’ Vi) d

and the first inclusion is turned into an equality if clouds [rt,68],,...,[r, 8]y satisfy Proposi-
tion 41|

Proof. By Proposition 3.10] we have Pz 5 =& N " with T; = 1 — §;.

(1:N) i 1.v) i,

Since L@nmm(lm - ﬂﬁvzl P, and likewise for possibility distributions 7;, this gives

N N N
(«@[mg]n(l:[w) = <r@ﬂmi“(1;1v) N c@ﬁmm(l N)> - (Q ‘@75[ N Q f@m) = (m gz[nﬁ]i)

: i=1

and we have the inclusion relationship between conjunction. The inclusion between disjunc-

tions can be proved likewise, since ‘@ﬂmaxa-w) D (Y, Pr).

Now let’s turn to the case where all mappings {J;, w;|i = 1,...,N} are comonotonic (clouds
satisfying the conditions of Proposition [4.1)). In this case, this means that every cloud [r, 8],
can be mapped into an equivalent generalized p-box inducing the pre-order <IF.F| (1:N) and
defined on a same collection® C A} C ... CAj4| = 2 of nested sets, with | 2| the cardinality

of Z". These N generalized p-boxes correspond to N collection of constraints corresponding

to Equations (3.20):
iZl,...,‘%‘jZl,...,N ai,jSP(Ai>§ﬁi,j

with @; j, B; ; respectively the lower and upper bounds on the probability of A; induced by the
cloud [, ] j- Since all the constraints are defined on the same collection of nested subsets,

their conjunction is given by the | 2| constraints:

i=1,...,|2] max (o ;) <P(A;) < min (B ;)

j=1,..N j=1,.N

which are equivalent to the cloud [, 6]0(1-/\1)’ and also to (Y, Pr,5),- This shows the equality.
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]

And from this proposition, we can derive the following corollaries, of practical importance:

Corollary 4.4. Let m,...,nn be N possibility distributions defined on 2~ such that &y, ..., N
are comonotone. Then, we have

Py

1

=

Timin 1)

i=1

Corollary 4.5. Let [F,F],,...,[F,F|y be N usual p-boxes defined on the real line R. Let
[E’F]ﬂ(uv) denote the p-box [max;—_nN(F;),mini—; _n(F;)] Then, we have

N
N Zer,

ZEr),
i=1

1:N) N

The above corollaries and propositions confirm that the comonotonicity property is very
appealing, both for theoretical and practical reasons. It reinforces the idea that comonotonic
clouds are likely to be more useful that their non-comonotonic counterparts. Above properties
also suggest that multiple clouds should be elicited by considering a common ordering on the
space .2, and that when extracting clouds from credal sets (for instance, by Algorithm 2)), one

should preferably always consider the same ordering of elements.

4.2 Treating the conflict by adaptive rules using maximal

coherent subsets

In this section, we address the problem of dealing with partially conflicting information. In
such cases, neither conjunctive nor disjunctive fusion operators will provide satisfactory re-
sults, the former resulting in poorly reliable representations, and the latter in very imprecise

results.

As said in Section [@.1.1] trade-off operators can be used to provide a result between the
conjunction and the disjunction, with the aim to balance gain and reliability of information.
In most cases, the classical convex combination is used. However, it is in general not easy
to determine meaningful weights A,..., Ay (we will suggest some methods to do so in Sec-

tion 4.4)). Moreover, when sources provide information concerning an observable parameter
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or a variable whose exact value i1s unknown, convex combinations can be criticized on the
basis that they are voting-like procedures, and that their result could promote values that none
sources judged plausible at first, an undesirable feature when modelling uncertainty about
physical variables. Thus, convex combination seems more fitted to the cases where sources
express preferences or utilities, and when a consensus has to be reached (in which case previ-

ous criticisms are no longer relevant).

There are other non-adaptive trade-off operators representing alternatives to convex com-
bination: they include (among others) mean operators satisfying Equation (4.1))) and ordered
weighted averaging operators introduced by Yager [213)215]]. Yet, such operators and convex
combination often suffer from the same defects. Also, it is not always clear when to choose
one operator rather than another one (when an important amount of data is available, it is
possible to choose the operator by some training process, so that it best-fits the situation).
Also, these operators always behave in the same way, irrespectively of the amount of conflict

between information.

Adaptive rules are other trade-off operators, whose behavior depend on the amount of
conflict in the information. They range from a conjunctive behavior (total consistency) to a
disjunctive behavior (total conflict). In-between, they act as trade-off operators. They often
consist in combination of disjunctive and conjunctive operators. Adaptive rules are particu-
larly well suited when no specific knowledge is available about the sources (e.g., reliability)
and when choosing a particular non-adaptive operator appears difficult. A typical example
is when multiple experts whose reliability is unknown provide opinions about the value of a
variable. Although conceptually attractive, such rules often require more computational effort
than the other operators. Also, since their behavior depends on the global amount of inconsis-
tency in the information, they usually do not satisfy Associativity (Property [[I), which means
that all the sources have to be considered at once, and that no step-by-step computations are

possible.

So far, trade-off operators other than classical convex combination have mainly been stud-
ied in the framework of possibility theory [162, 56, 215, 93]. Only few works study such
operators in the framework of imprecise probability theory [[154, 202]], in which propositions
to cope with partially conflicting information often considers second-order models [[157, 194,
129]]. Similarly, using trade-off operators outside convex combination to deal with partially
conflicting information is seldom considered in random set theory, where most propositions
to deal with partially consistent information consist in normalization procedures redistribut-
ing the mass associated to the empty set among other sets after a conjunctive fusion (see
Smets [[188]] for a thorough and critical review). Note that although the Dubois and Prade [84]]
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rule is often seen as such a redistribution, it can also be interpreted as an adaptive trade-off op-
erator, where pairs of focal sets are conjunctively allocated if their intersection is non-empty,
and disjunctively allocated otherwise. In short, there exist a lot of rules that tries to cope with
conflict, and it is often not clear which one should be chosen in a particular application. In
this work, we propose to use fusion rules based on the notion of maximal coherent subsets,
originating from logic [173]. As we shall see, this notion is conceptually simple, attractive and
has many interesting properties, but can be limited by the computational burden associated to
1t.

4.2.1 Maximal coherent subsets (MCS) rule: basic methodology

Using MCS to fuse information is an attractive concept, since using MCS precisely aims at
gaining a maximal amount of information while remaining coherent with all the information
sources. It is a natural way to cope with the (somewhat "opposed") main objectives pursued
by the general problem of information fusion. Given N sources, fusion rule based on MCS
consist in applying conjunctive operator(s) inside subsets of sources that are consistent and
then disjunctive operator(s) across these subgroups. It is thus an adaptive rule, since conjunc-
tive and disjunctive behaviors are retrieved respectively when the N sources are all consistent

or totally conflicting with each others.

4.2.1.1 MCS in imprecise probability theories.

We first study generic fusion rules applying the notion of maximal coherent subset in the

different theories of uncertainty.

MCS with credal sets Let &7),..., %y be N credal sets modeling the source information.
K C [N] is a MCS if it is such that Njex &7 # 0 and if it is maximal with this property. Let
Ki,...,K; be the MCS of the N credal sets. The MCS fusion rule resulting in the credal set
@MCS(IW) is defined as:

k
'@MCS(I:N) = U ﬂ P; (4.23)
j=licK;

the credal set BJMCS“:N) generally fails Properties of associativity [lI, strong zero preserva-
tion [Vl strong maximal plausibility [VIII and robustness and satisfies all the other prop-
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erties of Section (see Table . The MCS rule giving WMCS( 1) A8 well as some vari-
ations have been studied by Walley [202]. It satisfies all the properties that he regards as de-
sirable, but he points out the fact that, in some situations, the failing of robustness (Prop.

for this particular rule can be problematic.

The notion of maximal coherent subsets is also used in other works done in the framework
of imprecise probabilities, although it is not mentioned explicitly: the result of the aggrega-
tion procedure proposed by Troffaes [194] can be seen as a convex combination of maximal
coherent subsets of credal sets, and Moral and Sagrado [[154] use maximal coherent subsets as

a step in their fusion procedure.

MCS with random sets Let (m,.#),,...,(m,.# )y be N random sets modeling the source
information. A random set (m,.%) MCS 1y, resulting from the application of the MCS rule is

given by the following steps:

1. Build a joint bpa m;.y) satisfying Equation (4.7).

2. For each joint mass m(1;N)(><f\]:1Ei), K C [N] is a MCS if it such that N;cxE; # 0 and if
it is maximal with this property. Let K1, ..., K} be the MCS for this joint mass.

3. Allocate the joint mass m(lzN)(xf.VzlE,-) to the set Uljzl ﬂieKj E;, with E; € %; for i =
1,....N.

Again, it can be checked that (m,.%) MCS 1.y, generally fails Properties of associativity
strong zero preservation [VI strong maximal plausibility [VIII, robustness [XII] and convex-
ity [XI| (which can be satisfied by taking the convex hull of (m,.7) MCS(1;N>)’ That it satisfies
Property of idempotence [[V|depends on how the joint bpa is built, and it satisfies all the other
properties of Section (see Table . If m(l:N)(x?]:]Ei) = 1Y, mi(E;) and N = 2, then

we retrieve Dubois and Prade rule of combination [[84]].

As an application of the notion of maximal coherent subset in random set theory, we can
mention the work of Ayoun and Smets [8], who considers MCS not on focal elements, but
on sources (i.e., they divide sources in consistent subgroups, since in the application sources

potentially consider different objects).

MCS with possibility distributions Let 7;,...,my be the N possibility distributions mod-
eling the source information. K C [N] is a MCS if it is such that min;cgx 7; # 0 and if it is
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maximal with this property. The possibility distribution mcs, ..., resulting from the applica-

(I:N)
tion of the MCS fusion rule is:

CS) ) = AN, (4.24)
With K the different MCS. Again, it can be checked that TMCS 1.5 generally fails Properties of
associativity Il strong zero preservation |VI} strong maximal plausibility , robustness [XI]
and convexity (which can be satisfied by taking the convex hull of nMcs(]:N)). It satisfies
all the other properties of Section {.1.2] (see Table #.3). In the above rule, operators min
and max can be replaced respectively by any t-norm and its dual t-conorm, but Property of

idempotence || V|would not be satisfied anymore.

4.2.1.2 Maximal coherent subsets (MCS) in practice.

The above rules have the advantages that they try to gain a maximal amount of information
while taking account of all sources. They also need a minimal amount of information about
these sources: in possibility theory and imprecise probability theory, both Equations ({.24))

and (4.23) are parameters free, and can be applied with only the source information.

Within random set theory, applying the MCS fusion rule requires to build a joint bpa, which
implies making some assumptions on the interactions existing between sources. In absence
of such information, a cautious approach following the least-commitment principle (LCP) can

be adopted.

As conceptually attractive and elegant as it may be, applying a fusion rule based on MCS
usually requires an important computational effort, which is an important drawback in practi-
cal applications where calculation time is a critical issue or where information is provided by
a lot of sources. Similarly to logic, extracting coherent subsets from arbitrary spaces is of ex-
ponential complexity (actually, the problem is NP-complete, see for example Malouf [[140]),
and this complexity adds up to the complexity of applying conjunctive and disjunctive fusion

rules in the considered theory.

To reduce this complexity and increase the tractability of MCS based methods, one can ei-
ther build algorithms providing approximate solutions that converge to the true solution (e.g.
by using MCMC like methods [210]), or use MCS methods in a restricted framework in which
computations are easier to achieve. In the next section, we adopt the second solution, by study-

ing a MCS method that applies to information modeled by convex possibility distributions on
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the real line. Although restrictive, this framework is likely to be useful in many real-life ap-
plications, where variables and parameters take real values and where possibility distributions

model a limited amount of information.

4.2.2 Level-wise MCS on the real line with possibility distributions

In this section, we consider the case where the information provided by the N sources concerns
a variable X taking its value on the real line R and can be modeled by N convex possibility
distributions 7;, i = 1,...,N. It can be, for instance, N experts providing nested intervals with

their confidence levels.

We propose to summarize or fusion the information by applying a level-wise MCS method
to the N distributions. That is, for each level o € [0, 1], we apply an MCS method to the N a-
cuts, from which we retrieve a fuzzy random variable, or fuzzy belief structure (m, :/JY) Such
a method can be seen as an extension of Equation (4.24)) or as a particular case of the MCS
method in random set theory, where a complete correlation is assumed between ¢-cuts. This
makes the method consistent with the relation (recalled in Section 4.1.3.5) existing between
conjunctive and disjunctive rules of possibility theory and of random set theory. Moreover, this
particular setting allows for fast and easy computations. In the sequel, we use the following

example to illustrate the proposed MCS fusion rule:

Example 4.1. Four sources (experts, computer code, sensor, ...) provide information in term
of a best-estimate and a conservative interval, and the possibility distributions are supposed

to have trapezoidal shapes. The information, represented in Figure {.1] is summarized in

Table 4.4l

Table 4.4: Information of Example |4.1{sources

Source | Conservative interval | Best estimate
1 [1,5] [2,4]
2 [1,13] [3,6]
3 [3,11] [7]
4 [5,13] [10,12]
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Figure 4.1: Example 4.1|distributions

4.2.2.1 Extracting MCS of intervals

We first recall results found by Dubois et al. [76, [77] and concerning the case where sources
supply N intervals I; = [a;,b;], i = 1,...,N. In this case, the MCS are the subsets K; C [N] of

sources such that N;ek;/; # 0, and applying the MCS method to such intervals is equivalent to
find Iy cs = U; Niek; Lis which is usually a union of disjoint intervals. Dubois et al. [[/6, [77]

show that Algorithm@, described below, allows to extract subsets K; of coherent sources from

the N intervals ;.

Algorithm 4: Maximal coherent subsets of intervals

Input: N intervals
Output: List of m maximal coherent subsets K;
List=0;
=1
K=0;
Order in an increasing order {a;|i = 1,...,N}U{bi|li=1,...,N};
Rename them {¢;|i = 1,...,2N} with type(i) = a if ¢; = a; and type(i) = b if ¢; = by ;
fori=1,....2N—1do
if type(i) = a then

Add Source k to K s.t. ¢; = ay ;

if type(i+ 1) = b then

Add K to List (K; = K) ;
L J=Jj+1;

else
| Remove Source k from K s.t. ¢; = by ;

Algorithmis based on increasingly sorting the interval end-points into a sequence (¢;);—] 2N
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Figure 4.2: Maximal coherent subsets on Intervals (0.5-cuts of Example

that is scanned in this order. Each time (and only then) it meets an element c¢; of type a, (i.e.
the lower bound of an interval) followed by an element c; | of type b (i.e. the upper bound
of another interval), a maximally coherent set of intervals is obtained. Once end-points of
intervals /;, i =1, ..., N have been sorted, Algorithm ] complexity is linear in the number N of
sources, whereas extracting maximal coherent subsets is generally of exponential complexity.
This greater efficiency is due to the facts that there is a natural ordering between real numbers
and that we consider intervals. Algorithm ] could thus be easily adapted to any similar sit-
uation (i.e. ordered space 2 where we consider sets /; containing all elements respectively

higher and lower than their lowest and greatest elements).

Figure illustrates the situation for o-cuts of level 0.5 of Example Using Algo-
rithm 4, we find two maximal coherent subsets : K; = {I},} and K, = {I,3,14}. Af-
ter applying the maximal coherent subset method, the result is (I} NL) U (LN N1L) =
[2,4.5]U[7.5,9], as pictured in bold lines on the figure. They can be thought of as the most

likely intervals where the unknown value may lie.

4.2.2.2 Level-wise MCS on possibility distributions

We now consider that sources provide N possibility distributions 7;, i = 1,...,N whose o-cuts
are intervals (i.e. possibility distributions 7; are formally equivalent to fuzzy intervals). This
means that, for each level o € [0,1], their o-cuts form a set of N intervals E; o, with E; o
the a-cut of ;. It is then possible to apply Algorithm [4]to them : Let K; o be the maximal
subsets of coherent intervals such that (;c Kia E; o # 0. Define Epcs,o as the union of the
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partial results associated to K o, as suggested by Dubois and Prade [93] :

Evcsa= U [) Eia (4.25)
j=1,...,f((x)iEKj,tx

where f(o) is the number of distinct maximal subsets K o of coherent intervals at level a. In
general, Eycs, o is @ union of disjoint intervals, and it does not hold that Eycs,a O Eycs,g for
any two values 8, o € [0, 1] such that B > a. So, the result is not a possibility distribution,

since the sets Eycs, o are not nested.

In practice, for a finite collection of distributions 7;, there is a finite set of p 4 1 values
0= <...< By < Bp+1 =1 such that the sets Eycs, o Will be nested for values o € (B, Br+1],
k=1,...,p. Algorithm |5 gives a simple method to compute these threshold values S;. It
simply computes the height of min(7;, ;) for every pair of possibility distributions 7;,7;.
This value is the threshold above which 7; and 7; do not belong to the same coherent subset

anymore.

Algorithm 5: Values B of fuzzy belief structure
Input: N possibility distributions 7;
Output: List of values
List=0;
i=1;
fork=1,....Ndo

for/=k+1,...,Ndo

Bi = max(min(m, m;)) ;
i=i+1 ;
if B; not in List then

| Add B; to List ;

Order List by increasing order ;

By applying Equation for all levels o € (B, Brs1], we retrieve a non-normalized
fuzzy set F; with membership range (B, Br1]. since sets Eycs, o are nested in that range. We
note F; the normalized fuzzy set obtained by changing, for all x € R, the membership function
Vg (x) of Fy into

- () = XA~ Bis0)
Br1— Br

that is, we expand the range (B, Br+1] to [0,1]. If we now assign a weight m; = By — B

to Fy, and do this for every k = 1,..., p, the result is a random fuzzy variable that we note
(m,.F )05, Whose focal elements are normalized fuzzy sets F; with weights my. Weight my

can be interpreted as the confidence given to adopting Fy as the information provided by all
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Figure 4.3: Result of MCS method on Example (—) and 0.5-cut (---)

the sources.

Figure illustrates the result of applying the method to Example 4.1l The 0.5-cut is
exactly the result of Figure The result of Equation (4.23)) for each level o € (0,1] is in
bold.

Note that in Equation (#.25)), if we consider only the maximal coherent subsets Ko of

level O (i.e. distributions whose support intersects) and build for every level o € [0, 1] the set

Evcsoa= U ) Eia

J=1,...f(0)i€K 0

Eycs,,o defined as

then we retrieve a random set whose focal elements are nested and are the o-cuts of the
possibility distribution resulting from Equation (4.24). This shows that the proposed method
is an extension of the possibilistic MCS fusion rule, where we allow maximal coherent subsets
to evolve with level o. Similarly, the method is a particular instance of MCS fusion rule in
random set theory, where a positive total correlation between o-cuts is assumed. The link
with credal sets MCS fusion rule is less clear, except if we consider random sets as 21d order
imprecise probabilistic models, where 2" order models are precise probabilities (i.e. the bpas)

and the 1% order model is an interval modeling our knowledge (i.e. the focal sets).
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Figure 4.4: Contour function 7, extracted from Example with fuzzy focal ele-
ments (gray lines)

4.2.2.3 Exploiting the fuzzy belief structure

From Figure 4.3 we can see that the fuzzy belief structure resulting from the MCS method is
likely to be hard to use in practice, or to be interpreted by non-experts. It is therefore desirable
to have some tools that allow to extract summarized and useful information from the whole

structure. Such tools are proposed here.

Building the contour function. Summarizing the information in a more synthetic model
such as a unique possibility distribution allow to provide an analyst or decision maker with a
simplified and more interpretable model. We propose to take the contour function 7, of the

fuzzy belief structure (m, F),,c. that is
P
Vxe 2, m(x)=Pl({x}) = Y} mivi(x), (4.26)
i=1

which boils down to computing the weighted arithmetic mean of the membership functions of
the fuzzy focal sets F;. If needed, one can then normalize this distribution 7. (by computing

7t/ (x) = m.(x)/h(m.) where h(m,) is the height of 7.) and/or take its convex hull.

Figures 4.4|A and [4.4|B respectively show the contour function and its normalized and
convexified versions that can be extracted from Example[d.1] together with the fuzzy focal sets
in the background. As we can see, the result is a bimodal distribution with one mode centered
around value 8 and the other with a value of 4, this last value being the most plausible. This
is so because these areas are the only ones supported by three sources whose information are

highly (even if not totally) consistent. We can expect that the true value lies in one of these
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two areas, but it is hard to tell which one. Indeed, in this case, one should either take the
normalized convex hull of 7, as the final representation of the parameter X, or find out the

reason for the conflict (if feasible).

If we consider distribution 7, as the result of a fusion operator ¢ applied to distributions
Ty, ..., Ty, then it satisfies Properties of commutativity (III)), idempotence (IV)), insensibility to
relative ignorance (X)), strong reconciliation (X)), weak maximal plausibility and weak
zero preservation (V) (see table 4.3)). It is also less sensible to small changes than other rules
and satisfy all the requirements advocated by Oussalah et al. [[163] and Delmotte [S5]. Also
note that the same properties, this time for table 4.2] are also satisfied if we consider that the
random set equivalent to the fuzzy belief structure (m, % vcs (see Equation ) is the re-
(M, F) g

in this case, (m, :?%) ycs also satisfy Property of total consistency .

sult of fusing the random sets (m, %) corresponding to 7y, ..., Ty. Moreover,

R

Extracting subgroups of coherent sources For each threshold in (B, Br+1], k= 1,...,p,
Algorithmexploits the same MCS Kj(p Pl of sources. Changing the value of this threshold
yields a finite collection of coverings of the set of sources. Increasing the threshold from O to
1, we go from the largest sets of agreeing sources (i.e. those sources for which the supports
of distributions 7; intersect), to the smallest sets of agreeing sources (i.e. those for which

K](_ﬁkﬁkﬂ}

cores intersect). Subsets can be interpreted as clusters of sources that agree up to a

confidence level B, 1.

Analyzing these clusters can give some information as to which groups of sources are
consistent, i.e. agree together with a high confidence level ( possibly using some common
evidence to supply information) and which ones are strongly conflicting with each other (and
which items of information are plausibly based on different pieces of evidence). The finite

collection of groups from Example [4.T]are summarized in the following table

Subsets Clusters Max. Conf. level

K©O04 1112 3][2,3, 4] 0.4
K(O40.60] 17 2123 4] 0.66
K(0-66091) |11 2112 3][4] 0.91

K(0-91.1] [1,2][3][4] 1.0

In this example, not much can be concluded from these clusters of coherent sources. Never-

theless, presenting the information in this form seems natural, and can trigger further investi-
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gation as to why some sources seems to be more conflicting with the others (such as source 4

in our example).

Measuring the gain of information An interesting piece of information to have is how
much precision has been gained by the fusion process. We consider that the overall impreci-

sion of the information provided by all the sources is equal to

IP = |77:maX(1:N)| :/Xﬂmax(lw)oc)dx

with |7tmax(]:N) | the fuzzy cardinality of Tonax .y, - If we now consider the fuzzy belief structure

(m,.F )5 resulting from the fusion process, its imprecision can be measured as
P ~
IP =Y my|F|
k=1

The difference GP = IP — [P’ quantifies the precision gained due to the fusion process. This
index is 0 in case of total conflict and when the sources supply the same possibility distribution.
Indeed, the MCS method increases the precision when sources are consistent with one another
but supply distinct pieces of information. In Example we have IP = 11.195, IP' = 5.412
and the normalized index (/P—IP'/ip) is 0.52, which indicates a reasonable gain of precision

after fusion.

Since the fusion process follows a level-wise application of the MCS method, it is natural
to investigate the level-wise counterpart of both 7P and IP'. That is, we can compute, for each
threshold o € (0, 1]

IP(0) = |Emax IP'(at) = |Epcs,al

(1;N)7OC|
with Emaxuwa the a-cut of Timax 1.y, - These evaluations depending on ¢, they can be seen as
gradual numbers [95, [109]. Recall that a gradual number is formally a mapping from (0, 1] to
the real line R, such as IP(a) and IP' (). IP(a) measures the imprecision of the continuous

belief structure (m,.7) with uniform distribution on [0, 1] and which assigns to each

ﬂmax
(1:N)
o € [0, 1] the set Emaxy.n),0 = Ui=1,...n Ei,, that is IP(o) gradually evaluate the imprecision
of the belief structure resulting from the level-wise disjunction of a-cuts. It is a monotonic
gradual number, since the disjunctions of a-cuts are nested. The gradual number IP' ()

measures the imprecision of (m,.%),,~¢ likewise. However it is generally neither continuous

nor monotone (cuts are not nested). The gradual number GP(a) = IP(o) — IP'(a) is thus a
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level-wise measure of the precision gained by applying the maximal coherent subset method.

The following equality formalize their link with their scalar counterparts /P, IP" and GP:
1
IP = /IP(oc)doc,
0

and likewise for [P’ and GP. Since my|Fj| = |, [i ‘ 1 |Eypcs,aldo, we effectively have IP' =
fol IP'(a)da. The validity of the other equality IP = fol IP(o)d o follows from the definition

of fuzzy cardinality.

Measuring the confidence in an event, in a source Once (m,% mcs has been accepted
as a good representative of the information provided by the sources, plausibility and belief
measures of an event A, given by Equations (3.62)) and (3.63), provide natural upper and
lower confidence levels given by the group of sources to this event. In particular, if A = m;,
plausibility and belief can be used to evaluate the resulting upper and lower “trust” in the

information given by source i in view of all the sources.

In Example values [Bel(m;), Pl(m;)] for sources 2 and 4 are, respectively, [0.38, 1] and
0,0.93] (using, for example, Equations (3.62)-(3.63)). We see that information provided by
source 2 is judged totally plausible by the group, and also strongly supported (source 2 is
undoubtedly the less conflicting of the four). Because one source completely disagrees with
source 4, its belief value drops to zero, but the information delivered by it is nevertheless

judged fairly plausible (since source 4 is not very conflicting with sources 2 and 3).

Although belief and plausibility functions are natural candidates to measure the overall
confidence in a source, there are cases where their informativeness will be poor. For in-
stance, if a distribution 7; is in total conflict with the others, the resulting fuzzy belief structure
(m, % wcs Will give the following measures for 7; : [Bel(m;),Pl(m;)] = [0, 1] (total ignorance).
It means that in the presence of strong conflict, the MCS method grants no confidence in indi-

vidual sources, even though no source can be individually discarded.

An alternative to reduce this imprecision is to use a fuzzy equivalent [167] of the so-called

pignistic probability [187] (see Appendix [C]), namely

~ ]min(fk, va)|

p
BetPycs(A) = Y m(F) = (4.27)
k=1 | Fi|

with v, the membership functions of (fuzzy) event A, and |min(Fg, v4)|/|Fi| the degree of
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subsethood, or relative cardinality, of Fj in A. BetPycs(A) is zero if A is strongly conflicting
with every focal set F; and one if every Fy is included in A (here, F} is included in A iff
Vi (x) < va(x)Vx € R). In Example Equation |j applied to sources 2 and 4 (A = m,
and A = my) respectively gives confidence 0.80 and 0.49, confirming that source 2 is more

trusted by the group than source 4.

Note that other formulas instead of [min(Fj, v4)|/|Fi| could have been chosen to measure
the subsethood of ﬁk in A [54,197]]. One could also choose to consider the continuous random
set associating set Eycs, o to each level a € [0, 1] and to use the continuous extension of the
pignistic probability proposed by Smets [[186], which would give yet another result. Further
research is needed to know the properties of each of these measures and the relations existing
between them, and it is presently not clear when to choose one measure rather than the others.
From our standpoint, the important criteria satisfied by these measures is that they are con-
sistent ways to measure the coherence of A with respect to the fuzzy belief structure coming
out from the MCS method (e.g., in our example, source 2 would be judged more reliable than
source 4, irrespectively of the chosen formula for the pignistic probability, and only the scalar

evaluations would change).

All these tools (building the contour function, extracting coherent subgroups, measuring
the precision gain and the resulting confidence in events) provide users and analyst with syn-
thetic and interpretable messages. That such tools should be made available is important for
future practical applications. Another important issue, not considered so far, is the ability of
the method to take additional information about the sources into account. Methodologies to

do so are proposed in the next section.

4.2.2.4 Taking additional information into account

We consider here three kind of additional information or assumptions concerning the sources
and/or the space 2, that are often encountered in practice: the number of reliable sources,
numbers quantifying the reliability of sources (possibly given by methods studied in Sec-
tion[4.4), and the existence of a metric on space 2.

Number of reliable sources Suppose we have information on the number r of sources that

can be expected to be reliable, or at least that some assumptions can be made about this



162 Treating multiple sources of information

0.7
0.6
0.5 : g , ..
04 fmrmeidem L\ mmm o R ~
03 i ; '
02
0.1

A R L. _ ______________ 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.5: Result on Example of MCS method with number of reliable sources
r=2

number. Given this number, we propose to adapt Equation (#.25]) as follows

Eycs,,o = U ﬂ E;qo (4.28)
j=1,f(0) €K

|Kja|>r
with |K; o| the number of sources in K o. For each level o € [0, 1], only those subsets counting
more then r sources are considered. This lessens the contribution of isolated sources or of
small subgroups of consistent sources, and ensures that the result will be at least as informative
as the result provided by the original method (Equation {#.25))). Figured.5]illustrates the fuzzy
belief structure resulting from Example d.1|when r = 2.

Accounting for the reliability of sources Suppose that some numerical evaluation of the
reliability of each source is available. Denote A; the reliability of source i, and suppose, with-
out loss of generality, that A; € [0, 1], value 1 meaning that the source is fully reliable, O
representing a useless source. There are at least two ways of taking this reliability indices
into account, the first one increasing the result imprecision by modifying (i.e. discounting)
the possibility distributions, the second one decreasing the imprecision by discarding poorly

reliable subgroups of sources:

e Discounting: discounting consists of transforming all 7;,i = 1,...,N into distributions

7rl’ whose imprecision increases all the more as A; is low. In other words, the lower 4; is,
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the more irrelevant 7; becomes. A common discounting operation is the following:
VxeR, xl(x)=max(l—A;,m(x))

Once discounted, sources are assumed to be reliable. The effect of the discounting
operation on MCS method possesses a nice interpretation. Indeed, applying the MCS
method to discounted sources means that the information modeled by 7; will only be
considered for levels higher than 1 — A4;, since below that level, source i is present in
every MCS K, as no information coming from it will be considered. A drawback of this

method is that if values A; are low for each sourcef, the result will be highly imprecise.

e Discarding unreliable sources: we propose to compute the overall reliability Agx of a

subgroup K as
Ak = Liek (i) (4.29)

where L is a t-conorm (here considered as an aggregation operator [13]]). Choosing
a particular t-conorm to aggregate reliability scores then depends on the assumed de-
pendence between sources. For example, the maximum t-conorm _ (x,y) = max(x,y)
corresponds to the cautious assumption that agreeing sources are dependent (i.e. use
the same information), thus the highest reliability score is not reinforced by the fact that
multiple sources agree. On the contrary, the t-conorm L (x,y) = x4y —xy (the dual
of the product t-norm) can be associated to the hypothesis that sources are independent
(reliability score increases as more sources agree together). A limit value A can then be

fixed, such that only subsets of sources having a reliability score over this limit are kept.

Equation (4.25)) then becomes
Evcs,a= | () Eia- (4.30)
j=1...f(a) i€Kjq
Ak g =2

Remark that this method does not modify the pieces of information 7;.

Figures [4.6] and show the result of applying the above methods (respectively dis-
counting and discarding) to Example when reliability indices are A; = 0.2, A, = 0.6,
A3 = 0.8,A44 = 0.2. For the discounting method, we consider X € [1,14], and for the dis-
carding method, we consider independent sources and A = 0.5. Figure 4.6/ well illustrates the

higher imprecision that can result from applying a discounting method.
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Figure 4.6: Result of MCS method on Example with reliability scores A =
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Accounting for the metric In the original MCS method described here, if an isolated source
is totally conflicting with the others, then it will constitute a maximal coherent subset of its
own. If the notion of distance on 2 makes sense, this will be true whatever the distance of
the isolated source distribution from the others is. However, in some applications [163], it is
sometimes desirable to take the distance between distributions into account, with the aim of

neglecting the information lying outside a certain zone.

Let ko = max #(a) |Kj,a| be the maximal number of consistent sources at level a.

j=1,..,
Denote Eg; o = ﬂieKjaEi,a- At each level «, following Oussalah et al. [163]], a so-called

consensus zone can be defined as the interval:
Exo= <Uj,|Kj.a\:ka (EKpO‘)) = [l—‘a’za]’

with 7 the convex hull. Now, let A = [a,a], B = [b,b] be two intervals. We define the
closeness C(A, B) between A and B as

CB) =, o d(e:b)
where d(a,b) is the distance between two points a and b of the space 2. Note that C(A, B) is
not a distance (it does not satisfy triangle inequality), but is a measure of consistency between
sets A and B accounting for the metric. Indeed, it will be 0 as soon as AN B # 0. Since
the proposed method emphasizes the concept of consistency, this choice appears sensible ﬂ
Moreover, between two thresholds [, Bi11, the closeness C(Ek; o, Ek; o) between any two

sets Ex; a,Ek;,o 1 # j is an increasing function of ¢, due to the nestedness of these setsﬂ

Given the consensus zone Ek ¢, we can now fix a distance threshold dj and adapt Equation
(4.25) in the following way, so that it takes account of the metric of 2

Eycs o = U ) Eia- (4.31)

j=l..fla)  i€Kjq
C(EKj,(X7EK,(X)SdO

applying Equation (4.3T)) means that information too far away from consensus zones are re-
garded as outliers and deleted. Figure [d.8|illustrates the method on Example 4.1 when dy = 1.

Overall, the proposed modifications allowing to take additional information into account
only slightly modify the original method (Equations (4.28), (¢.30) and (4.31) remain quite

“4Genuine distances between sets like the Hausdorff distance are less meaningful in our context.
Sthis would not be true for the Hausdorff distance.
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close to Equation (4.25)). It thus brings more flexibility to the method, while preserving its

computational attractiveness.

4.3 Towards a cautious conjunctive rule in random set the-

ory

We now turn to another common problem of information fusion, that is coping with dependen-
cies between sources. We here look at the specific situation where uncertainty is represented
by random sets and the dependencies between sources are badly known. Random set theory
1s an attractive theory to treat such a problem, since the construction of a joint bpa allows to
model specific dependencies, while the Least-Commitment Principle (LCP, see Appendix [C]
for details) provides guidance allowing to adopt a cautious attitude when some information

are missing (here, information concerning the dependence between sources).

First recall that, given a random set (m,.% ), its expected cardinality |C]| (m,F) is given by

IClim.7y= Y, m(E)IE| (4.32)

EcsF

and is the simplest measure of the imprecision of (m,.%). Also recall that this cardinal-

ity is equal to the one of the possibility distribution equivalent to the contour function (i.e.,
[Clm,7) = Exe2r PL{x})).

We consider two sources 1,2, providing their information about X in terms of two random
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sets (m,.#),,(m,.#),. Combining them by the means of Dempster’s combination rule to
obtain (m,.F )®(l‘2) (the normalized version of (m, % )6(1_2)) is justified only when sources can
be considered as independent and reliable, that is when taking the stochastic product of m,m;

to build the joint bpa m;.) and its conjunctive allocation appear reasonable.

When independence cannot be assumed and the dependence structure existing between
sources is badly known, a solution to merge random sets conjunctively is to apply the "least
commitment principle" to the merging of random sets. Such a cautious rule, denoted here A

(and (m, F) A the resulting random set), should at least satisfy the property of idempotence
(Property V] of Table 4.2)

Following the LCP, (m, .7 ) A should be chosen in the set //lmm), so that it is one of the
least x-committed element, with x one of the inclusion ordering in {s, pl,q,w,v,d,dd}. Again,
we choose the s-ordering, for the same reasons as before: for its unifying characteristic, and
because it is from a theoretical standpoint the most appealing notion of inclusion in random
set theory. However, since the s-ordering is a partial ordering, the s-least committed element

in (m,.#), _ isin general not unique.

(1:2)
In order to avoid such incomparabilities, we propose here to define the least-committed

element (m,.#),  as one with maximal expected cardinality. The reasons for choosing

(1:2)
expected cardinality is that (1) it is the most simple way to measure imprecision of random
sets and (ii) it is coherent with the s-ordering, that is a joint random set having maximum
expected cardinality will be among the s-least committed ones. From this requirement follows

the following proposition:

Proposition 4.6. Let (m,.7 ), be a specialization of (m,% ),, then the result of the least com-
mitted rule N is (m, 1/\(m,f)2:(m,ﬁ)/\(12 (m, 7).

Proof. The result (m,.%) Agipy TUSE be a specialization of both (m,.%), and (m,.%#),, by defi-
nition. The fact that (m,.#), is a specialization of (m,.%), implies that the set .#/,,, of pos-
sible solutions reduces to the specializations of (m,.#), (since every specialization of (m,.%),
is also a specialization of (m,.%),). And the specialization of (m,.# ), that has maximal ex-
pected cardinality is (m,.%), itself. O]

We tend to think that Proposition should be satisfied by any rule tagged as cautious,
and at the very least by those based on the s-ordering. Nevertheless, Proposition §.6 concerns
very peculiar cases, and does not provide (practical) guidelines as to how general random sets

should be cautiously merged. In order to propose such practical guidelines, we will first recall
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and then use the concept of commensurate bpas, first introduced by Dubois and Yager [101]]
to relate fuzzy connectives with random set conjunctive fusion rules. In the sequel of this
section, we will allow a bpa to bear on non-distinct focal sets, that is we consider it as a
relation between (2") and [0, 1] (i.e., several masses can be assigned to the same subset).

We will name a bpa whose focal elements are all distinct regular.

Definition 4.1. Let m be a bpa with focal sets A1, ..., A, and associated weights m!,...,m". A

split of m is a bpa m’ with focal sets A/ ,...,A!, and associated weights m'!,. .. ,m" such that

S
&

In other words, a split is a new bpa where the original weight given to a focal set is sepa-
rated in smaller weights given to the same focal set, with the sum of weights given to a specific

focal element being constant.

Definition 4.2. Two bpas m,m;, belonging to some random sets (m,.%),, (m,.% ), are said to
be equivalent if, for any subset E C 2" Pl (E) = Pl,(E) and Bel|(E) = Bel(E).

And one can show [101] that two bpas are equivalent if and only if they are splits of a

common regular bpa.

Definition 4.3. Let m;, m; be two bpas with respective focal sets {Ay,...,A,}, {B1,...,B}
and associated weights {m},...,m"}, {ml,...,m5}. Then, m; and m; are said to be commen-

surate if kK = n and there is a permutation ¢ of [n] such that m{ = mg W i = 1,...,n.

Two bpas are commensurate if their distribution of weights over focal sets can be described

by the same vector of numbers.

Algorithm [6| has been proposed by Dubois and Yager [101]] to make any two (regular) bpa
commensurate, given a prescribed ranking of focal elements and by successive splitting. Once
this commensuration done, they propose a conjunctive merging rule, denoted here &, resulting
in a random set (m, ﬁ)@m) € Mny )

The random set (m,.# )@(1'2)
oo

k _ _ .k k _ pk k
1,...,m, masses M 1) = MR, = MR, and focal elements R@(m) = R} NR;. The whole proce-

dure is illustrated by the following example.

resulting from Dubois and Yager’s rule then have, for k =

Example 4.2. Two random sets (m,.#),,(m,.#),, their commensuration and the result of

Dubois and Yager’s rule are summarized in the following table:
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Algorithm 6: Commensuration Algorithm
Input: Random sets (m,.%),,(m,.% ), on Z°
Output: Two commensurate random sets (m, 7 )g, , (m,-F ), respectively equivalent to
(mwg.)la (magz>2
Choose an indexing of focal elements {Ay,...,A,}, {B1,...,By}, A; € F#,B; € F;
fori=1,...,ndo
L Compute o; = Y}_;m; (A))
fori=1,...,kdo
t Compute f3; = Z_’;:l-mz (B))
Compute {¥,...,¥m} = {01,.... QG U{B1,.... B} With 1 =711 > ... > ¥ > Yiny1 =0
fork=1,..., mdo
Define m;cel = mﬁ%z =Y —Yi—1
Define le = A; such that a; > ¥, > o1
Define RS = B; such that §; > ¥ > Bj11

! 1| Rl !
['lmg | Ry | Ry | Rig

my my 1.5 |A| By |A1NB
A |.5|By|.6 Alg.@ 2| .1 A |B; |ANB;
Ay | 3|By| 2| — 3| 2 |A|By|ANBy
A3 | .2 |B3|.1 4| .1 |A3z | B3z |A3NB3
By | .1 5| .1 |A3|Bg | A3NBy

This example shows that the resulting merged random set (m, .7 ), 2 heavily depends on

(1:
the chosen ranking of focal sets .#] and .%,. Actually, it can be shown that any conjunctively

merged bba can be produced by following this procedure.

Definition 4.4. Two commensurate generalised bpas are said to be equi-commensurate if each

of their focal sets has the same weight.

Equicommensurate bpas can be obtained in the same way as commensurate bpas are ob-
tained with Algorithm[6] by successively splitting each original bpa until all weights are equal.
Note that, provided the ordering on focal sets is the same, the result of applying Dubois and

Yager’s rule to equicommensurate bpas remains (m, .7 ), 2 and is still in .Z (12)"

(1:

Proposition 4.7. Any merged bpa in ///m( can be reached by means of Dubois and Yager

1:2)
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rule using appropriate commensurate bpas equivalent to m| and my and the two appropriate

rankings of focal sets.

Proof. We assume masses (of marginal and merged bpas) are rational numbers. Let (m, %) €
///m( 12) be the conjunctively merged bpa we want to reach by using Dubois and Yager’s rule.
Let m(A;,B;) denote the mass allocated to A; N B; in (m,.%). It is of the form kj2(A;,B;) x
107" where kjp,n are integers. By successive splitting followed by a reordering of elements
R{, we can always reach m. For instance, let kg be equal to the greatest common divisor of all
values k12(A;, B}). Then, k12(A;,Bj) = qij < kg, for an integer g;;. Then, it suffices to re-order
elements R’f by a re-ordering & such that for g;; of them, R’f = A; and Rg ® _p j- Then,
by applying Dubois and Yager’s rule, we obtain the result m. From a practical standpoint,
restricting ourselves to rational numbers has no importance: rational numbers being dense in

reals, this means that we can always get as close as we want to any merged bpa. 0

Given the above definitions and results, it seems natural to derive practical guidelines of a
cautious merging rule A by looking for appropriate rankings of focal sets so that the merged
bpa obtained via commensuration has maximal expected cardinality. The answer is : rankings
should be extensions of the partial ordering induced by inclusion (i.e. A; <A;if A; CA;).

This is due to the following result:
Lemma 4.1. Let A,B,C,D be four sets such that A C B and C C D. Then, we have the
following inequality

|AND|+|BNC| < |ANC|+|BND| (4.33)

Proof. From the assumption, the inequality |(B\A) NC| < |(B\ A) N D| holds. Then consider

the following equivalent inequalities:

|((B\A)NC|+|ANC| < |ANC|+|(B\A)ND|
IBNC| < |JANC|+|(B\A)ND|

|AND|+|BNC| < |ANC|+|AND|+|(B\A)ND|
|AND|+|BNC| < |JANC|+|BND|
hence the inequality (.33 is true. O

When using equi-commensurate bpas, masses in the formula of expected cardinality can

be factorized, and expected cardinality then becomes |C|,, z) = MR, Yoy IR | =
7 9(1:2)
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l l l . . . .
MR, ., Li—1 |Ry NRY|, where mg, , is the smallest mass enabling equi-commensuration. We

are now ready to prove the following proposition

Proposition 4.8. There exists a conjunctive merging rule N\ constructing a random set (m, F) Az
by the commensuration method, where focal elements are ranked according to the partial or-

der of inclusion, with (m, %) Aaa) € ,///m(m) minimally committed for expected cardinality.

Proof. Assume some (m,.% )(/13) € M., is minimally committed for expected cardinality.
By Proposition it can be obtained by commensuration. Let mg,,mg, be the two equi-
commensurate bpas with n elements each derived from the two original bpas m,m;. Suppose
that the rankings used display four focal sets R’i,R{,Ré,Ré, i < j, such that R’i D R{ and
R, C Ré. By Lemma ]R{ ﬂRé| +|RINRS| < |R{ NR,|+ |R ﬂRé|. Hence, if we permute
focal sets R’i ,R{ before applying Dubois and Yager’s merging rule, we end up with a merged
bpa mp o2 such that [C|(m, F)g, . <|C|(m, ﬁ)Rﬁ@z' Since any merged bpa can be reached by
sufficient splittings of m,m; and by inducing the proper ranking of focal sets of the resulting
bpas mg, ,mg,, there is a merged bpa (m,.# )(/17) € ., maximizing expected cardinality
can be reached by Dubois and Yager’s rule, using rankings of focal sets in accordance with

the inclusion ordering. 0

Nevertheless, ranking focal sets in accordance with the partial order induced by inclusion
is neither a sufficient nor a necessary condition to obtain a merged random set with maximized
expected cardinality (examples are provided by Destercke et al. [66]). Still, these first results
about how to cautiously merge random sets by maximizing expected cardinality are promising

because:

e They provide first practical guidelines to cautiously and conjunctively merge random

sets with respect to the s-ordering.

e They are coherent with cautious conjunctive merging in possibility theory, that is when
(m, #),,(m,.F), are consonant, (m, ¥ ),

of possibility theory.

1) corresponds to the minimum merging rule

e They are coherent with g-least committed approach in the case of consonant bpas, and
consequently coherent with other cautious approaches [99, [100]. Coherence with non-

consonant cases remains to be explored.

A potential disadvantage of the proposed approach is that it does not seem fully coherent

with a pl-least committed approach [66] (and thus, with imprecise probability theory). Con-
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solidating these results and making them more attractive from a practical standpoint would

require:

e to find more constraints to add to the ordering of focal elements, so that (m,.7) A
would be uniquely defined (possibly using results related to the contour function of

random sets [87]),

e to compare the proposed rule to other existing approaches to merge non-independent
sources in the context of random set theory [19,161] (we have already made some first

comparisons [66], but a more thorough and axiomatical comparison is needed)

e to verify which properties does the proposed rule satisfy, as, for example, associativity.

4.4 Assessing sources quality: a general framework

Disposing of evaluations of sources reliability can be useful in many ways: to select sub-
group of sources, weight them in fusion processes or simply to send back the information to
sources. When sources give information about observable parameters or variables, subjec-
tive assessments of reliability are usually not acceptable. In this section, we propose methods
based on rational requirements allowing to evaluate sources reliability from past assessments

of variables or parameters, whose true value has been subsequently known.

The rational requirements on which are based the methods presented in this section have
first been considered by Cooke [28]], who apply them to expert opinions in a probabilistic
setting. Later, they have been considered by Sandri et al.[[174], also to treat expert opinions,

but in a possibilistic setting.

4.4.1 Rational requirements and general methodology

A means to objectively evaluate information delivered by sources is to center the evaluation
on past performances of the same sources. This can be done by considering so-called seed
variables. A seed variable is a variable whose exact value is not known by the source when
it provides information about it, but is either known by the analyst or will subsequently be
determined by physical experiments or other means. Here, we note a seed variable 7 and its
(discrete) domain .7 (if T is a physical variable, .7 will often be the discretized real line). If
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known or precisely observed, the exact value of T is noted ¢*, but we allow here the value of

a seed variable to be imperfectly known (i.e. represented by an uncertainty model).

A source is then evaluated by two quantitative criteria, called here informativeness and

calibration, based on the information provided on seed variable T':

o Informativeness is a score measuring the precision of the information given by the

source on 7. The more precise the source, the higher informativeness.

e Calibration is a score measuring the coherence between the information given by the
source about 7" and the knowledge the analyst has about 7.

A good source is then a source that receives an high score, i.e., a source that is both informa-
tive and coherent with available knowledge. Following Cooke [28, Ch.9], a good evaluation

method gives scores that:

1. reward sources that are both informative and well calibrated,

2. are relevant, that is are influenced only by observations or by knowledge on seed vari-

ables,

3. are meaningful, that is are comparable, irrespectively of the nature and number of seed

variables.

In the following, we regard these rules as basic requirements that should follow evaluation

procedures. They are sensible, and do not constraint too much the evaluation procedure.

4.4.2 Evaluating sources in probability

The probabilistic method to evaluate sources is based on the use of so-called scoring rules [[138]],
which were originally introduced and used in subjective probability elicitation procedures.
However, Cooke [28]] argues quite convincingly that, inside probability theory, they are also

well fitted to the evaluation of sources (and in particular, of experts).

Let T be the seed variable, taking its values on finite domain .7. First recall that, given
two probability distributions Py = {py 1,...,p17(} and P, ={p2 1,..., P2 7|}, the Kullback-
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Leibler (KL) divergence [133] (also called relative entropyﬁ) of P, from P, reads

7| .
KL(PI,Py) = Y p1, log (&> (4.34)
i=1 D2,

In the probabilistic setting, a source S provide information modeled in terms of a probabil-
ity distribution Ps = {ps1,...,ps, 7|}, where pg; is the probability mass given to element ¢;
of 7.

Informativeness Let Py be the uniform probability on .7, that is py; = 1/]|.7| for i =

1,...,|.7|. The informativeness Inf ¢ of source S is then computed as
InfS = KL(Ps,PU).

If multiple seed variables are used, then the resulting informativeness is simply the arithmetic

mean over all informativeness scores.

Calibration If r observations of the seed variable 7 are available, then let 7; be the number
of observations corresponding to element #;. To these observations corresponds an empirical
probability Pk = {pr.1,---,Pr,|7|}> With pgr; = ri/r. The KL-divergence KL(P,Ps) then
provides a measure of the closeness of Ps, the source of information, from the empirically
built distribution Pg. This divergence has value O if and only if Pr = Ps. The final calibration

score Calg of source S is then derived by the following statistical hypothesis test
Cals = 1= Xl (2%r+KL(Pg,Fs))

with X\Zﬂ—l a chi-square distribution with |.7| — 1 degrees of freedom. Note that this measure
is based on a convergence property of the KL. divergence.

When considering multiple seed variables Ti,..., Ty, taking only one value on a real-
bounded domain, Cooke [28] proposes to model sources information on each seed variable
by the same set of inter-percentiles P, = {pg.1,...,pqp} extracted from a set of percentiles
q1,---,qp+1 (typically, the 0,5,50,95 and 100 % percentiles), with p, ; = g; 11 — g;. This set of
percentiles is induced by the source information for each seed variable, and even if the values

of the real line to which corresponds the percentiles ¢, . ..,gp+1 can be different for each seed

6 Also sometimes quoted as KL-distance, although it does not satisfy the property of symmetry
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variables, distribution P, will remain the same. We note Is; ; = [qSJ-, j248,i+1, j] the interval
corresponding to the ' inter-percentile extracted from source S information concerning the
jth seed variable 7; and Qs ; = {gs,1,j,---,qs,8+1,j} the set of boundary values. Once the M
values t*1,...,t*3 assumed by the seed variables T, ..., Ty have been observed, the empirical
distribution P = {pr 1,...,pr s} is build in the following way: the value pg; is r;/M, that is
the number of observations that are in the interval Is; j, j = 1,...,M. Thus, for every source,
we have Pg = P, and a different Pg for each source. Note that, to compute informativeness
in such cases, the discretized uniform distribution Py is computed with the same procedure as
Pr.

The following example gives a short illustration of the method:

Example 4.3. Consider two economists S1,S5, (the sources) which are asked their opinion
about the values of some portfolios in the two upcoming days (the seed variables). De-
note these (unknown) values 71,7;. Assume that the values evolve between [4500,5000].
The analyst chooses to model information given by the economists by the means of per-
centiles g1 = 0%,q> = 5%,q3 = 50%,q4 = 95%,qs5 = 100%, forming the probability P, =
{0.05,0.45,0.45,0.05} (B=4).

Information provided by the two economists are summarized as follows:

Sl S2
T\ Qs,.1 = {4500,4700,4800,4950,5000} Qs, 1 = {4500,4600,4750,4900,5000}
T, Qs 1 = {4500,4800,4900,4950,5000} Qs, 1 = {4500,4650,4750,4850,5000}

Assume now that the observations are t*; = 4680 and t*, = 4752, respectively for the
first and second days. Then, the empirical distributions built from these observations are
Pr ={1.0,0,0,0} for the first economist, and Pz = {0,0.5,0.5,0} for the second.

Global score The global score Scg of a source S is then computed as the product of infor-

mativeness and calibration scores
Scs =Infg Calg.

Cooke [28] also proposes to add a parameter acting as a minimal threshold of calibration, so
that sources receiving too low calibration scores receive a global score of zero, thus avoiding
the case of very precise but badly calibrated sources receiving an high global score. Since

computed scores are then used to combine the distributions coming from the different sources
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by arithmetic weighted mean, Cooke [28] also proposes some way to tune this threshold,
so that the combined final probability distribution is optimized with respect to calibration

criterium.

Within probability theory, this evaluation method is sound and well justified. However, it

has a certain number of drawbacks, among which:

e The need of at least 10 seed variables or observations for the statistical test used in

calibration to be robust and discriminative

e The propensity to confuse imprecision and variability in a single representation, as em-
phasized by Sandri et al. [174]

e The fact that, when different seed variables are considered (as in Example {.3)), no no-
tions of individual calibration exists, which can produce results where good sources are
well-calibrated only when they are uninformative (very imprecise), and badly calibrated

in the cases where they are informative. This is also illustrated by Sandri et al. [174]

These shortcomings are not imputable to the method and mainly come from the necessity
of staying within probability theory, which does not allow to use set-based representation or
calculus and, as already argued, tends to mix up imprecision and variability. The problem of
extending the method to cases where observations are themselves pervaded with uncertainty
is considered by Kraan [131].

4.4.3 Evaluating sources in uncertainty theories

We define the imprecision index IG as follows:

Definition 4.5. Let 11 be a function defined on the power set P( A7) of the finite space 2" and
such that:

e u(2") =1 (boundary conditions)
e ACB= u(A) < u(B) (monotonicity)

e VA BC 2, ANB=0,u(AUB) > u(A)+ p(B) (super-additivity)

and let my, be its Mobius inverse (see Remark . Then, the imprecision index IGy, of U is
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defined as the value
IGy =) my(E)|E| (4.35)
N
with |E| the cardinality of E (0 when E = 0).

Note that in the above definition, u corresponds to a super-additive capacity for which the
boundary condition on the empty-set has been dropped (in possibility and random set theory,
this corresponds to unnormalized possibility distributions and to random sets with non-null

weight given to the empty set).

Given an uncertainty representation and its associated lower confidence measure, Equa-
tion ([4.35) can be considered as a measure of its imprecision. When the representation is
a possibility distribution or a random set, the imprecision index IG respectively comes down
to compute the cardinality of the possibility distribution and the expected cardinality of the

random set.

The case where [ is a lower capacity modeling a general coherent lower probability is
studied by Abellan and Moral [3] (they consider In|E| instead of |E| in Equation (4.35), but
most of their results remain valid with |E|). Let &g and 3% be any two credal sets defined on
a domain 2 such that Zg C P, and Py, Py the induced coherent lower probabilities. The

imprecision index satisfies the following properties:

1. Monotonicity: &5 C ¢ = IGp, < IGp,,
2. Positivity: IGpg > 0

3. Bounded: IGp, € [1,|X|], respectively when &5 reduce to a probability on 2" and

ignorance on the set 2.

And the same properties hold for possibility distributions and random sets, except that the
lower bound of the imprecision index is 0, which happens in case of complete conflict (i.e.,

the whole mass is given to the empty set, and () = 1).

In the following, we consider a seed variable T taking values on .7 (which can be, again,
the discrete real line), for which a source has provided information. Let S be a source whose
information given on T induces a lower capacity (see Definition U on 7. We note Ay
the non-empty core (or, equivalently, the credal set) induced by this capacity. We also note
my the mass function on .7 given by the Mdbius inverse (see Definition .
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4.4.3.1 Informativeness

Let u Ien be the lower capacity representing ignorance on .7, that is the capacity such that

B (E) =0 for all events E C .7, and u Ign(ﬁ ) = 1. The M&bius inverse of y Ign is noted

my , and reduces tomy (.7)=1and my = 0 for other events. The value IG, = |7 |
Zlgn Zlgn Zlgn Zlgn

then follows.

Since 1 G”S is a measure of the imprecision of the information, the value / Gu, —1 G”S =
L —Ign L,
|\T|—1 GHS measures the precision of the information given by source S. We then define the

informativeness of a source S for the seed variable T as the normalized index

| T |~ 1Gy,

which has value 0 if the source gives no information, and is maximal (/nf¢ = 1) if the source

provides a single probability distribution (i.e., provides information with maximal precision).

Example 4.4. Consider a space 7 = {11,1>,13}, and two sources S1, S, the first providing an
opinion in terms of confidence bounds over nested sets (i.e., possibility distributions), the sec-
ond providing probability bounds on each elements (i.e., imprecise probability assignments).

The respective information are summarized in the following table:

S1 S
Set P Set¢ P P
{n} 0.75 {n} 02 05
7 1 (b} 03 06
{zr} 0 03

The lower capacities i s, Mg, induced by S1, S, information are respectively computed by
Equation (3.13) and Equations (3.10). The next table shows the result of applying the Mobius
inverse to u s u 5,
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S1 S2
Set m Set m Set m Set m
{t} 0 {n,5} O {n} 02 {n,n} 02
{n} 075 {n,n} O {n} 03 {n,n} 02
{z} 0 T 025 s}y 0 7  -01
{t,n} O {t1,b} 0.2

and we get, respectively, IGﬂ =1.5 IGu = 1.4, which once normalized give Inf Ky

0.5,Inf by = =0.533..., from Wthh we can conclude that S is slightly more informative than
2

S1.

4.4.3.2 Calibration

We differentiate here the case where the value of a seed variable is precisely known with the
case where it is only known with some uncertainty. Let t* be the value of the seed variable
when it is precisely known, and [ be the lower capacity induced by the information we have

on the true value of 7' (coming from an imprecise observation or measurement).

Precisely known value In this case, we propose to simply measure the calibration of the

source by the upper confidence level given by the source to the value, that is

with [l the dual upper confidence measure of © 5 Indeed, 114(¢*) measures to which degree
source S judges value ¢* plausible, hence it is a good measure of the coherence between the
source information and the observed value. It is maximal if and only if source S judges *

totally plausible, and only depend on this last value.

Imprecisely known value In this case, observations on 7 are modeled by an uncertainty
model inducing a lower capacity U, To measure the coherence of source S information with
observations, we propose to use the equivalent of an inclusion index, that is, to measure in
some way the proportion of i , in U Leto be some conjunctive fusion operator, as described
in Section Land [, = @(U,.. 1) be the (not forcefully coherent) lower confidence
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measure resulting from the conjunction. Then, we propose to measure Calg, the calibration of

source S, as

It M., are induced by two corresponding credal sets Ps, &+ and if ¢ is Equation (4.4)),
then we retrieve the inclusion index proposed by Abellan and Gomez [1]]. Similarly, if MM
are induced by possibility distributions 7;«, 75, and if ¢ corresponds to Equation (4.10) with
the minimum t-norm, then we retrieve an usual inclusion index between fuzzy sets (see, for
instance, Smithson [[190]). Finally, if MM reduce to intervals I+, I and ¢ is the intersection,

then we retrieve the usual inclusion index |I;+ N Ig|/|l;+| of I+ in Ig.

Note that the chosen fusion operator should satisfy at least some properties of Sectiond.1.2]
It seems natural to require it to be both commutative (Property and idempotent (Prop-
erty [[V]), because an index of inclusion should not depend on the order of combination of
MM and, if M, =He then the inclusion index (and, therefore, the calibration) should be

maximal.

One could also use similarity indices (e.g., counterparts of Jacquard index for intervals),
but the inconvenient with such indices is that they would mix up informativeness and calibra-
tion, since a source giving very imprecise but well calibrated information could obtain a very

bad score.

4.4.3.3 Global scores

Let T1,..., Ty be M seed variables taking their values on 77,..., 7, and for which sources
S1,...,Sv have provided information. Let Inf S T} Caly, 1, respectively be the informativeness

and calibration of the source i in regard with seed variable ;.

For each source, we then propose to compute the global informativeness and calibration

scores, Inf S, and Calg;, as the simple arithmetic means

1 & 1 &
Infs, =+ Y Infsq,  Cals,= i Y Cals, 1,
j=1 j=1

and, from these aggregated scores, to compute the global score of source i as

Scs; = Infg, Caly,.
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Note that other aggregation functions than the product can be chosen, but since methods are
designed to minimize interaction between informativeness and calibration, the use of the prod-
uct appears justified. But nothing prevents the use of other conjunctive aggregation functions,
or even of sets of such functions (in this case, global scores would become imprecise, and the
order between sources partial). The use of conjunctive operators ensures that no sources will
have an high score by having only high informativeness scores and poor calibration scores (or

the converse).

Note that the above methods can be easily extended to cases where:

e spaces J,...,. 7y are the real line. In this case, either one can consider discretized real
lines or the continuous counterparts of above methods (provided these last ones are easy

enough to use).

e Each source delivers information on a (different) subset of available seed variables. In
this case, global scores are only computed on the basis of those seed variables for which

a source has given information.

Above methods are general and simple enough to provide practical and useful tools in the
assessment of sources quality. The result of such methods can then be used to weight sources
in the fusion process (e.g. in a weighted mean), to modify sources information so as to take
account of their reliability (i.e., discounting operations), to select subgroups of "best" sources,

or to simply analyze the performances of sources and send a synthetic feedback to experts.

In Chapter [7] we apply the above methodologies to the result of uncertainty studies per-
formed with various computer codes simulating accidental conditions of a nuclear reactor, for

which data coming from an experimental small-scale facility were available.

4.5 Conclusions and perspectives

In this chapter, we have considered two problems: fusing information concerning a common
variable and coming from multiple sources, as well as the problem as assessing the quality of

those sources in a formal and, as much as possible, objective way.

For the first problem, we have proposed and studied basic fusion operators for clouds,
linking them to basic fusion operators proposed in other uncertainty theories (which were
shortly reviewed). This has allowed us to emphasize even more the interest of comonotonic

clouds.
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To deal with partially inconsistent information, we have considered the application of
MCS-based methods. They are theoretically sound and conceptually attractive, but are in
general computationally greedy. This is why we have studied a frame of application where
such methods remain tractable (almost linear in the number of sources), namely the one where
information is modeled by possibility distributions and MCS are applied level-wise to those

distributions.

We have also briefly addressed the problem of merging information coming from poten-
tially dependent sources, and have given first promising results that would eventually lead to
a practical cautious merging rule of random sets. This approach appears interesting, since for

the special case of possibility distributions, we retrieve the minimum conjunctive rule.

With respect to the above problems, perspectives include

o the implementation of the proposed MCS fusion rule, and its application to real-world
problems, in order to validate its practical usefulness and meaningfulness with users.
We’re currently planing to integrate it to the uncertainty treatment software (SUNSET)
developed at IRSN and to apply it to results of the OCDE research programme BE-
MUSE (see chapter (/)

e the comparison of MCS fusion rule in real-world problems with other adaptive fusion
rules of possibility theory, since we already know from Section |4.2.2.3|that it competes

well with these other rules from an axiomatic and theoretical standpoint.

o further research concerning the cautious conjunctive merging of random sets, including:
thorough comparison of the proposed rule with other similar rules [61, [19], theoreti-
cal study to check which properties of table {.2] are satisfied by the rule (in particular
associativity), additional constraints so that the ordering of focal elements is uniquely
defined.

With respect to source quality evaluation, we have proposed a general methodology in-
spired by previous works [28, [174] and allowing to assess source quality from previous per-
formances, in a way as objective as possible. This is done by following some rules of common

sense, initially proposed by Cooke [28]].

Perspectives concerning this method are mainly its implementation and use in real-world
problems. We have already partiallym implemented this method in the SUNSET software, and
have applied it to the results of the BEMUSE programme (see chapter [7)), in order to evaluate

7only the probabilistic and possibilistic methods have been integrated so far
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the quality and responses of different computer codes on a particular accidental scenario.
Overall, people to whose we have presented the result of our study recognized the need and

the interest of such methods in every-day problems.

The material contained in this chapter can be found in papers [65} 72} 73]
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Chapter 5
Independence and uncertainty

“With four parameters I can fit an elephant and with five I can make him wiggle his trunk”
— John von Neumann (1903-1957)
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When assessing and representing uncertainty bearing on multiple variables, a current prac-
tice is to build and/or assess marginal representations on each single variable, and then to
combine these representations into a joint uncertainty representations defined on all variables,
taking account of potential relations between variables. This strategy have the advantage that
marginal models are often more accessible or easier to build than a direct joint model, but it

also implies that potential relationships between variables have to be taken into account.

Within classical probability theory, this is usually achieved by combining marginal prob-
ability distributions into a joint probability distribution, assuming precise dependency struc-

tures.

Notions of (in)dependence thus plays a crucial role in the construction of joint models
that will subsequently be used to manipulate uncertainty in order to make decisions and make
particular inferences. As in previous Chapters, using more expressive frameworks allow for
more flexibility, and shifting to such frameworks when also often means that we have to take
a new look at some questions, because some solutions that previously met general consensus
can be extended in more than one way. There is subsequently a need to make sense of (at least
some of) these generalizations. This is the case for the classical (formal) notion of stochastic
independence, which is often used within classical probability theory to combine marginal

distributions into a joint one.

This is why we review (Section [5.1]) the main existing notions of independence in uncer-
tainty theories, and propose a tentative taxonomy aiming at unifying and interpreting those
different notions, while leaving some questions open. Again, the more general language of
credal sets will be useful to compare these various notions. We also address the question of
relating existing notions of independence to the event-tree independence notion recently pro-
posed by Shafer [179, ch.5,8], since event-trees constitute an attractive framework to define

and interpret notions of independence. Some first results are provided and discussed (Sec-

tion[5.2)).

As for uncertainty representations, not all notions of independence are directly compara-
ble, in terms of generated joint structures (i.e. inclusion of one in the other) or of interpreta-
tions. However, similarly to uncertainty representations, one can use a notion of independence
to approximate another one, possibly losing some information or expressiveness, but gaining

in ease of use and in computational efficiency. This is illustrated in Section[5.3] where a notion
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of independence proper to possibility theory is used to approximate another notion classically
used in random set theory. Potential interests of such an approximation when propagating

uncertainty are then investigated.

All along this chapter, we will note X1, ..., Xy the input variables, 27, ..., Zx the respec-
tive spaces on which they take their values, and x; an element of Z;. For 1 <k </ <N, we
denote by Z(y.y) := xf:k% the Cartesian product of the k — ¢+ 1 sets Z,..., 2y, and by
Xty = (X, - - -, X¢) a variable that assumes values in Z{y.¢y. Similarly, x(x.¢) := (X, .., X¢) €
Z (k.¢) denotes an element of Z(;.¢). Index k : k is assimilated to k (e.g., Z (k) = Z¢)-

5.1 Finding our way in the jungle of independence: towards

a taxonomy

The notion of independence between variables is often associated to a (qualitative) structural
judgment asserting that two or more variables are not related in some way. For this judgment
to be useful in uncertainty treatment, it has to be interpreted and formally translated. Here, we
will adopt the name irrelevance rather than independence as a general term, as it is better fitted
to describe all judgments of absence of (some) relations between variables. We will reserve
the term independence to symmetric notions and to cases where no confusion is possible. As
for information fusion in Chapterd] we first introduce some general notions before seeing how

they apply in the different uncertainty theories.

5.1.1 Judgment of (ir)relevance: a classification

Similarly to Walley [203], we associate (ir)relevance statements to structural judgments con-
cerning the properties of variables. A judgment of (ir)relevance is thus always epistemic, in
the sense that it is based on our current knowledge or observations, and could evolve with the
arrival of new knowledge. To differentiate (ir)relevance statements, we classify them in differ-
ent categories, built from various works concerning independence in uncertainty theories [203,
Ch.9], [144], [216], [6]. Namely, an (ir)relevance statement can be:

e Non-Informative (nInf.) or Informative (Inf.): by non-informative, we mean irrelevance
statement expressing the absence of knowledge about the relations linking variables,

leading to maximal imprecision in the joint representation (since this representation
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must encompass any potential relation). By informative, we mean irrelevance state-
ments expressing the knowledge that there is an absence of relations, leading to tighter

joint representations.

e Subjective (Sub.) or Objective (Obj.): an (ir)relevance statement is said to be Subjective
if it affects beliefs about the values that variables may jointly assume. It is said Objective
if it describes an intrinsic property of the relations between the variables or of the process

generating their values.

o Symmetric (Sym) or Asymmetric (Asym.): Let X| and X, be two variables. A statement
is Symmetric when stating that Xj is irrelevant to X, automatically implies that X, is
irrelevant to X; in the same sense. Such statements often allows to build easily joint
uncertainty models from (local) marginal representations and to limit considerations to
such local models. They also easily extend to any number of variables. These features

are often referred to as factorization or decompositional properties in the literature.

However, such statements do not allow to express asymmetric and directional notions of
irrelevance, which are handled by asymmetrical irrelevance statements. A statement is
asymmetrical when stating that X is irrelevant to X, do not implies that Xj is irrelevant
to X;. The symmetrical counterpart is obtained when the statement is explicitly made
in both ways (and this two-way judgment having to be justified, while it is implicitly
accepted in the case of symmetric notions). Extending these statements to any number of
variables usually requires more justifications and is less straightforward, and making this
kind of statements does not automatically allow to only consider marginal local models.

Asymmetrical statements have two main origins, that we call causal and evidential:

— causal type of asymmetric irrelevance is used when one want to express that two
variables are not causally related (for example, in Bayesian networks). It can be
used, for instance, to express that a particular habit is not (one of) the cause of a

particular disease.

— evidential asymmetric irrelevance roughly express the idea that learning the value
of one variable will not change beliefs about the values that the other variable can
assume. However, such a statement does not exclude that learning the value of the

latter can change our beliefs about the former.

We first review how this classification translates in the most classical uncertainty theories:

probability theory and set theory.
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5.1.1.1 Irrelevance judgments in probability theory

Consider two variables X1, X, that respectively assume values in 27, Z5. Let Py, , Px, be the
two unique probability distributions describing the uncertainty on these variables, and Px )
the joint probability distribution. Let w : 27 — R,z: 23 — R be two mappings, respectively
from spaces 2] and 2, to the real line R, and Ep denote the expected value with respect to
P. In probability theory, all the following definitions of independence lead to the same mathe-

matical form, that is the one corresponding to classical (symmetric) stochastic independence:

L Vx(12) € Z(12), PX10)(X(1:2) = Px, (X1) px, (x2)

VAXB € Z12), Px, (X(1:2) €A X B) = Px, (X1 € A)Px, (X2 € B)
VAXB€E Z(12),Px,(X2 €B) >0, Px,, (X1 €A|X; € B) =Py, (X1 €A)
VAXB € Z(1.),Px, (X1 €A) >0, PX ) (X, € B|X; € A) = Px,(X2 € B)

Ywiz, Epy (W(X1)2(X2)) = Epy, (W(X1))Epy, (2(X2))

A

with PX 4, (X € A|X; € B) the conditional probability of X; € A, knowing (only) that X, € B.
Nevertheless, each of the above definitions would be classified differently with respect to the

above proposed classification, as summarized in the following table:

Independence Type name Inf./nInf. Sub./Obj. Sym/Asym.
Stochastic independence Inf. Ob;. Sym
Non-correlation Inf. Sub. Sym
Epistemic irrelevance Inf. Sub. Asym.,_
Epistemic irrelevance Inf. Sub. Asym.;_,,

Table 5.1: Classification of probabilistic independence types

Where Asym.

these definitions reduce to the same formal symmetrical notion, it is useful to already make

i—j denotes epistemic irrelevance of variable X; to variable X;. Although all
some distinctions in their interpretations, as each of these interpretations will have a different

counterpart in imprecise probability settings.

That these concepts collapse into one formal definition in classical probabilities and differs
in imprecise probabilistic settings is due to many reasons: classical probabilistic conditioning

having more than one counterpart [90], the equivalence between expectations and probabilities
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on events no longer holding [203, Ch.2], some symmetries breaking apart into asymmetric

notions.

5.1.1.2 Irrelevance judgments in set theory

In set theory, the basic notion of irrelevance is the one of non-interactivity or of logical inde-

pendence, which comes down to the following definition

Definition 5.1 (Logical independence). Consider two sets 27, 2>, domains of variables X1, X>.
Then, X1, X, are said to be logically independent if the possible joint values they can assume

(i.e. that could be observed) on Z(;.,) are given by

L) = 21 x 2o ={xq2)lx12) € Zn2)}

It is equivalent to state that no combination of values in those two domains are forbid-
den. Within the proposed classification, a judgment of logical independence between X1, X5 is
objective, non-informative and symmetric. Conversely, two variables will be logically depen-
dent if there exist some values x(;.5) of the Cartesian product 2(;.,) that X1, X; cannot jointly

assume.

Similarly, we can define the notions of relational irrelevance and of functional irrelevance

as follows:

Definition 5.2 (Relational irrelevance). Consider two sets 27, 2>, on which variables X, X»
assume their value. Then, X, is relationally irrelevant to X, if there exist no relation R : 27 —
25 from 27 to 25 other than the relation such that R(x;) = 23 for any x; € Z7.

X1, X, are said to be relationally independent when both X| and X, are relationally irrel-
evant of each other. Notions of relational relevance and dependence follows: for example,
if X1,X> are the ages of two different persons given in years, then the information X; < X,

induces a relational dependency between the two variables.

Definition 5.3 (Functional Irrelevance). Consider two sets 27, 2>, on which variables X;, X,
assume their value. Then, X is functionally irrelevant to X, if there exist no function f :
Z1 — A, from 27 to 23 linking X1, X>.

and X1, X> are said to be functionally independent when both X; AND X, are functionally

irrelevant to each other. Xj is said to be functionally relevant to X, if there is a function
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f: 21 — 23 linking the two, and X, X, are said to be functionally dependent if they are linked
by a bijective function. Contrary to logical (in)dependence, both the notions of relational
(ir)relevance and functional (ir)relevance are asymmetric. We also have the following relations

between these notions:
Logical independence < Relational independence =- Functional independence

All these notions are objective and non-informative. Such kinds of dependencies are discussed

by Ferson and Kreinovich [[105] in the case where sets are intervals of real values.

Also note that, in the above definitions, nothing prevents sets .27, 2> to be sets of prob-
abilities, and the above definitions of irrelevance (or independence) can well be applied to
credal sets (it is suggested by Couso et al. [33]). In particular, it could be interesting to study

how such dependencies could be taken into account when combining sets of probabilities

(Section d.1.3.2).

5.1.2 (Ir)relevance in imprecise probability theories: first steps towards

a taxonomy

Since the question of interpreting and modeling irrelevance between variables is central in
uncertainty reasoning, it has been studied by many authors, often within the bounds of a par-
ticular theory, both for possibility theory [219,16,41,43], random set theory [57,1216} 107, 30]
and imprecise probability theory [203, Ch.9], [33,144]. In this work, we restrict our classifi-
cation to the main notions of irrelevance existing in imprecise probability theories, and only
to unconditional notions of irrelevance. Our study is also mainly formal, and only a minimal
amount of information is provided about interpretations. Indeed, considering conditional ir-
relevance as well as potential interpretations would require a study of its own, and is out of

the scope of the present work.

We thus consider two variables, X;,X, assuming values in 27, 23, and Px,, Px, the
credal sets induced by uncertainty representations on each of these variables. If credal sets
Px,, Px, reduce to all probabilities in P9, ,P g, (i.e. ignorance on 27,.2>), then we note

these credal sets Jx, , Jx,.

We will also relate irrelevance notions in cases where both credal sets Zx,, #x, can be
represented by random sets (i.e., if their induced lower probability is co-montone). In this

case, we will note (m, )y, , (m, ¥ )y, the induced random sets, and for any focal set £ € Fx;,
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we will often interpret m(E) as the probability that our knowledge on X; is modeled by the
credal set Jp = {P € Py |P(E) = 1}, that is the credal set representing ignorance on E. This
corresponds to the 2" order interpretation mentioned in Section where the 2" order
level model is a precise probability, and the 1% order level model is reduced to a set. We
can now define the notions of unknown interaction, strong independence, repetition indepen-
dence, epistemic irrelevance and independence, random set independence, and possibilistic
non-interaction. All along this section, we will use a common example to illustrate them all
(the same as the one considered by Abellan and Klir [2], and similar to the one used by Couso
et al. [33]). This example, given below, has the advantage of being simple enough to illustrate
most notions in one sweep, while not being too simple, so that differences between notions

can be emphasized.

Example 5.1. Consider two variables X, Y taking their values on (binary) spaces 2" = {x1,x2}
and % = {y,y>}. The only information we have about these variables are that p(x;) < p(x2)
and p(y1) < p(y2), generating two credal sets Zx, Py, which can be described by the follow-

ing sets of extreme points:
extp, = {(0.5,0.5);(0.5,1)} and extyp, ={(0.5,0.5);(0.5,1)}
and the equivalent random sets (m,.% ), (m,.# ), are given by
mx({x2}) =05,mx({Z})=0.5 and my({y2})=0.5my({#})=0.5

that are also possibility distributions, since focal sets are nested.

For convenience, in the subsequent examples, we will note 2 = 2" x %, Z the associated
variable and z;; = x; X yj, i,j = 1,2 a generic element of 2. Similarly, we denote p;; =

p(xi xy;) and Py = (p11, p12, p21, p22) joint probabilities on 2

5.1.2.1 Unknown interaction

Definition 5.4 (UI). Let P, , %%, be two marginal credal sets describing uncertainty on two
variables, X, X, assuming values in 27, Z>. Then, a judgment of unknown interaction be-

tween X1, X> is equivalent to building the joint credal set QZU],X(M) such that
‘@Uﬂx(l:z) = {PX(I:Z) < ]P)%(l;z)lpxl € Px,, Py, € Px,}

where Py, , Py, are respectively the marginal probabilities of PX<1:2> on 21,2>



Independence and uncertainty 193

Unknown interaction [33]] is equivalent to stating that we do not know the relationship be-
tween X; and X;. In other word, the resulting joint structure include all possible combination
of marginal uncertainties, hence all type of possible (in)dependence between X;,X,. With re-
spect to our classification, it is a non-informative, subjective, symmetric type of independence.
Note that unknown interaction has no counterpart in classical probability theory, since even if
both marginal are precise, the joint representation resulting from an assumption of unknown

interaction is a credal set.

When credal sets can be modeled by random sets (m, %)y, , (m,F )y,, Fetz [107] shows
that unknown interaction comes down to considering the set .#, X12) of random sets such that
P .
(m’ o )X(I:Z) € %X(I:Z) if
e AXB¢c 9}((1:2) if and only if A € Fx,,B € Fy,

o VA € 40/\)(1, ZBQQXZ mX(l:Z) (A X B) = my, (A)

e VB c 40/\)(2, ZAQyXI mX(l:Z) (A X B) = sz(B)

in this last case, unknown interaction is equivalent to assuming unknown interaction between
2" order model (marginal bpa), and to assume that the 1% order joint model are the Cartesian

products of focal sets.

Example 5.2. The joint credal set resulting from unknown interaction between X,Y and the
two marginal credal sets of Example [5.1] gives the credal set Zy;z on 2 that have the fol-

lowing extreme points:
exty,,, ={(0,0,0,1);(0,0.5,0.5,0);(0.5,0,0,0.5);(0,0.5,0,0.5);(0,0,0.5,0.5) }
Note that the uniform distribution is inside this credal set (i.e. it corresponds to the arithmetic

mean of the second and third joint probabilities)

5.1.2.2 Strong and repetition independence

Definition 5.5 (SI). Let Zx,, #x, be two marginal credal sets describing uncertainty on two
variables, X, X, assuming values in 27, Z3. Then, a judgment of strong independence be-

tween X1, X5 is equivalent to building the joint credal set P; X(12) such that

‘-@SI,X(I:Z) = {PX(I:Z) 6 P%];Z}‘Px(lzz) — PX] ®PX27 PXl E gXI?PXZ e L@)(2}
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with ® the classical stochastic product.

Strong independence (also called type-1 independence [203) Ch.9]) is equivalent to assum-
ing that both X; and X, are stochastically independent and are governed by some imprecisely
known random processes Py, € Px,,P,, € Px,. With respect to our classification, strong

independence is informative, objective and symmetric.

Fetz [[107] shows that, when credal sets can be modeled by random sets (m, 7 )y, , (m, 7 )y, »
the joint credal set @517;((1:2) induced by a judgment of strong independence can also be ob-

tained by building the credal set

'@517‘)((1:2) ={Pe P%(lzz)’P:Agg; 3623; m(A)m(B)Px, o ® Px, p}
7°X) X

such that

e ® is the classical stochastic product.
e YAXBC 3{(1:2), PXl,A € jA, PX2,B € Jp
e for afixed A € Fx,, choose the same Px, 4 for all B € Fy,

o for a fixed B € .Zy,, choose the same Py, p for all A € Fy,

which is equivalent, in a 2" order interpretation of random sets, to assume that X;, X, are
governed by two imprecisely known and stochastically independent random processes, whose
supports are themselves independently known with uncertainty. This means that we assume
one of the five possible probabilistic independence between the 2"¢ order (precise) uncertainty
models (see table [5.1), and that, at the 1% order level, we assume the existence of precise
probabilities, for which the only available information is the extent of the support (i.e., the
focal sets). This is why marginal probabilities on each focal set are forced to remain the same.
Within classical probability theory, strong independence corresponds to extensions of cases
and 2] of table 5.1l

The credal set r@SI,X( also has a simple characterization in terms of its extreme points,

and we have:

1:2)

eXt'@S’vx(l;z) = {le ® Px, |Px1 € extgle ,Px, € extgxz}

where ext s, is the set of extreme points of the credal set Zx,, and ® the stochastic prod-

uct. This computationally attractive property, which allows to easily build QZSI,X(M) by fo-
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cusing only on extreme points, and the fact that strong independence satisfy so-called d-
separation [166), 35] explains that this notion has been studied by many authors and exten-
sively used in imprecise probabilistic extensions of popular graphical models such as naive
Bayesian classifiers [222]. See Cozman [37/]] for a recent and good review on graphical mod-

els and the use of independence in such models.

Example 5.3. The joint credal set resulting from strong independence between X,Y and the
two marginal credal sets of Example|[5.1|gives the credal set sy 7 on 2 that have the follow-

ing extreme points:
exty, , = {(0,0,0,1);(0.25,0.25,0.25,0.25);(0,0,0.5,0.5); (0,0.5,0,0.5) }

and it can be checked that all these extreme points can be found back by linear combination

of extreme points of ext,, ,, thus we have Ps; 7 C Py; 7

Definition 5.6 (RI). Let Zx, = Y%, = Yx be two identical marginal credal sets describing
uncertainty on two different variables, X, X, assuming values in 27, 2>, with 21 = 2, =
Z . Then, a judgment of repetition independence between X1, X, is equivalent to building the

joint credal set @RLX“:Z) such that

gZRLX(m) - {PX(I:Z) € P%(m)’PX(m) =Py ®Px, Px € Px}

with ® the classical stochastic independence.

Repetition independence (also called type-2 independence [203, Ch.9]) corresponds to the
case where X, X, have the same nature and can be assumed to follow an identical but impre-
cisely known random process. With respect to our classification, repetition independence is
informative, objective and symmetric. Note that this kind of independence is very popular in
classical statistics, where it corresponds to the assumption of "independently and identically"

distributed variables.

Example 5.4. The joint credal set resulting from repetition independence between X,Y and
the two marginal credal sets of Example gives the credal set gy z on Z that have the

following extreme points:
extz,, , = {(0,0,0,1);(0.25,0.25,0.25,0.25)}

and we have Pg; 7z C Py 7, since exty,, , C exty,
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5.1.2.3 Epistemic irrelevance and independence

Definition 5.7 (ElIrr). Let P, , %%, be two marginal credal sets describing uncertainty on two
variables, X1, X, assuming values in 27, 25. Then, judging that X is epistemically irrelevant

to X is equivalent to building the joint credal set Zgy,r, , x | such that

(1:2

"@El”rlﬂ%x(lzz) = {Px(l;z) € ng(m” v76(1:2) € '%/(1:2)7 PX (1.9 (x(l:Z)) = Pxy (xl)pxz(x2|x1)a
Px, € ’@XNPXz("xl) S gxz}

with Py, (-|x1) the conditional probability on 2, given x;.

Enforcing Py, (-|x;) € &%, means that, upon learning X; = x;, our uncertainty about X,
remain the same (is still described by Zy,). Nevertheless, the particular probability assign-
ment py, (x2|x1) is allowed to be different for different values x; € 27, i.e. it is not assumed
that X5 is governed by some unique random process independent of the value assumed by X;.
This last point is essential to the notion of epistemic irrelevance, since if Py, (-|x1) is assumed
to be the same for every value x; € 27, then strong independence is retrieved (as shown by
DeCooman and Miranda [50]]).

With respect to our classification, epistemic irrelevance is informative and subjective. It is
also asymmetric, since assessing that X is epistemically irrelevant to X, will lead to a joint
credal set different from the one obtained by assessing that X, is epistemically irrelevant to
X1. Assessing that X is epistemically irrelevant to X, do not imply any kind of knowledge
about how the value X, could influence uncertainty on X;. The symmetric notion of epistemic

independence is defined as follow

Definition 5.8 (EInd). Two variables, X|,X; are epistemically independent if X; is judged
epistemically irrelevant to X,, and X, epistemically irrelevant to X;. We denote f@Elndx(l:z)
the corresponding joint credal set.

Within classical probability theory, the notion of epistemic irrelevance and independence
are extensions of cases [3] and [] of table [5.1] Notions of epistemic irrelevance and indepen-
dence are the most natural within Walley’s behavioral theory of imprecise probabilities [203],
while strong independence and repetition independence are more related to a Bayesian sensi-
tivity interpretation of credal sets (in which credal sets model a unique but imprecisely known
probability). This explains that epistemic irrelevance and independence have received a lot of
attention from researchers in the field of imprecise probabilities [200, (153} 138, [147]].
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Example 5.5. The joint credal set resulting from assessing that Y is epistemically irrelevant to
X and built from the two marginal credal sets of Example gives the credal set Zgy,y, 7z

on Z that have the following extreme points:

exty,, ,={(0,0,0,1);(0.25,0.25,0.25,0.25);(0,0,0.5,0.5)
(0,0.5,0,0.5):(0.25,0.25,0,0.5); (0,0.5,0.25,0.25)}

and extreme points that are not in ext,, , are obtained when py (y1|x1) # py(y1|x2), but are
still in ext,. For instance, the last extreme point in ext Prtrry g2 is obtained by choosing
px(x1) = 0.5, py(y1]x1) = 0.5 and py(yi|x2) = 0, and cannot be expressed as a stochastic
product of extreme points of ext, .exts,. Assessing that X is epistemically irrelevant of ¥

result in the joint credal set gy, ., z on Z that have the following extreme points:

exty,, . ={(0,0,0,1);(0.25,0.25,0.25,0.25):(0,0,0.5,0.5)
(0,0.5,0,0.5): (0.25,0,0.25,0.5); (0,0.25,0.5,0.25)}

and ‘@ElerHY Z 75 yEIrrny Z> but both includes <@5‘172.

We also have that the joint credal set %y, 7 resulting from epistemic independence be-
tween X, Y is such that P10 7 = PErrry_x,z 0 PEIrry_y,z- In this specific example, we have
Ps17 = PEia z> but in general we only have Ps; 7 C Prinq 7 (see Couso et al. [33] for
examples)

Epistemic irrelevance has a counterpart in random set theory, in which Dempster’s rule of
conditioning is used. Shafer [178), Ch.7.5] calls it cognitive independence (CI), and the notion
is also briefly studied by Ben Yaghlane et al. [216] under the name irrelevance. Here, we
just mention that a deeper study of this notion would involve the study of the maximal set of
joint random sets and of the associated joint credal set satisfying the constraint imposed by the
notion (i.e., factorization of upper probabilities). Such a study appears necessary if we wish
to make sense of this notion (if possible), both in random set theory and imprecise probability
theory. Also note that, contrary to the notion of epistemic irrelevance (Definition [5.7)), cogni-
tive independence in random set theory is symmetric by definition, even if it intends to express

an asymmetric and evidential notion of irrelevance.

When credal sets &x,, Px, can be modeled by random sets, another work that has to
be done is to define the constraints that have to be imposed on the joint bpas and on the
combination of focal sets so that the resulting structure is equivalent to epistemic irrelevance

of one variable to the other or of epistemic independence, as has be done by Fetz [107] for
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unknown interaction and strong independence. It would not be surprising for these constraints
to be close to the one used to retrieve strong independence with random sets, as epistemic

irrelevance and strong independence are closely related [S0].

5.1.2.4 Random set independence

Definition 5.9 (RSI). Let (m,.7)y , (m, 7 )y, be two marginal random sets describing uncer-
tainty on two variables X, X, assuming values in 27, 2>, and Py, , Px, the induced credal

sets. Then, random set independence between X1, X, is equivalent to build the joint credal set

‘@RSI,X(IQ) = {PX(I:Z) € P%12)|VA g %112)7PX(1;2) (A) S Z mxl (EXI)mXZ(EXZ)}
(EX1 XEXZ)QA#O
EXieﬂ‘Xi

with my,(Ex;) the mass given to focal set Ex; in (m,.7 )y,
Random set independence [57,207] (called evidential independence by Shafer [[178, Ch.7.4])
can be seen as the counterpart to cases [I|and [2| of table|5.1| within random set theory. It is thus
totally coherent within the bounds of this theory, where it is the natural extension of stochastic
independence, since it comes down to building the joint random set (m,.# )X(l:2) allocating
products of focal set masses to the Cartesian products of focal sets. It is a subjective, informa-

tive and symmetric concept of independence.

If random sets (m, .7 ) X, (m, F) x, are considered as 1* order imprecise probabilistic mod-
els, it appears difficult to make sense of the joint credal set QRSI’X(M). In this case, random
set independence can nevertheless be used as a convenient mathematical tool, since it can be
proved (see Fetz [107] or Couso [30]) that the credal set ‘@RSLX(I:Z) includes the joint credal
sets obtained with assessments of epistemic irrelevance, epistemic independence and strong

independence. Ygg;. X(17) Can thus be used as an instrumental guaranteed outer approximation

)
of ZE1X 107 S1.X10)-

Ben Yaghlane et al. [216]] have also shown that the joint credal set @RSI,XUQ) is the unique

solution to the following set of constraints:

o VAXB€E Z(12), Py, (AXB) = P, (A)Px, (B)
e VAXBe %&1:2),1_))((1:2) (A X B) = I_)Xl (A)FXZ (B)

° Bx( 1 1S an co-monotone capacity

)
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with Py, BszBX(,;z)71_3X1aFquI_JX<1;z> respectively the lower and upper probabilities respec-
tively induced by (m, 7 )y, ,(m,# )y, and by the joint credal set DX, satisfying the above
constraints. This indicates that, if one wants to express a notion of independence and restrict
its expressiveness within the bounds of random set theory (for reasons such as computational

convenience), then random set independence has to be used.

Example 5.6. The joint credal set resulting from random set independence between X,Y and

the two marginal credal sets of Example [5.1] gives the following joint random set (m,.% ) ,:

mz(z22) = 0.25 mz(z21 X z22) = 0.25
mZ(a@p) =0.25 mz(le X Z22> =0.25

and the induced credal set Zgg; 7 on 2 have the following extreme points:

ext sz, , =1(0,0,0,1);(0,0,0.5,0.5);(0,0.5,0,0.5); (0.25,0,0,0.75); (0.25,0.25,0.25,0.25)
(0.25,0.25,0,0.5): (0.25,0,0.25,0.5); (0,0.5,0.25,0.25); (0,0.25,0.5,0.25)

and we have that Pgg; 7 includes in joint credal sets resulting from epistemic irrelevance.

Note that even if Py, , Py, are not induced by random sets, Definition can be general-
ized by a proper use of Mobius inverse (Definition[3.3)) and by considering products of negative
masses and positive masses. Although the interpretation of such a joint structure has still to be
clarified, it could be advantageously used in practical application as guaranteed outer approx-
imation, provided the inclusion relation with strong independence, epistemic irrelevance and
independence still holds. Abellan and Klir [2] briefly study under which assumptions such
an extension would coincide with strong independence, but do not elaborate further on the

relationship.

Should random sets (m, F )y, , (m,.F ), be seen as 2" order imprecise probabilistic mod-
els, then interpreting random set independence is almost straightforward, as it corresponds to
assume one of the five possible probabilistic independence between the 2™ order (precise)
uncertainty models (see table [5.1)), and to take the Cartesian product as our joint uncertainty

model at the 1% order level.

5.1.2.5 Possibilistic non-interaction

Definition 5.10 (PI). Let 7y, , 7y, be two marginal possibility distributions describing uncer-

tainty on two variables X1, X, assuming values in 27, 25. Then, possibilistic non-interaction
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between X1, X, is equivalent to build the joint possibility distribution 7p; x | such that, for all

(1:2
X(1:2) In 2122
TOPLX 1.0) (X(1:2)) = min(7x, (x1), 7x, (x2))

We can then associate to TPLX 1.0 the joint credal set @pLx(l:z) such that:

yplvx(lﬁ) = {PX(I:Z) = Pg{(l;z)WA C ‘%.(112)’ PX(l:z) (A4) > NPLX(l;z)(A)}

with NP]’X(IZZ) (A) the necessity measure of event A induced by TUPLX ) - With respect to our

classification, possibilistic non-interaction is informative, symmetric and subjective.

Possibilistic non-interaction has been first introduced in the framework of possibility the-
ory by Zadeh [218], and the term non-interaction was used on the basis that, inside the Carte-
sian product of each a-cut, variables X7, X, are judged non-interactive (i.e. logically indepen-

dent). Fetz [107] calls this notion fuzzy set independence.

Let (m,.7 )y, , (m,F )y, be the two random sets induced by 7y, , Tx,. Then, the joint ran-

dom set (m, %) PLX12) induced by 7p; x,,,, can be built in the following way:

(1:2)

o Let {0=1 <7 <...< 7y} be the set of all distinct values taken by 7y, , 7y, , respec-
tively on 27, 2.

e Build a joint bpa mpy x , ,, such that m(ET,i,,rX1 X Ey.ny,) = Yir1 — Yiforalli=0,....M—

(1:2)
1, with E77,-77ij the strong ¥;-cut of distribution 7y;.

77.'X2

which well shows that TPLX 1) is equivalent to assuming a complete dependence between
o-cuts, and consequently between levels of confidence. Inclusion relationships between pos-
sibilistic non-interaction and random set independence notions have been studied by Tonon

and Chen [[192].

If we now compare the credal set QP]’X“Q) with joint credal sets generated by other notions
of irrelevance, it appears that it has poor relationships with them (it generally neither includes
nor is included in any of them). This is not so surprising, since possibilistic non-interaction
was first motivated within possibility theory, which does not generalize classical probabili-
ties and is at odd with it (see Figure @), thus there is no obvious reasons for possibilistic
irrelevance to generalize in some way one of the probabilistic independences summarized in
table Similarly to random set independence, if 7y, ,7x, are interpreted as 1¥ imprecise
probabilistic level, making sense of possibilistic irrelevance appears difficult. Nevertheless,
given marginal credal sets &y, , Py, induced by 7y, , Ty,, the joint credal set @PLX(]ZZ) is the

unique solution to the following constraints:
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e Forany 7 € {YO> EERR ’}/M—l}a BX(I:Z) (E7i,ﬂx1 X E)7l~,7l?x2) =1-%

° BX(1:2 1S a necessity measure.

)

with P the lower probability of the joint credal set satisfying the above constraints.
X(12) P y J ying

If possibility distributions 7y, ,7x, are interpreted as 2" order imprecise probabilistic
model, then the joint structure TPLX 1) is equivalent to considering a complete correlation
between 2" order (precise) models and to considering the Cartesian product at the 1% order

level.

Example 5.7. The joint credal set resulting from possibilistic non-interaction between X ,Y and
the two marginal credal sets of Example [5.1] gives the following joint possibility distribution

7.

nz(z11) = miz(z12) = 7z(z21) = 0.5 mz(z22) =1

the induced random set (m, %), is such that

mr({20}) =05 mg,({2}) =05

and the induced credal set #?p; 7 on 2" have the following extreme points:
exty, , = {(0,0,0,1);(0,0,0.5,0.5);(0,0.5,0,0.5);(0.5,0,0,0.5)}

and it can be checked that #p; 7 is neither included in nor includes other credal sets considered
up to now, except for Zy; 7 (simply note that a probability assignment such that pz(z;;) =0.5
cannot be reached by convex combination of extreme points of other credal sets, except for
Py1z and Ppyz, and similarly, that the uniform distribution on 2, which is in all other

credal sets, cannot be expressed through a convex combination of elements in extg,, ).

The following proposition shows that the notion of possibilistic non-interaction can be
interpreted as a non-informative irrelevance notion, where all the information that is kept is

the information on elementary elements of the Cartesian product:

Proposition 5.1. Let 7y, be two possibility distributions, Py, , P, the induced credal sets
and '@Ulvﬂ(lﬁ) the joint credal set induced from marginal credal sets P, , Py, and a judgment

of Unknown Interaction. Then, we have, for any x(1.5) € Z (1)

Purmy ({x(1:2) ) = Pur g, (¥1 X x2) = min(Pg, ({x1}), Pr, ({x2})) = min(m (x1), 72 (x2))
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with FU“‘(I:Z) ,I_Jm ,I_Jﬂz the upper probabilities of c_@w’n—(l:z), P, Pr, respectively.

Proof. Consider a generic element x(1.0) € Z{1.2), and let p} € P, py € Pz, be two prob-
ability distributions such that p (x;) = 71 (x1) and p}(x2) = m(x2). Now, let p/(lzz) be a joint
probability distributions on Z(;.5) which have p},p, as marginals. By using the Frechet
bounds, we know that p/(l;z) (x1 X x2) is bounded as follows

max (p} (x1) + pa(x2) = 1,0) < p{y5)(x1 X x2) < min(p] (x1), p(x2))
and that these bounds can be reached by some joint distribution p/(l;z)' Since pf(x1), ph(x2)
are upper bounds, and since a judgment of Unknown Interaction consider every possible
joint distribution built from marginals that are in &, %5,, we have I_DUL,T(M) (x1 Xxp) =
min(Pyr, ({x1}),Pxr, ({x2})), and this finishes the proof. O

This proposition shows that taking the joint possibility distribution induced by possibilistic
non-interaction is equivalent to making an unknown interaction judgment between credal sets

and then keeping only the information related to the singletons of 2;.,

To conclude with possibilistic non-interaction and possibilistic joint models in general, it
appears that in a quantitative framework, one cannot fully model complex notions of (ir)relevance
or independence only with the language of possibility distributions. It is also the conclusion
reached by Miranda and de Cooman [147] in their study of epistemic dependence in quanti-
tative possibility theory. Nevertheless, as they notice, possibility theory and distributions are
very useful in qualitative framework, in which some important previous work studying inde-
pendence in possibility theory took place [6) [75]. It is also important to recall that, by being
the simplest model of imprecise probabilities, possibility distributions are also the most con-
venient from a computational standpoint. Hence, it is always useful to be able to provide joint
possibility distributions that are guaranteed outer-approximation of a given joint uncertainty
representation, these distributions then playing the role of first "quick and clean" approxima-
tions (see Section [5.3).

Our short walk in the jungle of independence notions in quantitative imprecise probability
theories would not be complete without mentioning Kuznetsov’s [? ] condition of indepen-
dence (KI), studied by Cozman [36]. This condition, based on lower and upper expectations
reached by random variables, mainly impose that intervals of expectations follows the rules
of interval arithmetic [152]. It is the most natural extension of case [5] in Table [5.1] inside
imprecise probabilisty theories, and we consider it as more related to non-correlation than

to independence. Cozman [36] shows that, given marginal credal sets P, , Px,, the most
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conservative joint credal set constructible from Kuznetsov’s independence condition, that we

note ‘@KI,XM includes the joint credal set built from strong independence assessment and is

) 9
included in the joint credal set built from epistemic independence. Within our classification,

Kuznetsov’s independence is informative, subjective and symmetric.

5.1.2.6 Irrelevance and independence: a general picture

We just have recalled the main notions of irrelevance and independence existing within impre-
cise probability theory. From this review, it is clear that there are many questions to be solved.

Nevertheless, we can sketch some general conclusions.

First, note that epistemic notions of irrelevance (all notions of previous section) requires
to first assume logical independence between spaces. This pre-requisite assumption of logical

independence between spaces also applies between sets of probability distributions.

Second, independence notions are useful to demonstrate the poor expressive power of
precise probabilities and classical sets. Let &y, , Py, be two credal sets on 27, %2>, then, if
they respectively reduce to precise probabilities Py,, Px,, the following notions collapse into

the classical stochastic independence (as already suggested by table[5.1):
SI = Elrr = EInd = RSI = KI = CI (Cogn. Ind.) = RI

with repetition independence applying only when Py, = Py,. Similarly, if the two credal sets
reduce to Jx,, Jx,, that is credal sets equivalent to sets 27, 2>, the following notions collapse

into the Cartesian product Z.):

SI = Elrr = EIlnd = RSI = KI = CI (Cogn. Ind.) = Ul = PI.

Given two marginal credal sets Py, , Py,, Figure [5.1| summarizes the inclusion relation-
ships between the different irrelevance assessments reviewed in the previous section, with
notions RI,RSI,CI, PI applying when possible. This figure allows to compare how much each
irrelevance notion reduces the imprecision of the resulting joint uncertainty. For instance, we
can see that an assessment of epistemic independence following an assessment of strong inde-
pendence would not reduce the uncertainty. However, this does not mean that an assessment
of epistemic independence following one of strong independence would be useless, let alone
that the latter implies the former. A simple illustration is the case of a coin whose charac-

teristics are unknown: while it is reasonable to judge the results of each successive flips to
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Figure 5.1: Inclusion relationships of joint models, with marginal credal sets
L@Xl;‘@)(z

be stochastically independent (strong independence), it would be unreasonable to also judge
them epistemically independent, since it would not allow one to learn from the successive
flipping results (i.e., to know if the coin is loaded or fair). Note that there is an important
subcase on which the joint uncertainty representations resulting from Strong independence,
Kusnetsov independence, Epistemic irrelevance/independence and random set independence
all agree: whenever A C 27, B C 2>, these five notions produce the same lower and upper

probabilities on A x B, which are

Py, (A% B) =Py (A)Py,(B) and Py, (A x B) = Px, (4)Px,(B)

Table [5.2] summarizes how each notions of irrelevance/independence can be classified,
whether they are symmetric or not and if they are (always) expressible within a particular
uncertainty theory (i.e., imprecise probability theory, random set theory, possibility theory),
given our current knowledge. Also note that, if decompositional types of irrelevance can easily
be extended to any Cartesian product 2/;.y) of N spaces, it is not the case for evidential and

non-symmetric types of irrelevance.

Besides this formal study stands the question of interpreting and using irrelevance state-
ments in practice. It appears that a given irrelevance notion can have multiple interpretations,
can fit different theories and serve different purposes. Eventually, the choice of a particular

notion should be guided by:

e Available evidence/knowledge about the variables, their relations and about the consid-

ered problem.
e The framework of application.

e The computational convenience of a particular notion.
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Irrelevance notion  Inf./nInf. Obj./Sub. Sym/Asym. Expressible in

IP RS P

Logical Ind. nlnf. Ob;. Sym vV oV
Relational Irr. nlnf. Ob;. Asym. vV vV
Functional Irr. nlnf. Ob;. Asym. v vV
Unknown Int. ninf. Sub. Sym VARV
Possibilistic non-Int.  Inf./nInf. Sub. Sym vV VvV
Cognitive ind. Inf. Sub. Asym. 7V X
Random set Ind. Inf. Sub. Sym v v X
Epistemic Irr. Inf. Sub. Asym. v ? X
Kusnetsov Ind. Inf. Sub. Sym v ? X
Strong Ind. Inf. Ob;j. Sym ARV X
Repetition Ind. Inf. Ob;. Sym v < ? X

Table 5.2: Irrelevance notions in uncertainty: a summary (?: matter of further re-
search)

For example, even if the notion of random set independence can sometimes appear conser-
vative or somewhat ad hoc, its computational convenience and the fact that it allows a simple
use of sampling techniques [117,[116] are instrumental when the computational cost of using
strong independence or epistemic independence is too high. The same arguments hold for
unknown interaction and possibilistic non-interaction, which are equipped with a full-fledged
counterpart of interval arithmetic (see, for example, Williamson and Downs [209]] for proba-
bilistic arithmetic and Kaufmann and Gupta [[126] for possibilistic arithmetic), making them

very efficient tools providing fast approximations.

To conclude, it is important, when making an (ir)relevance statement, to motivate this
statement, e.g., by using our knowledge of how things work, by considering available ob-
servations (frequencies) or evidences, by making experiments. .. Such a motivation requires
careful thinking, since as emphasized recently by Shafer [179, Ch.5.] (and, in a shorter way,
by Couso [30]), witnessing formal independence in the observations (i.e., stochastic product
of frequencies) does not forcefully imply independence or irrelevance in the processes gener-
ating these frequencies, similarly to the known fact that a non-null statistical correlation does

not imply a true (causal) relationship between two variables.
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5.2 Relating irrelevance notions to event-trees: first results

A quite interesting idea to motivate and interpret (ir)relevance statements is to consider them
inside event-trees. In his book, Shafer [[179] uses event-trees (first instances of which probably
dates back to Huygens [120]) in order to develop a complete theory of probability and of
causal conjecture. In this work, he elaborates on the idea that probabilistic thinking should be
associated to a "story" or a protocol, associated to a particular observer, and describing how
the world works. In particular, he links (in)dependence with Reichenbach’s [[172] seminal idea

of common cause.

This notion of event tree is central in the later approach developed by Shafer and Vovk [180],
where they develop a theory of (imprecise) probability based on a game-theoretic framework
and involving lower and upper expectations. Recently, de Cooman and Hermans [47, 48] have
shown that this theory can be related to Walley’s [203] behavioural approach to imprecise
probabilities, and they have introduced imprecise probability trees as a bridge between the
two. By showing that many results can be imported from one theory to the other, they make
significant progress towards the unification of the two theories. Given this relation between
the two theories, it makes sense to wonder if and how (ir)relevance statements of one theory
fits into the other theory, and if it can help in interpreting and understanding them. Partial
answers are given in this section, where we give results showing how the recent notion of
forward irrelevance [50], consisting in iterated epistemic irrelevance statements, fits into im-
precise probability trees and relates to event-tree independence. Discussions about preliminary

results for other irrelevance statements can be found in Appendix [G]

5.2.1 Event-trees

An event tree is composed of situations linked together, and it represents what relevant events
may possibly happen in what particular order in the world, according to a particular subject,
i.e., an event tree shows the probability "story" viewed by this subject, and its uncertainty
about what will happens. It is formally equivalent to a rooted tree in graph theory. Here, we
restrict ourselves to trees with finite depth and width. The notions that we now introduce are
illustrated in Figure[5.2] A situation is a node in the tree. The initial situation is the root of the
tree. A terminal situation is a leaf of the tree; all other situations, including the initial one, are
called non-terminal. A path in the tree is a sequence of situations from the initial to a terminal
situation. A path goes through a situation s if s belongs to it. The set 2~ of all possible

paths, or equivalently, of all terminal situations, is called the sample space, and is equivalent
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to spaces we considered in earlier sections and chapters. An event is modeled by any set of
terminal situations. Situations immediately following a non-terminal situation s are called
daughters of s, and the set of such daughters is denoted by D(s). The link between a situation
s and one of its daughters ¢ is called a move from s to ¢. If a situation s is before a situation ¢ in
the tree, we say that s strictly precedes t, and denote this as s < ¢; and if a situation s is before
or equal to a situation #, we say that s precedes t, and denote this as s < t. Two situations
are called disjoint if there is no path they both belong to. A cut is a set of disjoint situations,
such that every path goes through exactly one situation in the cut. If each situation in a cut V
(strictly) precedes some situation in another cut U, then V is said to (strictly) precede U, and
we denote thisas V < U (V < U).

Figure 5.2: An event tree, with initial situation [J, non-terminal situations (such as
t) in grey, and terminal situations (such as @) in black. Also depicted is a cut U =
{uy,...,us}. Observe thatr < u; and that D(t) = {uy,uz}. Also, u4 and t are disjoint,
but not u4 and .

5.2.2 Probability trees

Branching probabilities pg for a non-terminal situation s are non-negative numbers summing
up to one, and each of them is attached to a different move originating in s: we denote by
ps(t) the probability to go from s to its daughter 7; py is a probability mass assignment on the
set D(s). A (precise) probability tree is an event tree for which every non-terminal situation
has such branching probabilities. ps(z) = p(t|s) is interpreted as the probability to reach 7,
conditional on the fact that we are in situation s, and P is thus a local predictive probabilistic
model for what will happen right after s. Such a tree defines a joint probabilistic model on
the sample space 2~ such that for any x € 2", p(x) is the product of all probabilities on the

branches of the path reaching x.

Example 5.8. We illustrate the concept of probability tree with an event-tree describing two

successive flipping of coins:
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2.7
I
pa2(1,7)=1/2 pra(h2)=1/2
— ™~
07 h,?
— ~ — ~~
peo(tit)=1/2 peo(t.h)=1/2 pu2(hit)=1/4 P2 (h,h)=3/4
— ™~ — >~
't th it h,h

The labels for the situations are explicit, e.g., &, ? means that the first coin has landed ‘heads’,
and the second still has to be flipped. As indicated on the edges of the tree, the first flip is made
with a coin judged fair. Same coin is kept if it lands "heads’, otherwise a biased coin is used if
it lands ’tails’. We can already note that this modeling requires to model our uncertainty with
quite strong statements, that is with precise probabilities for each coin. The joint probabilistic
model defined by the above tree is p(t,7) = 1/4, p(h,t) = 1/8, p(h,h) = 3/8, p(t,h) = 1/4

Let us now consider a non-terminal situation s and a function f; : D(s) — R affecting a
value to each daughter of s. We denote by Es(fs) = E(fs[s) = Liep(s) Ps(t) fs(t) the expected
value of f; given that we are in situation s. Let us denote by -Z(D(s)) the set of all real-valued
functions on D(s), then, the local probabilistic model P; can be equivalently described by
expected values E( fs)EI, with f; € Z(D(s)) (simply note that p(7) is retrieved when f(¢) =1

and f; = 0 elsewhere).

If we now consider a function f : 2 — R on the sample space .2, then the expectation
E(f) of f in any situation s can be calculated from local models P; by using a rule of ir-
erated expectation [179, Ch.3.], also referred as concatenation formula by de Cooman and
Hermans [47, 48]]: for any situation ¢, we have E;(f) = E;(E(f|D(t)), with E(f|D(t)) the
function that assumes the value E(f) for each s € D(r). If x € 2" is a terminal situation, then
we have E,(f) = f(x). The (conditional) probabilities of any event A C 2" can be retrieved
by considering the indicator function 1, such that 14) (x) =1ifx €A, zero otherwiseﬂ

Example 5.9. In the probability tree of Example let us consider the function f such that
p(t,t) =3,p(h,t) = —1,p(h,h) = =2, p(t,h) = 2. Expected values obtained for the different

situations are summarized below.

ICalled prevision in de Finetti language [108], who used P rather than E, E being used for so-called coherent
extensions in his work

ZWithin probability trees, we could have limited ourselves to probabilities of events, but considering expec-
tations is necessary with credal sets and imprecise probability trees, see Appendix E]
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2,7
/1/2/ \1/2\
t,? Eon(f)=3/8 1
1/2/ \1/2 1/4/ \3/4
e N e ~N
t,t  Eu(f)=52 t,h h,t Euo(f)=""/+ hh
E(tt)(f) =3 E(zh) (f) =2 E(ht) (f) =—1 E(hh) (f) =-2

5.2.3 Imprecise probability trees

Now, an imprecise probability treeﬂ is simply an event tree in which to each non-terminal
situation s is associated a closed convex set & of branching probabilities py, describing a
subject’s uncertainty about which move is going to be observed just after s (i.e., immediate
predictions [48]]).

To an imprecise probability tree, we can associate coherent lower expectations. First of all,
for any non-terminal situation s, and for any real-valued function % on D(s), we can consider
the lower expectation E (h) = min{Ep, (h)|P; € &} with Ep (h) the expectation of & in s
given the local probabilistic model F. E. ﬂ and A are equivalent local predictive models
for what is going to be observed immediately after s, these models being now allowed to be
imprecise (whereas in probability tree they are necessarily precise). We can also consider
global predictive models for imprecise probability trees: Let f be a function on the sample
space 2 . For every situation ¢, we consider the lower expectation E(f|¢) conditional on z:

lower expectation of f, given that the actual path goes through ¢.

The global models E(-|f) can be calculated from the local models E by backwards recur-
sion, using the Concatenation Formula [47,/48]]: for any given situationt, E(f|t) = E,(E(f|D(?))),
where E(f|D(t)) is the function on D(¢) that assumes the value E(f|s) in each s € D(t); and
for a terminal situation x € 2", we have E(f|x) = f(x). Lower and upper probabilities of
events are retrieved as in the precise case, by considering lower and upper expectations of

indicator functions on events.

Example 5.10. Let us illustrate this with the same event tree as in Example but this time

with imprecise local probabilistic models for some situations.

3Shafer [[179, Ch. 12] uses the term ‘martingale tree’.
“In Walley’s work [203]], similarly to de Finetti [108]], lower expectations are called lower previsions and
denoted P, E standing for the so-called natural extension
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2.9
P
poa(t)E[a3/a]  pra(h?)El/a 4]
62" [5/3,7/s] TTh?
_— ~ - ~
Pia(tt)=1/2 pip(th)=1/2 pio(ht)€(1/43/4]  pp o (hh)€[1/4,3/4]
11 1/2 Stho bt 1 T hh
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As indicated on the edges of the tree, the knowledge about the first coin is modelled by the
imprecise probability assignments p(h) € [1/4,3/4] and p(¢) € [1/4,3/4]. If it lands ‘heads’, we
keep the same coin, otherwise the second flip is made with a fair coin (p(h) = p(t) = 1/2).
Also indicated are the different steps in the calculation of the lower and upper probability of

getting ‘heads’ at least once, using the Concatenation Formula.

5.2.4 Forward irrelevance in event trees

Let us briefly recall the notion of forward irrelevance, discussed in detail by De Cooman and
Miranda [50], before relating it to independence in event trees. First recall that the notion of

epistemic irrelevance for credal set is an asymmetric notion (see Section [5.1.2.3).

Now, assume that uncertainty bears on (random) variables X1, ..., Xy, respectively assum-
ing values in Z7,...,Zy. We assume logical independence (Section between all
these variables, since it is a pre-requisite to express forward irrelevance. A function f defined
on 2.y is called Z ., -measurable if f(x(1.y)) = f(y(1.n)) for all x;.y) and y(;.x) in 2.
such that x(i.p) = Y(x.¢), that is an Z.,)-measurable function is totally determined by the val-
ues it takes on 2{;.¢). We denote by £ (Z 1.¢)) the set of all Z(;.¢)-measurable functions, and
by f(x.¢) a generic function in this set.

We now consider the specific example where the X constitute a stochastic process with
"time" variable k, implying in particular that it is known in advance that the value of random
variable X, will be revealed before that of X, |, where ¢ = 1,2,...,N — 1. Such a specific
situation can be modeled by a special event tree (also called a standard tree [179, Ch. 2]) where
the situations (nodes) s have the general form x4y € Z(1.4), k =0,...,N. For k = 0 there is
some abuse of notation, as we let Z(;.) := {0} and x(1:0) := L. The sets Z{;) constitute
special cuts of the tree, where the value of Xj is revealed (known). We have 2.y < Z(1.2) <
-+ < Z(1:n)» and this sequence of cuts is also called a standard filter [179, Ch. 2]. It is clear
that D(x(1.k)) = {X(1:4)} X Zky1 for k=0,1,...,N — 1, that is the daughters of a situation in

cut 2yt are the values that X, can assume. The sample space of such a tree is Z(;.y),
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and with the variable X} there corresponds a set £ (Z}) of Z}-measurable functions on this
sample space. For instance, in the standard tree of Example [5.9] functions characterising the
second coin flip are such that f(z,h) = f(h,h) and f(¢,t) = f(h,t). Below is another example

of a standard tree.

Example 5.11. We see here the first two cuts of a standard tree, with 2] = {a,b} and 23 =

{a,B, 7}

AN 1N 71N 1N 71N 71N %&1-2)
/I \\ /I \\ /’ \\ /I \\ /’ \\ /’ \\
SN SN SN SN S S

/ \ / \ / \

/ 1 \ \ / 1 1 \ / 1 1 \ / 1 1 \ / 1 1 \ / 1 \ \
' v ' v ' v ' v ' v ' v

As in the previous section, we consider that our uncertainty in each situation about what
will be observed next is described by a local credal set, or equivalently by lower expectations
of real-valued functions defined on the set of daughters of the situation. To any non-terminal
node x4y (k=0,1,...,N — 1) then corresponds a (coherent) local predictive lower expecta-
tion E, = defined on Z(D(x(1.1))) (in other words on £’( 2}, 1)) Recall that E,, (1 1S €quiv-
alent to a local credal set ‘@xu:k)' This local predictive model represents beliefs or knowledge
about the value of X;; , given that the k previous variables X(;.) assume the values xj.z).
This means that to each node is attached a credal set of conditional probabilities. For instance,
in Example [5.11] to situation a would corresponds a local predictive model E, describing our

uncertainty about which values X, would assume on D(a) = {a, B, v} given that X; = a.

For standard imprecise probability trees, the Concatenation Formula given above for de-
riving the global lower previsions E(:|x(1.p)) on £ (Z(;.y)) from the local models Ey
completely coincides with the formulae for Marginal Extension, derived by Miranda and De
Cooman [[148]]. Recall that this formula allows to build, from assessments of (local) credal sets
of conditional probabilities, joint uncertainty models. However, using Marginal Extension in
general requires to assess as many credal sets as there are nodes in the tree, and this number

can increase exponentially with the number of variables.

A way to reduce the number of needed assessments is to use an assessment of forward
irrelevance, meaning that for 1 < k < N — 1, uncertainty about the value of the ‘future’ random
variable X, won’t be changed by learning new information about the values of the ’past’

random variables X;.;): the past random variables X, ..., X; are epistemically irrelevant to the
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future random variable X; |, for I <k < N — 1. This is expressed by the following condition
involving the local models: for all 0 <k < N — 1, any function fi | in £ (Z}+1), and all X(1:k)
in %il:k):

Ey . (fer1) = E(fisrlxn) = Er1 (fer), (5.1)

where E,_ ; is the so-called marginal lower prevision on . (2} 1), and is equivalent to spec-
ifying a marginal credal set &7, which expresses the uncertainty about the value of X,
irrespective of the values assumed by the other random variables. Equation (5.1]) indicates that
our belief about the value assumed by X do not depend on the values x(;.;) observed for
variables Xi,...,X;. Invoking the Concatenation Formula now leads to a very specific way
of combining the marginal lower expectations E, ..., E into a joint lower expectation, re-
flecting the assessment of forward irrelevance. This joint lower prevision, called the forward
irrelevant product, is studied in detail by De Cooman and Miranda [50], who also use it to

prove very general laws of large numbers [49]].

We now proceed to show that forward irrelevance is exactly the same thing as Shafer’s
notion of event-tree independence, when applied to standard imprecise probability trees. In
Shafer’s [[179] terminology, a situation s influences a variable X if there is at least one situation
t € D(s) such that uncertainty about the value of X modifies when moving from s to #; when we
adapt this definition to imprecise probability trees this means that E(f|s) # E(f]t), where f is
some function whose value depends on (and only on) the outcome of X. Two variables X and
Y are called event-tree independent if there is no situation that influences both of them [179,
Ch.8].

In a standard imprecise probability tree, a situation x(;.;) influences a variable X,,, if there is
at least one situation x(j.x1) in D(x(j.¢)) and one function f,, € £ (%) such that E( fu|x(1.1)) #
E(fm|X(1:k41)). Note that in a standard imprecise probability tree, the only situations x;.¢) that
can influence X, are such that kK < m, since in all other situations, the value of X,, has already
been revealed ‘for some time’. In addition, it is easy to check that X, is always influenced
by any situation x(;.,,_1) in the cut 2{;.,,_1) right before the value of X, is revealed (i.e. the

value of Xj, is no longer uncertain).

Proposition 5.2. Let X1, ..., Xy be N random variables. Then there is forward irrelevance,
or in other words, the random variables Xy, are epistemically irrelevant 10 Xy for 1 <
k < N —1 if and only if the random variables X, ..., Xy are event-tree independent in the

corresponding standard imprecise probability tree.
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Proof. We deal with the ‘only if” part first. Suppose the random variables X;.y) are forward
irrelevant. Consider any X; and function f; € £ (Z%), where 1 < k < N. Then it follows
from the forward irrelevance condition (5.1]) and the Concatenation Formula that E,(f;) =
E (fk) = E(filx(1:k—1)) for all x(14_1) in Z{1.4_1). Applying the Concatenation Formula
again leads 10 E(filx(1x-2)) = Ev ., (ECil(-2:)) = Eq,y  (Ex(fi)) = Ex(fi). and if
we continue the backwards recursion, we see that

E(fi) = E(filx(x-1)) = E(filx(x-2)) = -+ = E(filx(1:2)) = E(filx1) = E(fi|D).

This implies that the only situations that (may) influence Xj are the ones in the cut Z{;_1) im-
mediately before X} is revealed. Therefore, no situation can influence more than one variable,

and there is event-tree independence.

Next, we turn to the ‘if’ part. Assume that all variables are event-tree independent in
the standard tree. This implies that no variable X; can be influenced by a situation x(j.y)
corresponding to a time ¢ < k— 1 (If X; were influenced by such a situation, then we know that
this situation also always influences Xy, 1, and £+ 1 < k, thus we end up with a contradiction).
So for all x(j.x—1) € Z{(1:4—1) and all fy € L (Z%):

E(filxu—1)) = E(filx(14—2)) = - = E(filx(12)) = E(filx1) = E(f|O).

Now of course E(f¢|0) = E(fx) = Ex(fk), where E} is the marginal lower expectation for X,
and it follows from the Concatenation Formula that E( fi|x(14—1)) = E, ) (fx)- This shows

that (5.1)) is satisfied, so indeed there is forward irrelevance. L]

5.2.5 Usefulness and meaningfulness of the result

The above result is a first step towards a unification of independence notions used in Wal-
ley’s [203] behavioral theory with independence notion in event-trees, these last ones being
central in the recent theory developed by Shafer and Vovk [180]. It is of course desirable to
extend it to other structural judgments [203, Ch.9] about variables and to more general sit-
uations. Some preliminary ideas concerning other independence notions (such as epistemic
independence) can be found in Appendix G| Also, there is quite a number of interesting things
(both practically and theoretically) to say about this result, despite its somewhat preliminary

nature.

First, assume we want to consider a theory of uncertain (random) processes, where prob-
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abilities are no longer necessarily precise. Since the concept of independence in classical
random processes has many counterparts when allowing imprecision, it is natural to wonder
what is the most useful and meaningful of them? There are a number of reasons to prefer
the asymmetric notion of epistemic irrelevance, and its generalization to multiple variables
(forward irrelevance), rather than the symmetric notion of epistemic independence. Some of

these reasons, that we find compelling, are the following:

e When a notion that is (more or less, as shows table [5.I)) automatically symmetrical,
breaks apart into two asymmetrical counterparts when using a more powerful language,
symmetry becomes something that has to be justified: it can’t be imposed without giving

it another thought.

e An assessment of epistemic independence is stronger, and leads to higher values of
lower expectations and to a smaller joint uncertainty. This means that epistemic inde-
pendence leads to make stronger commitments about what could happen, and these may

be unwarranted when it is only epistemic irrelevance that one want to model.

e Joint credal sets, lower probabilities and expectations based on an epistemic irrelevance
assessment are generally speaking straightforward to calculate, as the discussion of the
Concatenation Formula in Section[5.2.4]testifies (See also other related works [47,49]).
But calculating joint lower previsions from marginals based on an epistemic indepen-

dence assessment is quite often a very complicated matter [203, Ch. 9.3.2].

e Finally, in a random process, it is known that the value of Xy will be available before the
value of Xj . Stating that X} is epistemically independent of Xy | amounts to judging
that (i) getting to know the value of X; won’t change his beliefs about X, [forward
irrelevance]; and (ii) getting to know the value of X, | won’t change his beliefs about
X; [backward irrelevance]. Since we always know X before Xy (ii) is either counter-
factual (since there is no longer any kind of uncertainty concerning the value of X; when
learning the value of Xj 1) or useless. In this case, we think it is much more natural in
such situations context to let go of (ii) and therefore to resort to epistemic (forward)

irrelevance.

Note that similar arguments hold for strong independence and repetition independence, which

are also symmetric and induce lower expectations higher than epistemic independence.

Second, this result, together with the concatenation formula, make the use of epistemic in-

dependence in practical applications easier, by allowing for local computations. It could even
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be a step towards the use of such independence notions in credal networks, since, as argued
by Shafer [[179, Ch.16], Bayes nets can be seen as economical representations of probability

trees.

Third, results given by de Cooman and Miranda [S0] relating forward irrelevance to strong
and repetition independence allow to also express these two notions in standard imprecise
probability trees, by adding suitable constraints on the local credal sets in each situation. It has
to be noted that computing lower and upper expectations would then become more difficult,

since local computations could no longer be used (see Appendix [G)).

5.3 A consonant approximation of consonant and indepen-

dent random sets

Section and Figure indicate that it can be difficult to compare some notions of irrele-
vance and to interpret all of them in a single framework. However, in some cases, it can be
useful to be able to approximate one notion by the other (e.g., for computational convenience,
or because one wants to work within a particular framework or theory). In particular, it is
always useful to be able to approximate a given joint uncertainty model by a joint possibility
distribution, for the reason that possibility distributions are the simplest imprecise probabilistic
models, and are thus easier to manipulate. Here, we consider the case where marginal uncer-
tainty is described by possibility distributions, and where we assume random set independence

between them.

Let m; be a possibility distribution describing uncertainty on variable X;, i = 1,...,N, and

denote the equivalent consonant random set by (m,.#)_. Let aj =1> 0o > ... > ay >

T "
oyr+1 = 0 be the collection of distinct values taken by distributions 7;, i = 1,...,N (or, in the
case of continuous distributions on the real line, the collection of chosen discretization levels).
Then, (m,.7),. is given, for j=1,...,M, by

T,
Eij=Aiq;
m(Ei j) = 0 — Qj1 = mi j

with E; ; the aj-cut of 7;. Each marginal random set thus have M focal elements. The joint
random set (m, .7 ) RSTX 1) resulting from an assessment of random set independence then has

MV focal sets, an exponentially growing number that can quickly become intractable in prac-
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tice. As shown by the following proposition, it is possible to outer approximate (1, .7 ) gg; X
by a joint possibility distribution 71:,’((1_N) which only have M focal sets, that is a number inde-

pendent of the input space dimensions.

Proposition 5.3. The most specific non-interactive possibility distribution n)'((l_N) inducing a

random set (m, f)ﬂ),( outer approximating (m, F ) pg X (in the sense of s-inclusion) and
I:N A

whose focal sets are in {x\_|E; j|j = 1,...,M} is such that, for any x1.x) € Z{1.n),

Ty () = min (DY () = DV 41} (52)

Proof. See appendix D] O

This proposition extends to the general case a result given by Dubois and Prade [89]
for the 2-dimensional case. It shows that if one transforms each distribution ; into 7/ =
(—=1)¥*!(m; — 1)V + 1 and then builds a joint model with an assumption of possibilistic non-
interaction, then the result is a guaranteed outer approximation of (m,.%) RSLX 1" This has
the practically important advantage to go from exponential to constant complexity in the num-
ber of input dimensions. Of course, such a drastic reduction is not without cost, and for a
particular distribution 7;, Equation will converge to 1 if m;(x;) > 0 as N increases, and is
0 if w(x;); = 0. This means that, as N increases, the outer-approximation converges towards
the Cartesian product of supports of distributions ;. It is thus legitimate to wonder about
(1) the speed of convergence of non-null values to 1 and (ii) the usefulness of the proposed
outer-approximation when compared to other quick and cheap methods providing outer ap-

proximations, such as the use of probabilistic arithmetic [209] when propagating uncertainty?

Figures [5.3] and [5.4] give ideas about the rate of convergence, by drawing the evolution
of possibility degree values versus the number of dimensions (Figure [5.3)), and by sketching
the evolution of a triangular possibility distribution on the real line, with center O and support
[—1,1] (Figure [5.4). We can see that, if the loss of information is important (and thus the
approximation likely to be gross), part of this information remain, even for high dimensions.

Let us now investigate if this outer approximation can be useful in some ways. In par-
ticular, we compare the propagation of the proposed outer approximation n)/(u:m with the
propagation of tightest classical p-boxes [F,F]|; outer-approximating 7; using probabilistic
arithmetic. Recall that probabilistic arithmetic [209] allows to apply the four basic operations
{+,—, x,+} with an assumption of unknown interaction to p-boxes in a very efficient way.

Given two real-valued variables X,Y and some (classical) p-boxes [F,F|y, [F,F], describing
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Figure 5.3: Evolution of distributions degree () versus input space dimension (N)
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Figure 5.4: Evolution of a triangular possibility distribution for different input space
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our uncertainty on them, result of applying each arithmetic operations read, for any z € R:

Fxiy(z)= SUP]R {max(Fy(x) +Fy(y)—1,0)}
x,y€
X+y=z

Fxiy(z) = inf {min(Fx(x)+Fy(y),1)}

x,yeR
x+y=z

Fy_y(z) = sup {max(Fx(x)+Fy(-y),0)}
e
Fy_y(z)= inf {min(Fyx(x)+1-Fy(-y),1)}

x,yeR
x+y=z

Fyy(z)= supR{max(EX(x) +Fy(y)—1,0)}
x,y€
XXy=z
Frer(z) = inf {min(Fy(x)+ Fy(y), )}
x,yeR
XXy=z
Fy.y(z)= sup {max(Fy(x) +Fy(1/y),0)}
X,ye
XXYy=7
Far(@) = inf {min(Fx(o)+1 - £y (/). 1)}
XXy=z

and, provided the model T through which uncertainty has to be propagated is expressible by a

combination of arithmetic operations, above equations can be applied for each such operations.

A comparison of both approaches is given by Example[5.12] It can be seen on this example
that when the model T contains no repeated variable (i.e. can be reduced to an analytical form
where each variable appears once), then both methods provide comparable results. However,
it is not the case when there are repeated variables, and/or when extrema are not forcefully
on boundaries of Cartesian product (non-isotone models), and when propagation of the focal
sets of the outer approximation of Proposition [5.3] is done exactly (and not by using fuzzy
arithmetic). Also note that, when T is not expressible analytically, propagating n)’((I:N) can be
used and still requires to propagate exactly M focal sets, while in this latter case the coun-
terpart of probabilistic arithmetic requires to solve linear systems, and present an increased

computational complexity.

Example 5.12. In this example, we consider two simple models, with variables that are as-
sumed to be random set independent and whose uncertainty is described by possibility distri-

butions. For the two of them, we compare the result of applying extension principle (i.e. exact
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propagation of the focal sets) to the outer approximation of Proposition[5.3| with the result that

would give the application of probabilistic arithmetic.

Let us first consider the simple model Y = A + B — C, with variables A, B, C positive real-
valued variables represented by the same possibility distribution, summarized in the following
table (together with the result of Tranformation (5.2)):

/ / /
Tta, g, iC =32 T, g, T

Masses (m) Focal Sets Transf. masses (m)

0.1 [1,2] 0.01
0.7 [0.5,3] 0.511
0.2 [0.1,5] 0.488

and Figure [5.5] show the two p-boxes resulting from probabilistic arithmetic applied to
p-boxes derived from original distributions 7 and from extension principle applied to trans-
formed distributions 7’. Although neither of them is contained in the other, there is no great
differences between the two, and since both outer-approximate the exact propagation and re-
quires comparable computational effort, they can be used conjointly, as their conjunction pro-
vide a tighter bounds of the exact result. Note that, with such simple models, exact propagation
is often feasible.

: Prob. arithmetic

Poss. outer. app.

]
T

I I
T T T T
S5 4 -3 -2 -1 01 2 3 4 5 6 7 8 9 10 Y

Figure 5.5: Comparison of probabilistic arithmetic and outer approximation of

Proposition
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Cases where the proposed outer approximation is likely to be more useful is those where (1)
repeated variables occur and/or (ii) extrema are not reached on bounds of Cartesian products,
but remains relatively easy to locate. To exemplify this, let us consider the following model:
Y =T(X(1) = (X7+X3)/(2X,+1)(x3—1.9) with X1, X, assuming values on the real line R. The
table below summarizes both marginal Models on X, X5, the joint possibility distribution
resulting from the Transformation (5.2) and the result after (exact) propagation of this joint
distribution through 7.

Tix, mx, 75’((1:2) Ty

myx, Fx, mx, Fx, m&(hz) ff)’((m) Fy
[1,2] x [2,3] 0.01 [0.1036,0.2732]
0.1 [1,2] 0.5 [2,3] [0.5,3] x [2,3] 0.24 T [0.1013,0.3484]
0.7 [05,3] 04 [2,5 =@z [0.5,3]x[2,5] 0.39 = [0.0395,0.3484]
0.2 [0.1,5.1] 0.1 [2,10] [0.1,5.1] x [2,5] 0.17 [0.0368,0.5478|
[0.1,5.1] x[2,10] 0.19 [0.0113,0.5478|

We see that the result is a distribution whose support is the interval [0.0113,0.5478], while
an application of probabilistic arithmetic would provide the interval [0.007,2.7868] as the
core of the resulting p—boxE], and [0.0003,17.08] as its support. It shows that in situations
where probabilistic arithmetic performs poorly, the proposed outer approximation can provide

a much better result, and can therefore be of real usefulness.

5.4 Conclusions and perspectives

In this chapter, we have studied irrelevance notions in uncertainty theories. The notion of
irrelevance or independence is important in many aspects of uncertainty treatment, both the-
oretically and practically. As we have seen in our review, it is also a very complex notion,
since even for unconditional irrelevance, there are many possible extensions and interpreta-

tions of the classical notions of logical independence for sets and stochastic independence for

Here, the core is the interval corresponding to the set of all possible dirac measures inside the p-box, that is,
given a p-box [F,F), it is the interval [x,y] such that x = inf,cg {F (r)|F (r) = 1} and y = sup,.g {F (r)|F (r) = 0}
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probability distributions. And, of course, there are even more when considering conditional
independence. Making a whole and unified picture of all these notions and interpreting all of
them inside a common framework appears difficult. Nevertheless, links and relations do exist,

and many of them remain to be clarified.

Often, in probability theory, different interpretations resulted in the same formal joint rep-
resentations, thus making the question of interpretation appearing as less essential (at least
in practical applications). It is no longer the case here, and the question of interpretation be-
comes essential, even for practical applications where two different interpretations will give
two different results. Moreover, it can be difficult to decide what notion of independence is
the most fitted to a particular situation, and we are only able to give some guidelines about the

choice of a particular notion.

A very interesting theoretical frame to study independence notions is the one of event-trees.
Our first results demonstrate that there are close links between the notion of independence
regarded as the most meaningful by Walley [203] and the notion of event-tree independence
developed by Shafer [[179].

We have also shown how some notions of irrelevance can be approximated by other ones,
by concentrating on the specific question of outer-approximating random set independence by
possibilistic non-interaction. This allows to lower the complexity of joint uncertainty struc-
tures and to facilitate their subsequent manipulations. The proposed outer approximation ap-
pears particularly interesting when few variables are uncertain and when the model is complex
enough (i.e. non-monotonic, presence of repeated variable in the analytical formula). In any

cases, it provides a way to compute a quick and rough guaranteed outer approximation.

Our perspectives regarding the study of independence are mainly theoretical, eventually

resulting in results of practical importance. They include:

e Answering question marks in Table[5.2] either positively by providing a suitable inter-
pretation, as well as a formal way to express it, or negatively by showing that a given

notion makes poor sense in a given theory.

e Pursuing our study relating structural judgments of imprecise probability theory to event
trees. In particular, the notions of permutability and of epistemic independence appears

interesting to study (see Appendix |G| for some first ideas).

The material contained in this chapter can be found in paper [63]]
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Chapter 6
Decision Making

“Real stupidity beats artificial intelligence, every time”
— Terry Pratchett (1948-7)

Uncertainty treatment and, more generally, plausible reasoning are rather impersonal and
theoretical processes. Although they can involve some choices (of a particular theory, of a
specific fusion rule, .. .), these choices should be guided primarily by rationality requirements,

and not by personal preferences.

In this chapter, we are concerned with a far less impersonal matter: decision making. Let
a be an action that we can apply to a situation (e.g., going out for a picnic, buying a car, taking
one particular direction, ...), freely chosen from a set A of feasible actions. The problem
of decision making consists in choosing, within A, an optimal or best course of action with

respect to some criterion, given our current knowledge of the situation.

Although the problem of decision making is not related, per se, to the problem of un-
certainty treatment, the two problematics are closely related: sooner or later, available infor-
mation is used to make a decision and select a course of action. Roughly speaking, we see
decision making as the step where we stop to manipulate information in order to make a de-
cision (In this sense, we’re close in spirit to the TBM model proposed by Smets [189], which

differentiate credal and pignistic levels).

So, even if this work is not devoted to decision making (itself a wide and vivid area of
research), it 1s useful to study practical problems related to it, because of the close link be-

tween decision making, uncertainty treatment and risk analysis. Here, we will work within a

223
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restricted frame, since we assume:

i that the result of an action a depends of the value assumed by a variable X on 2", which

is only known with uncertainty.

ii that to any action a can be associated a real-valued and precise gain (or utility) u, : 2" — R
that is a mapping from 2" to R, and u,(x) reflects the interest of choosing a when X

assume value x € 2.

i1 that only crisp actions can be chosen, that is we do not consider randomized actions (i.e.,

convex mixtures of actions)

iv that we are in a static environment, that is we do not consider dynamical problems involv-

ing the choice of sequences of actions.

v that the choice of an action a does not modify uncertainty on X, i.e., we assume so-called

act-state independence.

If there is no uncertainty about the (single) value assumed by X, then the set of optimal
actions is simply given by
opt(A) := argmax(u,)
acA

However, the value of X is often only known with some uncertainty, and in this case, choosing

an optimal action, even in our restricted framework, is more difficult.

6.1 Decision making in uncertainty theories

Roughly speaking, defining optimal actions is equivalent to inducing some preferences be-
tween these actions, that is, an action a; is in the set of optimal actions if there is no other
action ap preferred to a;. This is equivalent to define a partial pre-order relation > between
the actions, and to say that a; is preferred to a; if and only if a; > a;. However, there are many
ways to define this partial pre-order in uncertainty. Here, we restrict ourselves with a short
review, and refer to given references (and to references therein) for ampler discussions. It is
sensible to first remove those actions whose gains are point-wise dominated by other actions,
since whatever the value assumed by X, those actions will give less utility than the one(s)

they’re dominated by. Following Troffaes [193], we denote opr>A the set of actions such that

opt>(A):={a€A| Ac € A,u. > u,} (6.1)
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6.1.1 Classical expected utility

Provided uncertainty can be modeled by precise probabilities and the use of (linear) utility
scale is accepted, optimal decisions are often chosen accordingly to principle of expected
utility. While first suggestions to use expected utility in games can be traced back to Huygens,
its every-day use in statistics and decision theory is mainly due to the works of Von Neumann
and Morgenstern [201] and of Savage [175]], who justified the use and uniqueness of expected
utility as a means of selecting optimal decisions with very different assumptions and sets of
axioms. Let Py be the probability distribution modeling uncertainty of X, and Ep, (u,) the

expectation of u, with respect to Py. Then, the set of optimal decisions in A is defined as

optp,(A) :=arg max Ep, (u,) (6.2)

acopt=(A)
However, when uncertainty on X cannot be properly modeled by a unique probability distri-
bution, the use of expected utility to choose an optimal action is usually not satisfactory, as

shows the following example

Example 6.1. We use the example given by Troffaes [193]: let X be the outcome of a coin toss
(Z = {h,t}). All that can be said about the probability of getting heads is that it lays between
0.28 and 0.7. Let us consider the following set of actions A = {aj,...,as} and the associated

utilities summarized below

Utility Heads Tails

Ug, 4 0
Ug, 0 4
Ugy 3 2
Ug, 1/2 3
Ugs 47/20  47/20

Ugg 41/10 =3/10
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and as none of these actions is dominated by another one, opt-(A) = A, and we have

{ar} if px(h) <2/s
{az,a3} if px(h) =2/5
optpy = {az} if 2/5 < px(h) <2/3
{ajas} if px(h) =2/3
| {ai} if px(h) >2/3

which shows that using maximized expected utility (by choosing a precise probability fitting
available information) is not very robust and can lead to different conclusions. Indeed, there
is no obvious reason to restrict the potential choice to one optimal action, until we are forced
to act. In other words, we do not have to enforce the (pre)-order on possible actions to be

complete.

Note that there is no problem with (6.2) when information is sufficient to describe uncer-
tainty on X by a single probability Px. This is why extensions of (6.2)) to uncertainty theories
generalizing probability theory (at least formally) should satisfy when reduced to precise
probabilities. All extensions considered in the next sections satisfy this condition.

6.1.2 Decision making in imprecise probability theory

Recently, Troffaes [[195] has provided a nice theoretical and short review of (most of) the
existing extensions of (6.2) in imprecise probability theory. Another short and good review,

more computationally oriented, is provided by Utkin and Augustin [198]].

We now consider that uncertainty on X is modeled by a credal set &x instead of a single
probability. We denote E 5, (11,) = minpe 5, (Ep(u4)) the lower expectation of u, given P,
and E %, (u,) the upper expectation defined likewise (replacing min by max). Equation (6.2)
can be extended in two main ways: either by relaxing the completeness of the order between
actions, meaning that we end up with a set of optimal and incomparable actions, or by adjust-
ing (6.2)), so that the (pre)-order is still complete but now depends on both the lower and upper
expectations. We first recall two solutions belonging to the second trend, before shifting to
those belonging to the first one (i.e. relaxing completeness). In the latter case, most derived
criteria consist in pair-wise comparisons of actions. It is therefore useful to recall that (6.2))
can be seen as the result of pair-wise comparison of acts, that is a is preferred to ¢, ora >p, ¢

whenever Ep, (11,) > Ep, (u.), or equivalently when Ep, (1, —u.) > 0.
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I'-maximin [114] and T'-maximax A straightforward way to extend (6.2) is simply to re-
place the usual expectation by the lower or the upper expectation of utilities. In the case of the

lower expectation E, this gives the so-called I'-maximin criterion

optg,(A) == max Eg (u,) (6.3)
acopt=(A)
which corresponds to a worst-case analysis, that is we assume the worst case, and pick the least
worst among them. Use of I'-maximin can be justified by a principle of cautiousness in risk
analysis, or in games where you know that the opponent is assumed to choose the probability
in Yx so that the reward is minimal. In Example oplg, =as.

Conversely, replacing the expectation with the upper expectation E gives the I'-maximax

criterion

optg (A):=arg max E gz, (u,) (6.4)
X acopt=(A)
corresponding this time to a best-case analysis, or to an optimistic view, in which we hope to

get the maximal reward. Using I'-maximax in Example 6.1{results in optg, =as.

Hurwicz’s criterion [122]] This criterion was originally considered for cases of complete
ignorance, and consisted in selecting optimal actions by considering a weighted average of
the worst and best rewards, with the worst reward receiving a weight ¢, and the best a weight
1 — o, with o considered as a pessimism index. Given a weight o, the extension of Hurwicz

criterion when uncertainty is modeled by “#x reads

optr,(A) :=arg max oFE 4, (us)+ (1 —a)E 2, (1) (6.5)

acopt=(A)
and I'-maximin, I'-maximax criteria are respectively retrieved by taking @ = 1 and a = 0. In
Example[6.1] only actions a»,as,as can be found optimal with Hurwicz’s criteria for different

values «.

Maximality We now drop the assumption that the (pre)-order on actions must be complete,
i.e., we allow optimal actions to be a set of incomparable actions. The first extension, initially
considered by Walley [203} ch.3.], consists in considering that a >g ¢ whenever E 4, (a—c) >

0, that is, in Walley’s term, we are ready to pay a (strictly) positive price to exchange action a
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with c¢. This induces a partial order >g on the actions, and the Maximality criterion reads
opt>p(A) :={a € opt=(A)| Ac € opt>(A) E 5, (uc —ua) > 0} (6.6)

and this criterion, apart from its behavioral interpretation, can also be seen as a robust ver-
sion of (6.2) on Yx. In Example the solution with Maximality criterion is opt-, =

{ai,a2,a3,as}.

Interval Dominance Another robust version of (6.2) that gives another partial order >,
such that a >y, ¢ whenever E 5, (1,) > E 5, (1), in other words, interval [E g, (14), E 2, (14)]
is on the right hand-side of [E 4, (uc), E 5, (u.)]. Interval dominance then follows as

opts,, (A) :={a € opt=(A)| Ac € opt=(A) Ezy(uc) > E 5, (1a) } (6.7)

Since the partial order >g refines >y, Interval dominance criterion usually results in larger

sets than maximality, and in Example|[6.1| gives opt~, = {a1,a2,a3,as,a¢6}

E-admissibility  this criterion corresponds to the most straightforward robustification of (6.2),

and is given by

opto (A):= | optp(A) (6.8)
Pe Py

and in E-admissibility applied to Example[6.1]yields opt o, = {a1,a2,a3}

Currently, there is no consensus among which criterion is the "best" choice. In our opinion,
that such an absolute best choice exists is dubious, and a criterion should be chosen with
respect to the properties we want it to satisfy. For further discussions about properties verified
by the criteria given above, we refer to Troffaes [195]], Utkin and Augustin [198] and Jaffray
and Jeleva [[122]].

6.1.3 Decision making in random set theory
Let #x be now a credal set induced by a random set (m,.# ), modeling uncertainty on X,

and denote BetPy the pignistic probability derived from (m,.# )y (see Appendix . Inside
the TBM, Smets [[187, [185] justifies axiomatically the use of the pignistic probability BetPyx
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as a means to determine an optimal action. We define the Pignistic criterion as

Optperpy (A) 1= arg aEEI[lJ?X(A)EBetPX (uq) (6.9)
>

then follows. In Example [6.1] the pignistic probability is BetPx (h) = 0.49, BetPx (t) = 0.51,

and OpIBetpy = A3.

Note that, since BetPx comes down to taking the gravity center of &y, it can be applied
(in principle) to any credal set Zx, and not only to those whose lower probability is an oo-
monotone capacity. Also, since BetPx € &x, we have that the optimal action chosen through

pignistic criterion is also E-admissible, and the following implications between criterion hold:

pignistic I-maximax -maximin

E-admissibility Maximality

Interval dominance

with A — B means that if an act a is in the set of optimal acts in the sense of A, then it is also

in the set of optimal acts in the sense of B.

6.2 Practical computations of lower/upper expectations: the

case of p-boxes

As seen above, determining a set of optimal actions in imprecise probability theory often
necessitates the computations of lower/upper expectations of various utilities. When 2~ is
finite, determining optimal actions with respect to above criteria usually involves solving a
finite collection of linear programs, and thus remain feasible, even if the number of linear
programs to solve can be pretty high (Utkin and Augustin [198] provide efficient algorithm

for various criteria).

Things get more complex when .2 is not finite (e.g., the real line), since one would then

have to solve an infinite collection of linear programs, which is not feasible in practice. It is
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then useful to consider particular cases, for which simplified solutions can be found. Even-
tually, such solutions could suggest some ways to derive more efficient solutions for more
general cases. In this work, we consider the special case where the model is a usual p-box
defined over the real-line R, and the utility u, for which we want to compute lower/upper

expectation is a continuous real functio

6.2.1 General problem statement and proposed solutions

Let [F,F] be a p-box on R, describing our uncertainty about a variable X (here a closed
interval on R, and let u, be the utility associated to action a. Computing the lower and upper

expectations of u,, with respect to [F, F|, amounts to solving

[

FAMa) = inf [ u(x)dF(x) Epp(ud)= sup | uy(x)dF(x) (6.10)
7 F<F<FJR — F<F<F R

that is, to find, inside ﬁ[ FF] "optimal" distributions F' reaching the infinimum and supremum
of [pua(x)dF(x), respectively for the lower and upper expectations. There are at least two
general ways to find solutions to (6.10), that we explore here: the use of linear programming

and random sets.

Numerically solving (6.10) by linear programming can be done by approximating the
(searched) cumulative distribution function F' by a set of N points F(x;), i = 1,...,N, by
translating (6.10)) into the corresponding linear programming problem with N optimization
variables and with constraints equivalent to those constraining F (i.e. F < F < F). Those
linear programming problems are of the form

N o N
E{E,f] (1q) =infk 1ua(Xk)Zk or E?EF] (ua):supkzlua(xk)zk

subject to

where the z; are the optimization variables, and objective functions E*(u,) (E (1)) are re-

'With respect to usual Euclidean topology
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spectively approximations of the lower (upper) expectation. Note that, when N is large, solv-
ing this linear program can be computationally greedy, and not very efficient. Indeed, the
optimization problems have N variables and 3N + 1 constraints. On the other hand, by taking

a small value of N, we run the risk of obtaining bad approximations of the exact solution.

Using random sets, we know from Section 3.4 and Appendix |H that, provided u, is con-
tinuous, we can safely consider the continuous random set (m,.# )[Eﬂ whose bpa m is a
uniform law on the unit interval [0,1] and whose focal elements corresponds to the map-
ping that associates to each value o € [0, 1] the interval [xq,yq] = [Fﬁl(a),ﬂ ()] where
F'(a) = sup{x € R|F(x) < } and F~!(a) = inf{x € R|F(x) > at}. For easiness of no-
tation, we denote by I'z 7 , this interval. Given this correspondence between p-boxes and

random sets, we can rewrite (6.10) into

1
Eip7)(ua) = /0 Al ) o (6.11)
— 1
Epp(ta) = /0 sup. uq(x) da. (6.12)
XEF[E,F]A,(Z

Again, finding an analytical solution to this integral is, in general, not feasible, but the
solution can easily be (outer or inner) approximated by considering a finite number 0 < ¢ <
... < ay < 1oflevels o; and solving the discretized version of Equations (6.11)), (6.12)). In the
latter case, the main difficulty is to find infimum and supremum of u, in intervals F[ FFlo As
in linear programming, computational effort increase with the number of discretization levels,
but taking too few of them could lead to high approximation errors, and so would the choice

of poor heuristics to detect extrema in the case of complex function .

Note that the cumulative distribution F' reaching infinimum or supremum depends of the
form of u,, meaning that, if u, is known to follow some behavior, it is possible to find the
analytical form of the searched cumulative distribution F', eventually leading to more efficient
numerical methods to approximate solutions of (6.10). The simplest examples (for which

solutions are well known) of such typical cases are monotone functions.

Let u, be such a monotone function non-decreasing (non-increasing) in R, then the well
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known result [[204]]:

By () = [ 40 ) (B () = [ ma00E()),
Eip ) = [aaE) (B = [ wldF(0)

EER)

follows. Using equations (6.11]),(6.12), we get

Ejpp(ta) = /O iy (xa)do <E[F,F1(ua) = /O 1ua(yoz)d(%>
E[p7}(ua):/()lua(ya)d0¢ (E[F,F](ua):/olua(xa)da>

and (lower/upper) expectations are totally determined by extreme values of the mappings.

6.2.2 Unimodal u,

We now consider a slightly more complex case, where u, has one maximum on R in point a €
R. Although still simple, this case can happen in practice (see example given by Utkin [[197]),
and will be instrumental to show (some of) the interests of considering jointly linear program-
ming and random set solutions. Situation where u, has one minimum is similar, due to the

duality between upper/lower expectations (i.e., E(u;) = —E(—u,)).

Proposition 6.1. If the function u, has a single maximum at point a € R, then the upper and

lower expectations of u,(X) on [F,F] are

a (o<}

E i () = / g (x)dE + 1g(a) [Fla) — F(a)] + / to()dF, 6.13)
Fl(a) oo

Ejp () = / ua(x)dF + / ua(x)dF, (6.14)
S F(a)

or, equivalently

1
E () = / ta(yo)do + [F(a) — F(a)]ua(a) + / o (xe )t (6.15)
0
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o 1
Efp7(ta) = /ua(x(x)da + /ua(ya)doc, (6.16)
0

o

where o is one of the solutions of the equation
—=—1 _
g (F (a)) —u, (F (). 6.17)

Proof using linear programming (sketch). We assume that functions u,, F,F are differen-
tiable in R. Then the following primal and dual optimization problems can be written for

computing the lower expectation of the function u,:

Primal problem:

Dual problem:

Max. w=co+ |7, (—c(t)F (1) +d (t)F (t))dt

Minimize v = [*_u, (x) p (x)dx
subject to

p(x) >0,/ p(x)dx =1,

= JEwp (x)dx = —F (x),

Jrp (X)dx > F (x).

subject to
co+ Jy (=c(t) +d (1)) dr < uq(x),c0 €R,
c(x)>0,d(x)>0.

The proof of equations (6.13)-(6.14) and (6.17) then follows in three main steps:

1. We propose a feasible solution of the primal problem.

2. We then consider the feasible solution of the dual problem corresponding to the one

proposed for the primal problem.

3. We show that the two solutions coincide and, therefore, according to the basic duality

theorem of linear programming, these solutions are optimal ones.

And proving the third point mainly comes down to showing that there are two points a’,a”
such that ' < a < d”, that is from each side of the maximum, satisfying the following two

equations:
F(d)=F(d"). (6.18)
and

u, (d") =u, (d'). (6.19)
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The first corresponding to the feasible solution of primal problem, and the second to the dual.

These two conditions in turns lead to exhibit the existence and the role of the level ¢ in (6.17]).

The full proof is provided in Appendix [D| O

Proof using random sets. Let us now consider equations (6.12)-(6.11]). Looking first at equa-
tion (6.12), we see that for values a € [0, 1] lower than o, = F(a), the supremum of u, on
I'p ), 18 Ua(Ya), since ug is increasing between [e0,a. For values o between o, = F(a) and
a* = F(a), the supremum of 1, on L' 7,0 18 Ua(a). And for values grater than o™ = F(a), we
can make the same reasoning as for the increasing part of u, (except that it is now decreasing).

Finally, this gives us the following formula:

F(a) F(a) 1
E iy (1a) = / ta(ye)da+ / wo(a)dot + / o) dax (6.20)
0 F(a) Fl(a)

which is equivalent to (6.15)). Let us now turn to the lower expectation. For values of o before
o, and after o*, finding the infinimum is again not a problem (it is respectively u,(xy) and
uq(ve)). Between o, and o, since we know that u,, is increasing before x = a and decreasing

after, infinimum is either A (x) or h(yy). This gives us equation

Fla) Fla) |
Eipp () = / ta(va)dot + / min(ue (), tava))dy+ | ualva))dy — (621)
0 Fla) Fla)

and by using results from the first equation or the fact that both x4,y are non-decreasing
functions of o, we know that there is a level o such that u, <F_l (OC)) =u, (F~'(a)), and
for which the above equation simplify in equation (6.17). O

Of course, both proofs lead to similar formulas and, in applications, would lead to the
same exact lower and upper expectations. Nevertheless, it is interesting to note that each view
suggests a different way to approximate the exact solution. Namely, the proof involving linear
programming suggested to us a more analytical and explicit solution, where the main difficulty
is to find the level o satisfying Equation (6.18)). If an analytical solution is not available, then
the solution is generally approximated by scanning a larger or smaller range of possible values
for o (see Utkin [197] for an example).

On the other hand, the proof is shorter in the case of random set, but analytical results are
more difficult to derive. Compared to the linear programming view, equations (6.13)),(6.16),(6.21)
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Figure 6.1: u, with one maximum in a, illustration of cumulative distributions F
reaching upper expected value E[F,f] (ug) (left) and lower expected value E F.F) (1q)
(right) B B

suggest numerical methods based on a discretization of the unit interval [0, 1] rather than a
heuristic search of the level o satisfying equation (6.18). Note that in the worst case, two

evaluations are needed at each of the discretized levels (using equation (6.21)).

Figure [6.1] provides an illustration of the shape of distributions functions on which lower
and upper expectations are reached. It shows that the lower expectation £ F.F] (u,) is obtained
with a distribution having an horizontal jump avoiding the higher values of u,, while the upper

expectation E[F 7l (u,) is reached by concentrating probability mass on the maximum a

6.2.3 Many extrema

We now consider another univariate case, far more general this time, where u, has alternate

local maximum at points @¢; and minimum at points b;, i = 1,2, ..., such that
bp<a <b<a<by<.. (6.22)

Proposition 6.2. If local maxima (a;) and minima (b;) of the function u, satisfy condition
(6-22), then the optimal distribution F for computing the lower unconditional expectation
E[Ef] (ug) is vertical (has "jumps") at points b;, i = 1,.... of the size

min (F (b;), 0iv1) —max (F (b;), o).

Between jumps indexed i — 1 and i, the optimal probability distribution function F is of the
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Oy

by a1 by D2b3 93 by a4 bs

Figure 6.2: u, with alternate extrema, illustration of cumulative distributions F reach-
ing lower expected value Ejp 7(u4q)

form:

F(x), x<a
Fx)=4 a, d<x<d ,
F(x), d'<x

where Q. is the root of the equation

Uy (max (f_l (o) ,bi—l)> =1, (min (F ' (), b;))
in interval [E (ai) ,F(ai)],

d =max (F~ ' (a),bi_1), d" =min (F ' (a),b;).
The upper expectation E[ F.F) (ug) can be found from the dual relation E[ F.F] (ug)=—E F.F] (—ug).

Proofs are a bit more complex than for Proposition[6.1] but follows similar reasonings, and

are omitted here. Sketches are provided by Utkin and Destercke [[199].

Figure illustrates Proposition The solution again consists in concentrating prob-
ability masses on lower values of u,, while avoiding the higher ones. Other situations also
considered by Utkin and Destercke [199] (multivariate case with different assumptions of in-
dependence, conditional expectations) tends to suggest that this result can be generalized in

most cases and could be used in very general situations.

Further works on this topic include the design and implementation of algorithms derived
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from the studied situations, the exploration of other and more general cases, the extensions
of presented results to other practical representations such as possibility distributions, clouds,

imprecise probability assignments, .. ..

6.3 Decision in industrial risk analysis

Decision making in industrial risk analysis and in safety studies is usually a bit different from
the problem stated above. First, the aim of such studies is not to take optimal, but rather safe
actions. In such problems, variable X will in general assume values on the real line and the
decision will generally depends on the probability of exceeding a threshold, that is on the
(possibly imprecise) evaluation of P((—oo,x*]), with x* the threshold. With this respect, two

main kind of studies and associated decision can be taken:

e Prospective studies: we call prospective those studies where nothing has been done so
far, and the decision maker wants to know for which value x* the probability P([x*,o0))
of exceeding this threshold will be below a certain level 1 — o (typical values are
0.1,0.001,...), that is for which value x* do we have at least P([—o0,x*)) = .. Sys-
tems are then dimensioned with respect to that x*, so that the associated risk is judged
acceptable. For example, X can characterize the water level of a river, and x* is then
used to dimension a dam ensuring that no flood will occur. In terms of behavior, it
means that the decision maker wants to (or has to) buy a gamble at a fixed price a, and

the decision consists in determining for which value x* this price appears acceptable.

e Retrospective studies: we call retrospective those studies where the situation is fixed,
and the decision maker wants to assess the probability that X do not exceed some critical
levels x*, in order to know if some action has to be undertaken to lower this probability.
In this case, x* is fixed and the study consists in checking that P((—eo,x*]) is above
some level a. If it is not, then some action should be done to increase P((—oo,x*]). For
example, x* can be a critical temperature in a nuclear reactor core, and the corresponding
action could be to activate some coolant system or not. In terms of behavior, it means
that the decision maker is somewhat forced to buy the gamble 1((_,, ) for a price o,

and wants to keep this price acceptable.

Decision making for industrial risk analysis and safety studies is somewhat reversed com-
pared to the classical definition of decision making, since the problem is not to determine the

action that would give us the highest "reward" but rather to check that the minimal reward
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will be at least o, or to act in order to reach this minimal level. Note that here, "reward"
is usually inversely proportional to spent money, since the higher the decision maker safety

requirementf] (the higher ), the more money will be spent.

The material contained in this chapter can be found in paper [[199].

20r, equivalently, the more risk-adverse he is



Chapter 7
Illustrative applications

“As far as the laws of mathematics refer to reality, they are not certain; and as far as they are
certain, they do not refer to reality”
— Albert Einstein (1879-1955)

In this chapter, we detail two illustrative applications using some of the methods studied
previously. The first one (Section|/.1)) applies information evaluation methodologies and basic
fusion operators to the results of uncertainty studies performed with nuclear compute codes,
and the second (Section proposes and illustrates on a case study a numerical method of
hybrid propagation allowing to propagate uncertainty in an efficient way while coping with

numerical accuracy.

7.1 Information evaluation and fusion applied to nuclear

computer codes

In this section, we apply methods developed in Section to evaluate and fuse information
coming from multiple sources. They are applied to results of uncertainty studies achieved
with nuclear computer codes. All computations have been done with the SUNSET software

developed at the IRSN, in which the methods have been implemented.

Only probabilistic and possibilistic approaches will be used here, since this is sufficient to

illustrate the benefits of allowing some imprecision in uncertainty representations.

239
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7.1.1 Introduction to the problem

Evaluating nuclear power plant performance during transient conditions is a very important
issue in thermal-hydraulic research since nuclear energy was used to produce electricity. Ac-
cross the years, a huge amount of experimental data has been produced from very simple
loops and from Integral Test Facilities. A lot of computer codes have also been developed
and made available to the nuclear community in order to simulate variables of interest during
transient conditions. It is important to evaluate the predicting reliability of such codes by com-
paring their results to experimental data obtained from small scale facilities. Past years have
witnessed an increasing interest in the combination of such codes with uncertainty analysis,
allowing for a more realistic modeling of the parameter knowledge, and thus helpful to make
better previsions. Nevertheless, practitioners often find it difficult to compare and to analyze
the final results of such uncertainty analyses, as well as to assess the agreement level of such
results with experimental data. This is why we have applied methods from section to
the results of the BEMUSE (Best Estimate Methods - Uncertainty and Sensitivity Evaluation)
programme [160] performed by the NEA (Nuclear Energy Agency).

Our study focuses here on the results of the first step of the programme, in which ten
participants from nine organisations were brought together in order to compare their respective
uncertainty analysis with experimental data coming from the experiment L2-5 performed on
the loss-of-fluid test (LOFT) facility. Although most participants (9 out of 10) used similar
methodologies to complete their uncertainty evaluations, their results were quite different, due
to the fact that different codes were used and that the number, models and physical nature of

inputs were different for each participant.

Since a nuclear reactor generates internal heat, this heat has to be removed by a coolant
system. A loss-of-coolant accident happens when the flow of coolant is reduced (in our case,
by the simulation of a guillotine rupture of an inlet pipe). When such an accident happens,
emergency systems are designed to stop the fission process. Nevertheless, even after such
a stop, significant amount of heat may still be generated due to radioactive decay, and this
heat can cause important damage to the facility, resulting in catastrophic consequences for the
reactor, its facility and vicinity. Safety systems thus have to ensure that parameters such as

pressure and temperature remain below critical levels.

The ten participants of the BEMUSE programme, as well as the code they used and their
organization are summarized in table In the first step of BEMUSE programme, the L.2-5
experiment has been chosen to apply uncertainty methodologies on a large break loss-of-
coolant accident (LB-LOCA transient) performed on an integral test facility. The L2-5 ex-
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Used code Participants
ATHLET GRS, NRI2
CATHARE CEA, IRSN
MARS KAERI
RELAPS  KINS, NRI1, UNIPI, UPC
TRACE PSI

Table 7.1: Participants of BEMUSE programme and used codes

periment has been completed on 16 June 1982 in the LOFT facility at INEL (Idaho National
Engineering Laboratory). This facility simulated the major components and the system re-
sponses of a commercial PWR (Pressurized Water Reactor) during a loss-of-coolant accident
(LOCA). The core was a semi-scale one with an active height of 1.70m. The experimental as-

sembly included five major subsystems which were instrumented with measurement devices.

As an output of their uncertainty analysis, each participant had to provide lower bounds,
reference values and upper bounds for four scalar output parameters as well as the time trends
of two output parameters (maximum cladding temperature and upper plenum pressure). For
each of these output parameters, experimental values are available (thus, they can be taken as
so-called seed variables to assess sources predictive quality). Here, we have only considered

the four scalar output parameters. These four scalar output parameters are:

1. The first Peak Cladding Temperature (1PCT) during the blowdown phase

2. The second Peak Cladding Temperature (2PCT) during the reflood phase

3. The Time of accumulator injection (73, ;)

4. The Time of complete quenching (7)

Table summarizes the values given by the participants for the lower bounds, reference

calculation and upper bounds for each output. Obtained experimental values are also recalled.
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IPCT (Kfl) 2PCT (Kfl) Tinj (s) T, (s)
Low Ref Up |Low Ref Up |Low Ref Up |Low Ref Up
CEA 919 1107 1255 | 674 993 1176 | 148 162 168 | 30 69.7 98
GRS 969 1058 1107 | 955 1143 1171 | 14 156 17.6| 629 80.5 103.3
IRSN 872 1069 1233 | 805 1014 1152 | 158 16.8 17.3 | 419 50 120
KAERI | 759 1040 1217 | 598 1024 1197 | 12.7 13,5 16.6 | 609 73.2 100
KINS 626 1063 1097 | 608 1068 1108 | 13.1 13.8 13.8 | 47.7 669 100
NRII1 913 1058 1208 | 845 1012 1167 | 13.7 147 17.7 | 515 669 87.5
NRI2 903 1041 1165 | 628 970 1177 | 12.8 153 17.8 | 474 627 82.6
PSI 961 1026 1100 | 887 972 1014 | 152 156 16.2|551 785 884
UNIPI | 992 1099 1197 | 708 944 1118 | 8.0 16.0 235|414 620 81.5
UPC 1103 1177 1249 | 989 1157 1222 | 12 13,5 16.5| 56,5 63.5 66.5
Exp. Val. 1062 1077 16.8 64.9

Table 7.2: Scalar output values by participants (Exp. Val. : Experimental value)

7.1.2 Modeling the information

The lower and upper given by the participants were respectively the lowest and highest values
obtained for 156 runs of their computer codes. According to order statistics [27], we consid-
ered, as a first approximation, these values as the 1% and 99% percentiles. So, the Low and

U p provide, for each participant and each variable, the two percentiles g» = 1% and g4 = 99%.

Given a particular output, let us call gpi, and gmax the minimal and maximal values of the
lower and upper bounds of this output, taken over all participants. Then, for each output, we
take [g;,q.] as the interval [gmin, gmax] increased by 2% (e.g. for 1PCT, gmin = 626 (KINS),
gmax = 1255 (CEA) and |[gq;,q,) = [620,1261]). Note that, for a given output, the interval
[91,494] is common to all participants, to make sure that their informativeness scores will be

comparable. According to this information, we take the following models:

Probabilistic model: Since the reference values Ref are often close to the middle of
interval [Low, U p|], and as nominal values are often associated to the median of the distribution,
we have chosen to take, for each participant and output, the following distribution : (g; =
0%,q> = 1%,q3 = 50%,q4 = 99%,q95 = 100%) = (q;,Low,Ref,Up,q,). For example, the
distribution corresponding to the information given by NRII for the 2PCT is (¢ = 592,¢> =
845,93 = 1012,q4 = 1167,95 = 1228). The only exception to this rule is the distribution of

KINS for T;,;, since concentrating 50% of the probability mass on a single value would make
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K 0 T(K)

‘ 592 845 1012 1167 1228 845 1012 1167 1228

Figure 7.1: Probability (right) and possibility (left) dist. of NRI1 for the 2PCT

no sense. Thus, the distribution of KINS for 7;,; is (g1 =0% =17.8,qp = 1% = 13.1,¢q» =
99% = 13.8,q4 = 100% = 23.7).

Possibilistic model: The interval [g;, g,] common to each source is considered as contain-
ing with certainty the true unknown value. The interval [Low,U p| provides for each source
a 98% confidence interval, while it is natural to consider the nominal value Ref as the most
plausible one. For each source, the possibility distribution that fits this information is s.t.
n(q;) = 0,w(Low) =0.02,w(Ref) = 1,n(Upp) = 0.02,7(g,) = 0 (with linear interpolation
between each points). When taken as an imprecise probabilistic model, this possibility distri-
bution dominates the chosen probabilistic model (see [11]). Figure illustrates both models

built from the information of NRI2 concerning the second PCT.

7.1.3 Evaluating the sources

For the evaluation steps, the four scalar parameters were considered as seed variables, as their
(precise) experimental values are known. Evaluation is performed according to the methodolo-
gies described in Section 4.4} with the uncertainty models given above. Table[7.3|summarizes

the obtained informativeness, calibration and global scores for both approaches.

The results shown in Table confirms that the two methodologies, being based on the
same rational requirements, gives comparable results, the few noticeable differences (e.g.,
informativeness scores of KINS, Calibration scores of GRS and NRI2) being explainable by
the formal differences existing between the two methodologies (see Section Sandri et
al. [[174] and Destercke and Chojnacki [62] for ampler discussions)

Also, one of the reasons why at least 10 seed variables should be used within probabilis-
tic methodology is illustrated by our results, where only 4 seed variables were used. Indeed,
the probabilistic approach results in six different calibration scores, and have a reduced dis-

criminative power when compared to the possibilistic approach, for which each source have
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Prob. approach Poss. approach

Inf. Cal. Global Inf. Cal. Global
CEA | 8(0.77) 5(0.16) 6(0.12) | 8(0.71) 6(0.55) 7(0.40)
GRS 4(1.23) 1 (0.98) 1(1.21) | 3(0.84) 7(0.52) 6(0.44)
IRSN | 5(0.98) 2(0.75) 2(0.73) | 6(0.73) 1(0.83) 1(0.60)
KAERI | 9(0.68)  5(0.16) 7(0.11) | 9(0.70) 8(0.48) 8(0.34)
KINS | 3(1.29) 5(0.16) 50.21) | 7(0.72) 3(0.67) 3(0.49)
NRI1 | 7(0.79)  2(0.75) 3(0.59) | 5(0.75) 5(0.63) 4(0.47)
NRI2 | 6(0.79) 8(0.13) 8(0.10) | 4(0.78) 2(0.72) 2(0.56)
PSI 1(1.6) 10(0.004) 10 (0.008) | 1(0.88) 10(0.25) 10(0.22)
UNIPI | 10(0.53) 2(0.75) 4(0.4) 10 (0.69) 4(0.67) 5(0.46)
UPC 2(1.44) 9(0.02) 9(0.025) | 2(0.87) 9(0.28) 9(0.24)

Table 7.3: Results of sources evaluation (Inf.: informativeness ; Cal.: Calibration) by
ranks (values)

received a different calibration score (note that this remains true for all imprecise probability

theories).

Such comments are useful to highlight formal advantages or deficiencies of the methods,

but are of little use to the analyst, to decision makers or to participants. On the contrary, the

following observations concerning the results were found interesting by various researchers in

the field of nuclear safety:

e Ranking with respect to the used code: the ranking of the participants is poorly cor-

related with the particular code used to achieve the computations. This indicates and
confirms the importance of user-influence on the final results, irrespectively of the used

code.

Coherence with informal observations: in BEMUSE reports [160], it was observed
that only UPC and PSI bounds did not envelop the PCT experimental values (respec-
tively for the first and second PCT), one of the reason given to explain this was the very
narrow uncertainty band considered by both UPC and PSI. Results give formal justifi-
cation to such informal observations, since UPC and PSI both obtain the worst and best

rankings respectively for calibration and informativeness.

Code evaluation/validation: an important issue and a recurrent problem when model-

ing physical phenomena with complex computer codes is the validation of the results
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Figure 7.2: Application of probabilistic aggregation

provided by those codes [196]. Proposed methods can be used to achieve such a valida-

tion. Note that recent propositions done by Ferson et al. [106] can also be considered.

7.1.4 Merging the information supplied by the sources

We now apply the fusion operators introduced in Section[4.1.3]to the second PCT. Interests and
defects of each operator are illustrated, as well as how they can help to analyze the information

and the relations between sources (here, the participants of the BEMUSE programme).

Probabilistic aggregation Figure shows the result of aggregating the probability distri-
butions of some participants. Each arithmetic mean is used with the associated weights, except

when specified so on the figure (i.e. all sources with equal weights).

As we see, grouping participants by used codes (left figure) gives poorly calibrated results.
CATHARE and RELAPS users tend to underestimate the experimental value, while ATHLET

users tend to overestimate it. Few can be said about the agreement between code users.

The right figure shows how the scores given to each participant can be used to improve
the aggregated distribution, both in term of precision and of quality. Interestingly enough, the
best distributions are the one in which all sources are taken into account with their associated
scores, and the one considering the four common participants being in the five best scored
sources of each approach. Both these two distributions are slightly narrower and more centered
around the experimental value than the two others. This shows that using the scores in the

aggregation is useful and that the two approaches can help each other in the selection of the
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Figure 7.3: Application of possibilistic aggregation : disjunction (left) and weighted
mean (right)

best sources. Here again, an eventual conflict between sources is hardly visible. The fact that
the arithmetic mean tends to average the resulting distribution is shown in the right figure,
in which resulting distributions, although different, remain close to each others. Indeed, we
can see here that taking the average is not very discriminative, especially in our case where

information given by sources are similar.

Possibilistic aggregation Figure shows the result of applying the disjunctive operator
(i.e. maximum) and the usual compromise operator (i.e. weighted arithmetic mean) to the set
of all sources (taking smaller sets of sources do not bring any really useful extra information in
these two cases). As expected, the result of the disjunction is quite imprecise and the arithmetic
mean averages the contribution of all participants, resulting in a smooth distribution which has
a peak around 1000 K.

Some interesting (and surprising) facts can be said about these distributions. The fact that,
in the distribution resulting from the disjunction, more peaks are below rather than above
the experimental value indicates that most sources tends to underestimate it. This is somewhat
confirmed by the distribution resulting from the arithmetic mean, whose peak is slightly below

the experimental value.

A more surprising characteristic is the relatively low possibility degree around the experi-
mental value that exhibits the distribution resulting from the disjunction. Indeed, the possibil-
ity degree of the experimental value is around 0.8, which is low if we compare it to possibility

degrees of values surrounding the experimental value. This drop comes from the fact that the
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Figure 7.4: Application of possibilistic aggregation : conjunction (minimum)

reference value of most participant is not very close from experimental data (this is not the
case for the first PCT) and that KINS, whose reference value is the closest to the experimental
value, also gives a very low upper bound (in fact, the lowest outside of PSI, the only participant

having an upper bound lower than the experimental value).

Figure[7.4] shows the result of applying the conjunctive operator (i.e. minimum) to various
subgroups of participants. The eventual conflict among each subgroup is here directly visible.
For instance, we see that, concerning the second PCT, the information given by both users
of CATHARE code are coherent, while the information given by ATHLET users are more
conflicting. The higher conflict shown by RELAPS users is not surprising, since they are
more Numerous.

The right figure shows that the information given by all sources concerning the second
PCT is highly conflicting (conflict ~ 0.9), and thus that the resulting conjunction, although
very precise, is judged to be highly unreliable. Inversely, limiting ourselves to the most highly
scored participants (either only by possibilistic approach or by both approaches) results in
distributions that are reliable (conflict only ~ 0.2). We see that using conjunction with only the

most reliable sources results in a distribution well balanced between precision and reliability.

Note that the MCS method (see Section was not applied to the above data and

possibility distributions for two main reasons, a bad and a good one:

e the bad one is that we have not found the time yet to implement the MCS method inside
the SUNSET software and

e the good one is that, since information provided by the 10 sources display an high con-
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sistency (removing only PSI from the group of all sources in Figure would remove
most of the conflict), we believe that applying the MCS to such data would not bring

much more interesting information.

7.2 Hybrid propagation with numerical accuracy

In practice, when propagating uncertainty representations through a deterministic model, an
exact propagation can rarely be achieved, except in problems involving only simple models
and/or uncertainty representations. This difficulty has many sources: a single run of com-
plex computer codes can take hours to complete (if not days or weeks); interval analysis or
set propagation with non-linear models often involve the use of complex algorithms [123];
complexity of uncertainty representations often increase exponentially with the number of in-
put dimensions (a problem often known as the curse of dimensionality, a term first coined by
Bellman [14]]).

It is thus important, when possible, to propose numerical methods allowing to reduce
and optimize the number of required computations, and when doing so, to control the gen-
erated numerical error. Here, we propose such a numerical improvement for a popular uncer-
tainty propagation method: the so-called hybrid propagation [9,12]. The proposed numerical
method, called RaFu (for Random/Fuzzy) and implemented in the SUNSET software, relies
on the fact that the final desired result is often known before the propagation happens, and that

computing only this final result often allows some simplifications.

7.2.1 RaFu method: efficiency in numerical hybrid propagation

We consider that uncertainty bearing on variables X;.y), each assuming values on the real line
R, (we use the same notation as in the beginning of Chapter has to be propagated through
a deterministic and functional model T': 2.5y — & from Z(y.y), the input space, to %, the

output space.

Given variables X1.y), Hybrid propagation [9,[12] proposes to differentiate variables tainted
with aleatory uncertainty (stemming from natural variability) from variables tainted with epis-

temic uncertainty (stemming from a lack of knowledge).

1X\,..., Xy are the input variables, 27, ..., 2y the input spaces and x; an element of Z;. For 1 <k </ <N,
note Zy.¢) := xt 2, Xy = (Xk, -, X¢) a variable assuming values in Z(g.p), and x(x.¢) 1= (X%, ..., X¢) €
X (k.¢) an element of Z ;.
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7.2.1.1 Usual Hybrid method

Without loss of generality, let variables X(;.;) be tainted with aleatory uncertainty, and vari-
ables X 1.y) with epistemic uncertainty. Aleatory uncertainty on the first is modeled by
means of probability distributions Py,..., P, while epistemic uncertainty on the second is

modeled by means of convex possibility distributions 71, ..., Ty.

A joint uncertainty model is then built as follows:

e (in)dependencies between variables X 1.;) are supposed fully known, and modeled through

a joint probability distribution F(y.).

e Possibilistic non-interaction is assumed between variables X .y), leading to a joint

possibility distribution 7p; (1 1.v)-

e Joint uncertainty model is the fuzzy random variable (m, % H,(1:n) (see Section |3.5.2),

with mpy (1.8) (pr x o (ke 1:3)) = Pk (X(1:6)) @0d Ty o (k1) € P (1:v) the possi-
bility distribution such that, for i = 1,... k, m;(x;) = 1 and zero elsewhere on .2, and

possibilistic non-interaction is assumed between 7y, ..., Ty

Hybrid propagation then consists in propagating (m,.7 ) H,(1:N) through the model 7', to

obtain the fuzzy random variable (m, % )7y (.y))- In practice, making an analytical and exact

—~ —~

propagation of (m, 7 )y 1.y will be impossible in most cases, and in practice, (m, % )7y (1.xy)

is often numerically approximated by a methodology similar to the following one [12]:

1. Generate Mp samples x(1.4) ;- - -, X(1:%),, Of P(1.1) by a sampling procedure (e.g. Monte-
P
Carlo, LHS, ...)

2. For each value (x(L k))i’ i=1,...,Mp, consider the possibility distribution 77 ;, given by

the propagation of TOPL (x(1.0))io(k-+ 1:N) through T

3. since we have

MTyiq = T(ﬂpla(x(lzk))iu(k"'l:N)a) (7.1)

with TOPL(x 140 )is(k+LN) the o-cut of TOPL(x 140 )is(k+1N) o approximate 77 ; by computing
(7.1) for a finite collection a; < ... < oy, of My o-cuts, building ﬁT,i

4. give a mass of 1/Mp to each distribution ﬁT,i’ i=1,...,Mp
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L —

the result is a fuzzy random variable (m, 7 )7y (1.yy) approximating (m, F )z (1.x)) With
a uniform bpa distributed over distributions 77, i = 1,...,Mp. The sampling procedure is
summarized by Figure

Aleatory uncertainty : k random variables

Variable X Variable X,
1 1
Fx, (x1)
Fx, (xk)
0 X1 0 Xk
Epistemic uncertainty : N — k fuzzy variables
Variable Xj | Variable Xy
1 1
a a
0 0
o cut of Xj 1 o cut of Xy

Figure 7.5: Sampling of variables X(;.1) and X 1.v) in hybrid numerical propaga-
tion.

As for the fuzzy random variable resulting from the fusion process of Section 4.2| infor-

—

mation conveyed by (m,.%# )T(H (1:N)) and the associated representation are hard to handle in

practice by a decision maker (particularly if he is not familiar with uncertainty representa-

—

tions). Thus, in order to improve understanding, (m,.% )T( H,(1:N)) has to be post-processed in

some ways.

In this work, we will restrict ourselves to post-processings concerning cumulative func-
tions evaluating the uncertainty of trespassing thresholds, since they are the most useful infor-
mation in risk analysis studies. First recall that a fuzzy random variable (see Section [3.5.2)

can be interpreted as a collection of nested credal sets 2, with o € [0, 1], and Py, C ,@ﬁ for
any pair of values such that a > 3.

Within the hybrid method, the fuzzy random variable has Mp trapezoidal (discrete) fuzzy
focal sets with equal weights, and for each value @, &, is induced by the random set having

the Mp corresponding a-cuts as focal elements, each having equal weight, as pictured in
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Figure To simplify notations, we denote by 7, the credal set corresponding to level o

of (m, F ) 1:v))- For each level a € [0,1], the credal set #r, induces a p-box, denoted
[F,F]y, . Note that for any pair of values such that & > 8, Fr, < Fry and Fy, > F ;-

T i

o

(0%

/

Figure 7.6: Random fuzzy variable.

Baudrit er al. [12] and Ferson and Ginzburg [[102] have proposed two different post-
processings based on p-boxes [F, F|y. .

Baudrit ef al. [12] post-processing, called homogeneous post-processing, consists in sum-

marizing the information contained in (m,.% )7y (1.yy) by a single pair [F ,Flz, of averaged

cumulative distributions such that
1 o 1
ETE:/ETad(X;FTE:/FTada
0 0

note that [F, F| 7., 1s equivalent to the p-box induced by the fuzzy random variable when inter-

preted as a 1° order uncertainty representation (see Section|3.5.2)).

Ferson and Ginzburg [102] propose to keep only some relevant values of confidence levels
a and to retain the p-boxes corresponding to those levels. For example, considering [F, F| T

and [F,F] 7, comes down to only look at the most pessimistic and most optimistic p-boxes.

7.2.1.2 The RaFu method: more numerical efficiency through pre-processing

Two potential defects of the above methodology are the following:

—

1. Required number of computation: building (m,.# )T( H,(1:N)) €an be computationally too
expensive. Consider the common choices Mp = 100 and M7 =21 (a = {0,0.05,...,1})

o —

for Mp, My. Building (m, # )7y (1.y)) then requires 2100 computations. If it is reason-
able when T can be quickly evaluated, 2100 computations is often unaffordable when

dealing with complex computer codes.
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Figure 7.7: Illustration of sample matrix

2. Controlling the error/rate of convergence: as numerical approximation means numerical
error, it is desirable to have some means to control the error. Up to now, poor attention

has been given to such questions when using the hybrid method.

It is therefore desirable to design methods allowing both to reduce the number of required
computations to apply the hybrid method and to control or evaluate the numerical error re-
sulting from the numerical propagation. The RaFu method intends to improve these two
aspects, mainly by replacing the classical post-processing step by a pre-processing. Since,

in practice, a decision maker (DM) will only be interested in some features of the structure

—

(m, F )T(H7( 1:N))> the RaFu method consists in asking to this decision maker (DM), under the

—

—

form of a triplet (¥s, ¥, 7a) of parameters, what specific feature of (m, 7 )7y (1.y)) he is in-
terested in, and which degree of numerical accuracy does he want to reach. An optimized
sampling strategy of distributions P(;.;) and of a-cuts of 71, ..., 7y is then derived to satisfy
the DM’s choice with a minimal amount of computations. This sampling strategy will take the

shape of a sample matrix counting M samples, as summarized in Figure /.7

Statistical parameter ys : this parameter encompasses two kind of information, contained

in two sub-parameters Js', ¥5° respectively related to information on input and output variables:

e ¥': concerns information related to the joint distribution P1.1); It can be, for example,
assessment of copulas [158] linking some of the variables or rank correlations [121]

between some variables, or simply stochastic independence between all variables

e ¥5“: concerns information about the statistical value of interest for the DM. For ex-
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ample the probability of exceeding a certain threshold value y*, the entire cumulative

distributions, or other statistical quantities such as the mean, the variance, ...

In other words, s specify how samples will be drawn from distributions Py, ..., P (¥s'), and

what is the awaited form of the final result (5°).

Epistemic parameter yz : this parameter is related to epistemic uncertainty and to the DM
behavior with respect to this uncertainty. It determines how o-cuts or values from 7y 1,. .., Ty

have to be sampled. Typical choices for g are:

Choice 1 . Fixed o € [0, 1]: for every sample x(y) . i=1,...,M of Pi,..., P, take Tpy (11 1.n),,

i

as the sample on 7, q,..., 7y, with a a fixed value. This corresponds to fix a

confidence level 1 — & concerning epistemic uncertainty.

Choice 2 . Vector & = (@i, ..., 0y) of values: duplicate every sample x(.¢) , i =1,...,M/J of

Py,..., P J times and associate the sampled cut 7tp; (41.y),, to the j'" duplication.
Numerical approximation method described in Section|/.2.1.1|corresponds to this

choice (with J the number of discretized levels).

Choice 3 . Partially randomized value «: for every sample Xk P =1, , M of Py, Py,
sample a random value o; from a uniform law on [0, 1] and take Tpl (k+1:N),, a5
sample on 7 1,...,7my. As we will see, this is equivalent to averaging over all

o-cuts.

Choice 4 . Totally randomized value : for every sample X(1:k)0 1= 1,....Mof P,..., P,

i

sample N — k random values @;s1,...,;y from independent uniform laws on
[0,1], and samples Txi1,a;;,,,---,%N,0;, from possibility distributions. This is
equivalent to assume random set independence between 7 1, ..., Ty.

Thus, these two parameters Yz, ¥s settle which kind of information will be sampled from

distributions Py, ..., Py, M1, ..., Ty, as well as the (in)dependency assumptions between them.

7.2.1.3 Integration of numerical error

Numerical Accuracy parameter 74 : One of the interest of using Monte-Carlo sampling
technique or one of its variant (e.g. importance sampling, MCMC, Latin HyperCube Sam-
pling) is that they often comes with convergence theorems that are handy to control or bound

approximation errors. Parameter Y, is related to this numerical error, and has a direct effect on
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the number M of samples (or, equivalently, computations) required by a specific application.
It can take two different forms: either the DM specifies a numerical accuracy to be reached,
and the number of required samples is deduced from it, or the DM provides a maximal number
of samples (often limited by available ressources), and the numerical accuracy reachable with

this number of samples is then deduced.

We only recall here convergence results related to the use of order statistics [27] when
evaluating percentiles of cumulated distribution. Let us note X, the g percentile of a random
variable X. From a sample of size M, the use of order statistics consists in considering the
ordered values X(1) <...< X(m) drawn from the random variable X. If the M values are drawn

randomly and independently, the following equation

M oy
P(Xi) <Xg) = ) ( A;) q(1-g"" (72)

i=K
holds. This is equivalent to saying that the random variable Fx (X g)) follows a beta law of
parameters K and M — K + 1. The main interest of this result is that Fy (X( K)) does not depend
of X distribution, therefore it allows to know the number M of samples required to derive
a confidence interval for X bounding a given percentile (¢) with a given numerical accuracy
without knowing neither the values X(;) nor the distribution of X. For example, if a DM wants a
conservative upper bound of the 95% percentile that covers it with a confidence of at least 95%,
then, by using equation ((7.2)), it is straightforward to determine that at least 59 computations
will be required, since if we draw 58 samples, P(X(sg) < Xo5) = (0.95)% =5.1% (i.e. a
confidence of 94.9 %), while if 59 samples are drawn, P(X(s9) < Xos) = (0.95)°° = 4.8%. This
is particularly interesting in risk analysis involving costly computer codes (see, for example,
the BEMUSE programme [160]).

Note that results from order statistics to pre-determine the number of required samples
cannot be used in the cases where the DM specifies a confidence interval with a minimal
width, or if the statistical quantity of interest is not a percentile but another value (e.g. the
mean or variance). In this case, a first propagation has to be done, with a prescribed number
of M samples from which will be estimated a first confidence interval. Number of propagated
samples can then be increased, accordingly to the DM (dis)satisfaction. Note that integrating
numerical accuracy add yet another kind of imprecision, deriving from the use of numerical

approximation methods. Figure[/.8|illustrates the whole procedure by a flowchart.

The RaFu method is based on the same theoretical assumptions as the original hybrid

method, and in this respect does not bring much novelty. However, it tries to solve some of its
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practical shortcomings, i.e., reducing its computational cost, making it more "user-friendly"
(an important feature in applications) and integrating the notion of numerical approximation

error, an important aspect of safety studies involving complex computer codes.

7.2.1.4 Links with existing post-processing

As indicate the two following propositions, it is possible to express both Baudrit et al. [12]]

and Ferson and Ginzburg [102] post-processing methods by suitable choice of the triplet
(YS7 VE, YA) :

Proposition 7.1. The result of the post-treatment giving [F, F]TE can be interpreted as the

following choices over ¥s, Y&

e ¥ = F(x) ;Vx € R (entire cumulative distribution)

e Vr = randomized o for each sample.

Proof. Let us consider, for a value y € R, the lower probability Py, ([—,y]) = Fr, (y) asso-
ciated to Baudrit et al.’s post-treatment. Since this lower probability corresponds to the lower
expectation of the indicator function 1., ,}) of the event [—o0,y], it is given by the following

formula:

1 1 1
Er ([~ = / / / T (@) (00 10, ) L om]) KO Al (7.3)

where distributions Py, ..., P, are assumed to be independent, without loss of generality. This
holds for every y € R, and since making a Monte-Carlo sampling with parameters of Proposi-
tion[7.1]is equivalent to a numerical evaluation of Integral (7.3), this finishes the proof for the
lower distribution Fr, . The proof for the upper one is similar (inclusion in indicator function

become a non-empty intersection). 0

Proposition 7.2. Given a fixed , the result of the post-treatment giving [F,F|,. can be inter-

preted as the following choices over s, Vg

e ¥ = F(x) ;Vx (whole cumulative distribution)

® V=K
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Proof. We follow a reasoning similar to the one used in the previous proof, except that the

integral to evaluate becomes

Lo (v (). (0) 1y em)) O+ DO

P([=]) = /l
;=0

T—-

Q

O

Similarly, it can be checked that random set independence assumption is retrieved when
every sample is taken randomly in the RaFu method. Pre-processing DM choices rather than
post-processing it allows to gain a factor proportional to My (the number of discretized o-
cuts) in the number of required computations when only some lower and upper cumulative
distributions have to be estimated, while keeping the same numerical quality in the final ap-
proximation. Of course, some information is lost in the process, but if this information is not
relevant for the DM, there are no obvious reasons to keep it, particularly when the number and

costs of computations become important issue.

7.2.2 Case-study

We apply the RaFu method on a simplified model used by EDF (French integrated energy
operator) to compute the overflowing height for a river dike [139]. Although this model is
quite simple, it provides a realistic industrial application in which we can distinguish between
aleatory and epistemic uncertainty. This model approximates the overflowing height H of a

river and depends on six parameters which are summarized in table It reads

H=| —= (7.4)

7.2.3 Modeling uncertainty sources

We assume the river width (B) is constant on all the length of the river (L). Both this width

and length are assumed to be well known (i.e. no uncertainty on these parameters).

The value of the river flow rate (Q) depends on a huge number of physical phenomena
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Symbol Name
0 River flow rate
B River width
K Strickler coefficient
Zy Upriver water level
Zy Downriver water level
L River length

Table 7.4: Summary of parameters used in equation (7.4)

(e.g. climatic and meteorologic conditions, period of the year, ...) that are highly variable
over time and/or space. The flow rate value can therefore be interpreted as an aleatory value
due to the natural variability of various physical phenomena. As a lot of measurements are
usually available for river flow rates, it is possible to fit the data to a probability law modeling
this variability. Experience has shown that this variability can be well represented by classical

lognormal or Gumbel laws.

Water levels Z, and Z; depend on sedimentary conditions that are peculiar to the con-
sidered river bed. Due to various reasons, these sedimentary conditions are usually not well
known, but are not the consequence of some physical variability or of some random event
(since we consider a specific river). The uncertainty of the water levels being due to a lack of

information, it is therefore of epistemic nature, and should be modeled by a fuzzy variable.

Similarly, the Strickler coefficient K is a model parameter used instead of a physical model
to describe the dependance between the flow velocity and the slope of the river. It is also
specific to the considered river bed, and the complexity of the river nature makes it difficult
to estimate with precision. In our context, the uncertainty linked to such a non-measurable
parameter should be modeled by a fuzzy variable as well. Table gives the chosen models
for our application (considered values and uncertainties are typical values). As an example,
figure|/.9|1llustrates the distribution modeling the epistemic uncertainty on K.
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15 30 45 Kg

Figure 7.9: Triangular fuzzy number modeling Kj

Variable  Unit Model
0 m3s1 Lognormal law (m = 7.04 and o = 0.6)
Z, m Triangular fuzzy number (54,55,56)
Z4 m Triangular fuzzy number (49,50,51)
K Triangular fuzzy number (15,30,45)

Table 7.5: Uncertainty models

7.2.4 RaFu method application

Figure shows the results of three applications of the RaFu method, each with 1000 sam-
ples. In these applications, the parameter yﬂ was the whole cumulative distribution(s) (i.e.
¥s = {F(x)Vx}), while the various yg corresponded to Ferson’s post-treatment for & = {0, 1}
and to Baudrit et al.’s post-treatment (i.e. Yz = random « in each sample). For sake of clarity,

numerical accuracy is not considered in this figure.

Let us note that, because fuzzy variables (epistemic uncertainty) are modeled by means
of triangular fuzzy numbers, taking ¥z = {@ = 1} comes down to suppress this epistemic
uncertainty, thus the result is a classical unique cumulative distribution (we consider that both

Zy,Z4,K; are precisely known).

Had we built the whole random fuzzy variable to get these five curves, p x 1000 inter-
val computations would have been necessary to reach the same numerical accuracy, where p

would have been the chosen number of discretized ¢-cuts.

Figure illustrates how numerical accuracy can influence the result. This figure shows

the 95 % confidence interval (i.e. this interval covers the true value with a 95 % confidence)

ZHere, only one variable is of aleatory nature, therefore there is no need to specify dependencies
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Figure 7.10: Result of Rafu Method with 1000 samples

for the 95 % percentile evaluation and for the three chosen values of yg. Since for yr = {a =
0}, intervals reduce to single values, we have five series of 1000 values (corresponding to
lower/upper bounds of 5 := a = {1,0,7¢}). Using order statistics and equation (7.2, we
have that the lower and upper bounds of the 95 % numerical confidence interval respectively
correspond to the 936" and 964" sorted values. Best estimates are given by the 950" sorted
value. Among other things, this figure shows us that the numerical approximation effect is not
negligible, even for a relatively high number of computations (here, 1000), and thus should be

taken into account in the analysis.

The material contained in this chapter can be found in papers [23} 24} 62]].
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Figure 7.11: Evaluation of the 95% percentile
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Chapter 8

Conclusions, perspectives and open

problems

“Knowledge would be fatal, it is the uncertainty that charms one. A mist makes things beau-
tiful.”
— Oscar Wilde (1854-1900)

In this work, we have studied various aspects of uncertainty treatment, focusing on the
double objective of progressing towards a more unified handling of uncertainty and of propos-
ing tractable solutions for practical problems, by advantageously using the specific features of

the different theories considered here.

The main conclusion from Chapter |3} in which we studied practical uncertainty represen-
tations, is that generalized p-boxes are interesting uncertainty representations constituting the
missing links between these other popular and practical uncertainty models that are possibility
distributions, p-boxes and clouds. The fact that they can be interpreted as pairs of lower/upper
confidence bounds over collection of nested sets make them attractive for elicitation processes
(this still has to be confirmed by experiments), and the fact that they constitute special cases
of random sets, while generalizing possibility distributions, let us think that they can be a
good compromise between the two, being more tractable than the former and more expres-
sive than the latter. Within this perspective, works to do concerns the practical handling of
generalized p-boxes. We have started such a work by studying the propagation and fusion
of generalized p-boxes, respectively in Chapter [3] and Chapters 4] On-going works concerns

the problem of conditioning on generalized p-boxes, marginalization of generalized p-boxes,

263



264 Conclusions, perspectives and open problems

and computation of expectation with generalized p-boxes (in this last case, results from Chap-
ter [6] can probably be extended). Another work that remains to be done is to study to which
extend results concerning p-boxes can be extended to generalized p-boxes (e.g., the use of
copulas [158]], of probabilistic arithmetic [209]).

From Chapter 4] we can conclude some guidelines about the use of fusion operators: con-
junctive and disjunctive operators should respectively be used when information is consistent
and totally inconsistent, while non-adaptive compromise operators should be used with cau-
tion. Adaptive fusion operators, and particularly the use of maximal coherent subsets (MCS),
appears to us as the best solution to deal with partial inconsistency in the information and
to reconciliate sources, at least theoretically. Nevertheless, this approach can quickly lead to
computational difficulties, and there is a great need for efficient algorithms to apply it, espe-
cially when there are numerous sources. We have studied in details a framework where such
efficient algorithms are available, where information is modeled by quasi-concave possibility
distributions on the real line, and where MCS methodology is applied level-wise. The question
of taking account of eventual dependencies between sourcef] when merging their information
is still open, and although propositions exist here and there, they still have to be better axioma-
tized and studied thoroughly. We have given some first results related to the study of a cautious
fusion rule in random set theory maximizing expected cardinality, and which is coherent with
cautious possibilistic fusion rules. Further (and on-going) research is needed to characterize

this rule, its drawbacks and advantages.

When past assessments of sources are available, we have also proposed a general method
to evaluate the quality of the information provided by sources. This method has been applied,
within the framework of probability and possibility theory, to the results of a benchmark of

nuclear computer codes in Chapter [7]

Conclusions from Chapter [3] is that allowing imprecision in uncertainty representations
makes the issue of interpretation essential when using independence notions, both from a the-
oretical and practical standpoint. Concerning this issue, many problems remains to be solved
in both directions, since nowadays, the use of a particular independence notion is mainly dic-
tated by practical convenience (i.e., strong independence in credal nets, random set indepen-
dence in Monte-Carlo sampling). As indicates our first results, Shafer’s recent theory [[179]
based event-trees is an attractive framework to study and motivate notions of independence,
both theoretically and practically (since the use of backward propagation makes computations

easier).

Note that some solutions have been proposed in the probabilistic setting [124], but they appear again too
precise, since dependencies between sources are unlikely to be known with such precision
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By studying how the notion random set independence could be outer-approximated by the
notion of possibilistic non-interaction, we have explored the usefulness of approximating one
notion of independence by another one. Similar studies for other notions of independence

could be useful in the practical handling of uncertainty.

Concerning the problem of decision making, briefly studied in Chapter [6| we have pro-
posed first results eventually leading to practical algorithms allowing to compute lower and
upper expectations of continuous (utility) functions when the uncertainty on a variable are
described by p-boxes. On-going works include the formalization of such algorithms, and the

consideration of mixed strategies (i.e., randomized actions).

Some examples of applications have been given in Chapter |/, one of them concerning the
treatment of the outputs of multiple computer codes, and the other one the practical propaga-
tion of uncertainty by the so-called hybrid method. As this method can be computationally
greedy, we have proposed a particular sampling method, called the RaFu method and devel-
oped in the IRSN software SUNSET, allowing the number of required computations. This
computational reduction is achieved by pre-processing rather than by post-processing some of

the decision maker choices.

However, to make propagation of imprecise uncertainty models through complex models
affordable and attractive to industrial users, next research efforts should focus on the use of
surface responses in combination with imprecise uncertainty models, or in the extension of

efficient simulation technics like MCMC techniques to such models.
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Appendix A

Uncertainty theories: a short introduction

We give here a short introduction to uncertainty theories used in this work. Further details and

discussions can be found in the references (and in the references therein).

A.1 Probability theory: a short introduction

Probability theory is surely the oldest theory allowing to model uncertainty about which values
a variable X assume in 2. The theory of probability dates back to Jacob Bernoulli and its
ars conjenctandi [17], and we refer to the first chapters of de Finetti’s [108]], Shafer’s [[179] or
Walley’s [203] for recent reviews of the history of probability and its interpretations.

A probability mass p on a finite space 2" is a non-negative mapping p : 2~ — [0, 1] such
that ', c - p(x) = 1. In the sequel, we will note P o~ the set of all probability masses on .2~

A subset A C 2 of space 2 is called an event, and given p, the probability measure P
of the event A is P(A) = Y ca p(x). This measure evaluates the likelihood that event A will
happen.

Given a real-valued function f : 2 — R and the probability mass p on 2, the expected
value E(f) of fis E(f) =Y c2 p(x)f(x). We will note £ (2") the set of all such functions.
Remark that the probability P(A) of an event A corresponds to the expectation of the indicator
function of A, denoted 1( A) > which is such that it takes values one on elements x € A, and zero

on elements x € A€, with A€ the complement of A.

Probability masses can be characterized both in terms of probability measures on event, or
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of expected values of functions in .Z(Z"). In terms of events, a probability measure verify

the two following axioms:

VA,BC 2, P(AUB) = P(A)+P(B) — P(ANB) Additivity (A1)
VAC 2, P(A) =1 — P(A°) Duality  (A.2)

which, in terms of expected values, read:

Vi,ge L(X), E(f+8) =E(f)+E(g) Additivity (A3)
VfeL(2), E(f) = —E(—f) Duality (A4)

and, in probability theory, the two languages have the same expressiveness, 1.e. it does not
matter whether we speak in terms of probabilities of events or in terms of expected values of
functions in .Z(2").

Similarly, a probability density p defined on the real line R is totally defined by its cumu-
lative distribution F : R — [0, 1], defined as

Vx €R, F(x) = /_xoop(x)dx

provided F is right-continuous, or that we restrict ourselves to so-called ¢-additive distribu-

tions (see Miranda et al. [149] for a exhaustive discussion of this topic).

In his work on subjective probability [[108], de Finetti privileges the language of expected
values, and use the terms prevision for E(f). In his theory, the value E(f) is associated to the
fair price at which a given subject would buy or sell the game f to someone, such that f (x)E|
is returned if the value of variable X turns out to be x. In this theory, provided the subject
can be forced at any moment to buy or sell the game at the given price, then De Finetti shows
that for the subject to be coherent (i.e., not engage himself in a sure loss, or in a so-called
Dutch-book), E(f) must obey the laws of probability.

Although of major importance, many authors in the recent years have pinpointed argu-
ments converging to the conclusion that probability masses cannot adequately account for all
kind of uncertainty, and are likely to be too precise in a number of cases, eventually leading to

make too strong commitments when making previsions and taking decisions.

There are many examples where uncertainty cannot be faithfully modeled by a precise

! f(x) can be a gain or a loss
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probability:

e confronted to a game f(x), it seems natural that a subject could be allowed to give
different prices at which he is ready to buy or sell it, allowing some imprecision in his

expected gain.

e when eliciting information from an expert, this information rarely corresponds to a sin-
gle possible probability distribution, and except for the will to model uncertainty by a
single probability, there are no reasons to force one to choose one distribution rather

than another.
e a similar argument holds when only few samples or observations are available.

e when building a joint uncertainty model from marginal ones, it is often unlikely that
this joint model will be faithfully modeled by a joint probability mass, even if marginal
models are themselves probabilities, simply because dependencies structures are usually

not so well known.

e itis counterintuitive to take the same model for two (quite) different states of knowledge,

namely ignorance and the fact that we know that everything is equi-probable.

for other arguments, see, for example, Walley [203]. Of course, there are numerous cases
where usual probability theory will do the job. But there are also numerous cases in which it

will not, and these are the cases that interest us.

A.2 Imprecise probability theory

Instead of considering single probabilities as model of uncertainty, imprecise probability the-
ory takes closed convex sets of probabilities as their basic uncertainty models. Such sets are
often called credal sets [136], and that is the name we will adopt here. Thus, uncertainty on

X is characterized by a credal set #?x which is a closed convex set of probability distributions
on &

This approach is very close to robust statistics [[119] and share many similarities with it,
but a great difference between the two approaches is that, in robust statistics, the existence
of a precise but imprecisely known probability Pr is assumed, while in imprecise probability
theory, credal sets are the basic uncertainty representation, and the existence of an underlying

precise probability is not forcefully assumed.
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Where, for an event A C 2, a precise probability induced a precise probability measure,

a credal set Py induces lower P(A) and upper P(A) probability measures defined as:

P(A) = inf P(A) and P(A) = sup P(A)
pePx pEPx

and the lower probability measure satisfy the following properties:

VA,BC 2, P(AUB) < P(A) + P(B) Sub-Additivity (A.5)
VA C 2, P(A) =1—P(A°) Duality (A.6)

and the difference P(A) — P(A) reflects the imprecision of the available information.

Now, given a function f in £ (Z"), a credal set Zx also induces lower and upper expec-

tations defined as

E(f)= inf E,(f) and E(f)= sup Ep(f)

pEfx sz@X

with E,, the expectation of f given the probability mass p. And we have

Vf,ee L(X),E(f+g) <E(f)+E(g) Additivity (A.7)
Ve L(Z), E(f) = —E(-f) Duality (A.8)

Note that, thanks to the duality property, one can focus entirely on lower probabilities or ex-
pectations, since once they are defined respectively for all events or all functions in .2 (.2"),
upper probabilities and upper expectations immediately follow. Similarly to the case of pre-
cise probabilities, lower and upper probabilities of an event A correspond to lower and upper

expectations of the indicator function 1)

But, contrary to precise probabilities, the two languages are not equivalent: any credal set
can be characterized by its lower expectations of functions in .Z(Z"), but it is not, in general,

possible to characterize a credal set only by its lower probability on events.

Inversely, we can start with functions g that are in a subset .# of .Z(.2"), and some lower
bounds L(g) of their corresponding expectation E(g). We can then consider the set &7 of
probability masses p € P 5 compatible with these lower bounds, that is

PL={pecPyVgec 2 L(g) <Ey(g)}

lower bounds are called consistent if &7 # 0 and coherent or tight if we have E 5, (g) = L(g)
for any g € 7 (usually, we have only E 4, (g) > L(g)).
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In walley’s [203]] behavioral theory, consistency is called avoiding sure loss, tightness is
also called coherence, and lower/upper expectations are called lower/upper previsions. Note
that in this theory, and as recalled above, speaking in terms of expectations rather than prob-
abilities is not merely a matter of choice, since credal sets generally cannot be characterized
by their lower/upper probabilities alone. In the same line of thought as De Finetti [108], Wal-
ley considers that the lower prevision E( f) represents the maximal price at which a subject is
ready to buy the game f, while the upper prevision E ( f) represents the minimal price at which
he is ready to sell it. When both prices coincide for every game on .2 (.Z"), usual probabilities

are retrieved.

A.3 Random set theory

Random set theory allows to model uncertainty of X by the means of a formal model that is a

mapping m : g2(Z°) — [0, 1] from the power set of .Z" to the unit interval, such that

VAC 2, 0<m(A) (A.9)
Y m@)=1 (A.10)
AEAZ)

i.e., the mapping m is normalized and non-negative, and we call it a basic probability assign-
ment (bpa). Another name often found in the literature is the Dempster-Shafer model. It is
common to call subsets receiving positive mass focal elements. In general, we will denote .7

the set of focal elements, and (m,.#) a whole random set.

As a model of uncertainty coping with imprecision, random sets were first introduced
by Dempster [S7], who linked them to lower and upper probabilities generated by imprecise
observations. The same formal model was then considered by Shafer [[178] in his theory
of evidence, which does not refer to an underlying precise probability distribution but deals
with degree of beliefs, and in which random sets are called belief functions. This model
was then extensively taken over by Smets [[189] in its Transferable Belief Model (TBM). See

Molchanov [151] for a recent theoretical account concerning random sets.

A.3.1 Shafer’s belief functions and Smet’s TBM

In Shafer’s theory of evidence [178]], the mass m(E) attributed to E quantifies our belief that

the actual value of X lies in the set E, and nowhere else. Now, given an event A, belief Bel(A),
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plausibility PI(A) and commonality Q(A) measures are defined as:

Bel(A)= Y m(E) (Belief).
EECA
Pl(A)=1—Bel(A°)= Y m(E) (Plausibility).
E,ENA#0
Q(A) = Z m(E) (Commonality).
E,EDA

Belief and plausibility measures respectively provide upper and lower confidence degree in
the fact that event A will happen (or is true), since the belief measure quantifies the mass
of belief that surely supports A, while plausibility measure quantifies the mass of belief that
could supports A. Commonality measure quantifies the mass that could freely support any
part of A. It can be argued that commonality measure gives an image of the imprecision of m,

since the higher the masses given to broad subsets, the higher the commonality measure.

And it can be checked that the belief measure induced by a random set has the following

property:

¥n € N> 0,V Collection o = {Ay,...,A,},A; € 2, Bel( | J A)) > Y (=D)'"'Bei( () A))
Ajcedf ICq A;el

Following Shafer’s idea that m quantifies beliefs, Smets introduce the so-called Transfer-

able Belief Model. The two main features of this model are that:

o It differentiate the credal state, where beliefs are held and possibly changed, from the
pignisticﬂ state, in which the so-called pignistic probability (see Appendix |C)) is used to

make a decision based on beliefs

e It allows for an open world assumption, that it is a non-null mass m(0) > 0 can be given
to the empty set, assuming that the true state of the world is possibly somewhere outside

the considered universe 2 .

A.3.2 Dempster’s random sets

Let Py be a probability distribution on a space . Then, Dempster interpret a random set as

a so-called multi-valued mapping I' : % — @(2") from the space % to another space 2. In

2From Latin Pignus, to decide
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Dempster’s view, I represents the imprecise observation on 2~ of some instance of a (random)

variable Y assuming values in % and having P as probability measure.

ForalleventA C 2", wecandefineA* ={y € Z|I'(y) NA# 0} andA, ={y € #|I'(y) CA}.

For any such event A, we can then define lower P, and upper P* probabilities such that
P.(A) = Fy(A.) < P(A) < Py(A) = P(A”)

In Dempster’s view, random sets are explicitly referring to the imprecise observation of some

variable Y.

Dempster’s random sets and Shafer’s basic probability assignments are related in the fol-

lowing way: for any subset E C 2" let us define the mass m(E) as

mg =Fy({y € Z|I'(y) = E})

then, the belief and plausibility measures derived from this bpa are equal to the lower and
upper probabilities defined above. Nevertheless, an important potential difference is that,
in Dempster’s view, the mass Py(y) is not forcefully allowed to distribute "freely” among
elements of the set ['(y), and is usually constrained to be allocated to one and only one element
of I'(y).

A.3.3 Random sets as credal sets

A bpa m and the associated belief measure Bel can also be related to a credal set ¥, , since

the belief measure Bel can be viewed as a coherent lower probability, and we have
Ppet ={P €Py|VAC X, Bel(A) < P(A) < PI(A)}

And it can be proved that g, is the convex hull of all probability distributions compatible
with a multi-valued mapping I" inducing a lower probability P = Bel. Nevertheless, if Py (y) is
constrained to be allocated to one and only one element of I'(y), there can be slight differences
between the two models [146, 34] (but these differences are not relevant in our work). Also
note that, in the case where the mass given to the empty set is non-null, then the resulting

credal-set is empty (i.e. induced probabilistic bounds are not consistent)

Above interpretations and use of random set formalism are the most widely use in uncer-

tainty treatment, and we refer to Smets [183]] for a review of other interpretations.
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A.4 Possibility theory

The first proposal to replace probability theory with a theory formally equivalent to possi-
bility theory in order to deal with uncertainty probably dates back to Shackle [177] with the
introduction of potential surprise distributions (equivalent to 1 — ) in economy. It was later
considered by Zadeh [219] and developed by Dubois and Prade [85].

The basic tool of possibility theory are possibility distributions. Given a variable X assum-
ing values in 2", a possibility distribution is a mapping 7 : 2~ — [0, 1] from the space 2" to
the unit interval, quantifying the uncertainty about X.

Several set-functions can be defined from a possibility distribution 7 [79]], namely the

possibility, necessity and sufficiency measures:

I1(A) = sup 7 (x) (Possibility measures).
X€A

N(A) =1-TI(A9) (Necessity measures).

AA) = in/li m(x) (Sufficiency measures).
xXe

The possibility degree of an event A evaluates the extent to which this event is plausible,
i.e., consistent with the available. Necessity degrees express the certainty of events, by duality.
In this context, distribution 7 is potential (in the spirit of Shackle’s), i.e. 7(x) = 1 does not
guarantee the existence of x. Their characteristic property are: N(ANB) = min(N(A),N(B))
and IT(AUB) = max(I1(A),I1(B)) for any pair of events A, B of X.

On the contrary A(A) measures the extent to which all states of the world where A occurs
are plausible. Sufficency (or guaranteed possibility) distributions [79]] generally denoted by
0, are understood as degree of empirical support and obey an opposite convention: d(x) = 1

guarantees (= is sufficient for) the existence of x.

It can be shown (already in [178]]) that a necessity measure N is induced by a random set
whose focal elements are nested, that is form a complete ordering with respect to inclusion. If
we let 0 = oy < @) < ... < ayy be the distinct values of 7 on 2", then 7 is equivalent to the

random set having, for i = 1,..., M, the following focal sets E; with masses m(E;):
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and the same amount of information is then contained in this random set and in the distribution

7(x) = PI({x}). The open-world assumption then comes down to allow 7 < 1, and m(0) =
- sup,c» 7(x).

It is then easy to see that a possibility distribution 7 induce a particular credal set &7 [92,
46]), which is non-empty if and only if 7(x) = 1 for at least one x € Z". The credal set F is
defined as:

P ={PEP,VAC 2, N(A) < P(A) <TI(A)}
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Appendix B

Some notions of order theory

In this appendix, we introduce few notions of order theory that are needed in this work. See

Davey and Priestley [39] for an extended introduction to the subject.

Consider some space 2~ and a (binary) relation < on this space. Let us first define some

properties that the binary relation can satisfy:

The relation < is reflexive if, for any element x € 2°, we have

x <x (Reflexivity) (B.1)

The relation < is antisymmetric if, for any pair of elements x,y € 2", we have

(x<yandy<x)=x=y (Antisymmetry) (B.2)

The relation < is transitive if, for any triplet of elements x,y,z € 2, we have

(x<yandy<z)=x<z (Transitivity) (B.3)

The relation < is complete if, for any pair of elements x,y € 2, we have

x<yory<x (Completeness) (B.4)

Order relations are then characterized by the properties they satisfy. First, all of them

satisfy the properties of reflexivity and of transitivity.
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A relation that satisfy only reflexivity and transitivity is called a partial pre-order, also

called partial quasiorder. Inside a partial pre-order, two elements are said to be:

e incomparable if —=(x <y or y < x), with — the logical negation

e equivalent if (x <yandy<x)buty=#ux

A complete pre-order, also called pre-order or quasiorder is a relation satisfying the prop-
erties of reflexivity, transitivity and completeness. This means that every pairs of elements can

be compared, but that there remain some elements that are judged equivalent.

A partial order is a relation satisfying the properties of reflexivity, transitivity and asym-
metry. This means that there are non equivalent and distinct elements, but that some elements

are incomparable.

Finally, an linear order, also called total order, simple order, or simply chain or order, is a
relation satisfying the four properties of reflexivity, transitivity, completeness and asymmetry.
The best known examples of this notion are probably the set of real numbers or of natural
numbers equipped with the natural order on numbers (any number is comparable to another

one, and if a number is both lower and upper than another one, then they are equal).

Given a partial (pre-)order < on 2, a linear extension <y of < on 2 is a total order
such that, whenever x < y for two elements x,y € 2, it also holds that x <; y. In other words,
a linear extension is a linear order that is consistent with the original partial (pre-)order <,

making incomparable elements comparable and arbitrating equivalences.



Appendix C

Random sets: inclusion, least commitment

principle, pignistic probability

We recall here some results related to the random set formalism and to the TBM interpretation
of this formalism. In particular, we recall the various notions of inclusion existing within
this theory, and what is behind the so-called Least-commitment principle (LCP) and pignistic
probability (BetP).

C.1 Inclusion relations between random sets

There exist many notions of inclusions between random sets, based on different measures
and/or notions. here, we recall the principal ones, and we refer to Denoeux for additional
notions. Each inclusion notion gives rise to a corresponding partial order between random sets.
The pl—,g— and s-orderings were introduced by Dubois and Prade [[84]], while Denoeux [61]]
recently introduced other orderings (w— and v—orderings) based on Smets [184] canonical

decomposition.

Let us first recall the notions of specialization, as well as Smets canonical decomposition

of belief functions.

Consider an arbitrary indexing of subsets E; of @(27), i = 1,...,|£(Z")|. Given two
random sets (m,.%),,(m,.% ), defined on 2", let m;,m, be |@(.2")| x 1 vectors of weights,
where the i element of m; is the mass m(E;) of subset E; in (m,F);. Then, (m, ), is a

specialization of (m,.% ), if, given the m;, my, there exist a o(.2") x g(.Z") stochastic matrix
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S such that
mp = S- m;

with §;; the element in the i'" line and j’h column of §, and §;; > 0 if and only if E; C E;. In
short, (m,.7 ), is a specialization of (m,.% ), if the masses of (m,.# ), "flow downs" to subsets

of (m,.#), (i.e., mi (E) is reallocated among subsets of E in my).

Let (m,.#) be a random set such that m(2") > 0 (so-called non-dogmatic bpa). Then,
Smets canonical decomposition [184]] consists in affecting to every subset A C 2~ a weight
w(A) with w € [0,e0) and such that w can be obtained from commonality measure in the

following way:

w(a)=[Tom """

BDOA

We can now define the following partial orders based on different extensions of set inclu-

sions:

e pl-ordering: (m,.7), Cp; (m,7), if and only if, for all subset E C 2", Pl(,, 7),(E) <
Pl 7),(E)

e g-ordering: (m, ), Co (m,.7), if and only if, for all subset E C 2", O, #),(E) <
Q(m,7),(E)

o s-ordering: (m,.F ), Ty (m, %), if and only if (m,.#), is a specialization of (m,.% ),

e w-ordering: (m,#), C,, (m,.7), if and only if, for all subset £ C 2", Oy, 7),(E) <
OQ(m,7),(E)

and each relation C, with x € {w,s, pl,q} induce a partial order on random sets. Also note
that (m,.7 ), Cp (m,F), is equivalent to &, z), € Py, 7),» With &, 7). the credal set
induced by (m, %)

random sets (m,.% ), (m,.% ),, we have the following relations

;- Note that some inclusion notions are stronger than others, and, given two

F
(mvig/\)Z EW (mvg)lﬁ(mvg)Z ES (m7§)1: o~
F
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Denoeux [61]] (to which we refer for ampler discussion) considers additional orderings tagged

by the letters v,d, dd and they complete the above picture in the following way:

0\)1 (may)z Cp (ma

F
)2 Ly (m,ﬁ)lj (m>ﬁ> y)l (maﬁ)Z Lo (ma

[\S)
[l
QU
s

C.2 Least-commitment principle (LCP)

The least-commitment principle can be informally stated as the motto "one should never pre-

suppose more belief than justified by evidence".

In terms of random sets, it is translated by the fact that, when a set of constraints do
not allow to identify a unique random set, but rather a set .# of compatible random sets,

then one should select the least-committed random set with respect to one of the ordering

Ex7 X E {W7S7pl7Q}'

In general, there are multiple least-committed random sets, since the above orderings are
partial. Note that, the stronger the ordering notion, the more incompatibilities it generates, and

the larger the set of potential least-committed random sets.

C.3 Pignistic probability BetP

As briefly recalled in Appendix [A] the Transferable Belief Model (TBM) has two levels: a
credal one, in which beliefs are entertained, and a pignistic one, in which a decision is taken
based on beliefs. Based on a set of rational requirements [[187], Smets justify the use of the
so-called pignistic probability to determine this decision. The pignistic probability BetP is

defined as follow:

Definition C.1. Let (m,.%) be a random set defined on 2". The pignistic probability of an

element x € 2 is then defined as:

B 1 m(E)
BetP(x)= Y. ET=m(0)

EcZ x€E

And it can be checked that BerP(x) is a probability mass on 2 . It comes down to dis-

tribute, for each focal element E, m(E) uniformly among elements of E and to normalize the
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obtained distribution. Actually, it is the probability mass equivalent to the gravity center of
the credal set &, 7 induced by the corresponding normalized random set, and it is also

equivalent to the Shapley value [181] in game theory.



Appendix D

Proofs

This appendix contains longer proofs not essentials to the understanding of te whole manuscript.

D.1 Proofs of Section 3.2

Proof of Proposition From the nested sets Ay C A, C ... C A, =X we can build a par-
tition s.t. Gy =A|,Gy = Ay \Aj,...,G, = A, \A,—1. Once we have a finite partition, ev-
ery possible set B C X can be approximated from above and from below by pairs of sets
B, C B* [165]:

B =| J{Gi,GinB # 0}
B.=|J{Gi,G: C B}

made of a finite union of the partition elements intersecting or contained in this set B. Then
P(B) = P(B.),P(B) = P(B*), so we only have to care about unions of elements G; in the se-
quel. Especially, for each event B C G; for some i, it is clear that P(B) = 0 = Bel(B) and
P(B) = P(G;) = PI(B). So, to prove Proposition 3.4, we have to show that lower probabilities
given by a generalized p-box [F,F| and by the corresponding random set built through algo-
rithm [3] coincide on every possible union of elements G;. We will first concentrate on unions

of conscutive elements G;, and then to any union of such elements.

Union of consecutive elements G; Let us first consider union of consecutive elements

Uiz ;G (When k = 1, we retrieve the sets A ;). Finding I_’(Ui:i Gy) is equivalent to computing
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the minimum of Zi:i P(Gy) under the constraints

i
i=1,....,n & <PA)=Y P(G)<p (D.1)
k=1
which reads
J
oj < P(Aim1)+ Y P(Gy) < B; (D.2)
k=i

SO Z;i;iP(Gk) > max (0, aj — B;—1). This lower bound is optimal, since it is always reachable:

° lfOCJ>B, 1, take P s.t. P( i— 1) Bl 1, (U/{:in):(Xj—ﬁi_l,P(UZ:H_le):1—OCj.

o If @ < Bi_i, take P s.t. P(Ai—1) = Bi—1, P(U_;Gx) = 0. P(U_ ;4 Ex) = 1 — Bi1.

And we can see, by looking at Algorithm that Bel (Ui: :Gr) = max(0,a; — fB;_1): focal
elements of Bel are subsets of U,{:i Gy if Bi—1 < o; only.

Union of non-consecutive elements Now, let us consider a union A of non-consecutive el-

ements s.t. A= (U’H Gy U Uk i+1+m Gk) With m > 1. As in the previous case, we must
compute min (Z’H P(Gy) —i—):k: it lm (Gk)> to find the lower probability on P(A). An ob-

vious lower bound is given by

i+l i+l

mm(ZP Gy) + Z P( Gk)) 2min<ZP(Gk )—l—mln( Z P(Gy. ) (D.3)

k=i k=i+l+m k=i k=i+l+m

and, by the result obtained for consecutive elements, this lower bound is equal to
max (0, 0 — Bi—1) + max (0, &; — Biy11m—1) = Bel(A) (D4)

Consider the two following cases and the probability assignments showing that bounds are

attained:

o it < Pi—1, @ < Biti1m—1 and probability masses P(A;_1) = i1,
(UZH ) = Qi — ﬁ,,l, (U;(+ll—_’—|_l}n+]l Gk) - ﬁi+l+m—1 — Uiy,
(Uk:H—H-m Gi) = aj— Biyirm—1 and P(Up_ ;1 Gk) = 1 — @

o Qi1 > Bi1, @ > Bisrim—1 and probability masses P(A;—1) = Bi—1, P(U,Gy) =0,
P G = = Bi— 1 P(U{ iy E) = 0 and P(UL 41 Gi) = 1 — oy
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A same line of thought can be followed for the two remaining cases. As in the consecutive
case, the lower bound is reachable without violating any of the restrictions associated to the
generalized p-box. We have P(A) = Bel(A) and the extension of this result to any number 7

of "discontinuities" in the sequence of Gy is straightforward.

The proof is complete, since for every possible union A of elements G, we have P(A) =
Bel(A) O

Proof of Proposition3.5] Let 2 be a finite set and define a ranking of their elements x; < x;
if and only if i < j. Given this ranking, and to prove Proposition [3.5] we start from a set L
with, for i = 1,...,n, initial bounds u;,/;. We then apply successively Equations (3.27) and

(3.25)), with the aim of expressing bounds u, I/ of the set L” in terms of initial bounds u;, [;.

1771
Expressions for (; — ) and (u! — u;) then follows. The positiveness of these two differences
is sufficient to prove inclusion between credal sets &7, and &~ To shorten the proof, we focus

on lower bounds (proof for upper bounds is similar).

Let us consider the p-box [F, f]/ built from a given reachable non-empty set L of probabil-

ity intervals, given, for i = 1,...,n, by equations

P(A) =0 =max( ) 1j,1— Y uj)

XjEAl' xj¢Al'
P(A) =B =min( ) uj,1- ) 1)
XjGA,’ Xj¢A,'

with P, P the lower and upper probabilities &7;. Now, given these bounds, we can compute
the set L” of probability intervals s.t.

' = P'(x;) = max(0,a — B/_,) (D.5)

» M

with P’ the lower probability of 33[ FF When expressed in term of values /;, u; of the original

set L, !’ is given by

l,{’:max(O,le— Z uj,le+ Z li—1,

Xj€EA; Xj€EA; 1 XjEA; X;EAL
=X wj= ) wjp ) L= Y u)
X;EAS Xj€A; 1 xjeAf,l X;EAT

and, given that the set L is consistent (Equation and tight (Equations [3.9), we have that



286 Proofs

1" <1;. To get Equation (3.27) giving (/; — ), simply note that:

=Y Li=— Y

XjEA,' XjEAi_]
AfUAi_l = %\xi

Y L=-Y I

x]EAlﬁl XjEAf

The same procedure can be followed for the bounds u, and we have %2, C Z». The

set L" is tight (since &2, C Z;r) and consistent (by construction, the new bounds [/’

S l]are

reached by one distribution in the p-box [F 77], and this distribution is also in &y, thus set
L" is tight, or reachable) O

Proof of Proposition 3.6] Proof of proposition [3.6| follows the same line of thought as the
proof of Proposition [3.5]

Let us consider an original generalized p-box [F,F| with bounds o, ; on sets A;. The set

L’ of probability intervals corresponding to this generalized p-box is given by equations

P(x;) = i = max(0, ¢ — Bi-1)
P(x;) = uj = Bi— a1,

where P, P are the lower and upper probabilities of ﬁ[ﬂﬂ. From the set L', we can get the
lower bound F” of [F,F]" by using equations

P'(A) = o = max( Z 11— Z 78

X;i€A; x,ﬁfA,‘

with P’ the lower probability of &?;,. In terms of the original p-box bounds ¢, 3;, this gives

us

i — n
a{’:maxZ Z ],1+Za] Y. Bj)
j=1 j=1 Jj=i j=i+1
i—1

n—1
o] = max( Z Z i, O+ Z o — Z B;)

j=1 Jj=i+1 Jj=i+1
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Given that Vj, ot; < B; by definition of a generalized p-box, we have ;" < ¢; and Equation
(3.29) follows. The same procedure can again be done for the upper bound to check that

B! > Bi, and we get ‘@[Ef] - ‘@[E,T”' :

Proof of Proposition 3.7, To prove this proposition, we must first recall a result given by De
Campos et al. [42]]: given two sets of probability intervals L and L’ defined on a space 2" and
the induced credal sets &7 and &7}/, the conjunction &~ = H2; N ;s of these two sets can
be modeled by the set (LN L") of probability intervals that is such that for every element x of
Z,

Lo (%) = max(lp(x), I (x)) and w(qpry (x) = min(ug (x), up (x))

and these formulas extend directly to the conjunction of any number of set of probability

intervals on 2~ (due to the associativity and commutativity of operators max and min).

To prove Proposition we will show, by using the above conjunction, that &) =
Noex, Prz- Since, by Proposition 3.5 and for any ¢ € X5, P, C P ;. 7y C Pp1r, show-

ing this equality is sufficient to prove the whole proposition.

|[FF]

Let us note that the above inclusion relationships alone ensure us that
P C ﬂoezc ,@[ FF, - ﬂoezo WLg . So, all we have to show is that the inclusion relationship
is in fact an equality.

Since we know that both &), and (scx, &1 can be modeled by set of probability inter-
vals, we will show that the lower bounds / on every element x in these two sets coincide (and

the proof for upper bounds is similar).

Forall x in 2", Iy (x) = maxgez,{l1y (x)}, with LY the set of probability intervals corre-
sponding to (\gex, &1 and L/, the set of probability intervals corresponding to a particular

permutation . We must now show that, for all x in 27, Iy (x) = I (x).

From Proposition we already know that, for any permutation ¢ and for all x in 2", we
have [;1 (x) < I(x). So we must now show that, for a given x in 27, there is one permutation
o such that /;» (x) = I.(x). Let us consider a permutation placing the given element at the
front. If x is the first element Xo(1)> then Equation has value O for this element, and we
thus have /; (x) = I (x). Since if we consider every possible ranking, every element x of 2

will be first in at least one of these rankings, this completes the proof. 0
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D.2 Proofs of Section

To proof Proposition [3.13] we first state a short Lemma allowing us to emphasize the mecha-

nism behind the proof of the latter proposition.

Lemma D.1. Let (F1,F,),(G1,G>) be two pairs of sets such that F; C F», G| C G, G| € F»
and G1 N Fy # 0. Let also g, g be two possibility distributions such that the corresponding
random sets are defined by mass assignments mp(F) = mg(Gy) = A, mp(F) = mg(Gy) =
1 — A. Then, the lower probability of the non-empty credal set & = P, N Py, is not 2 —

monotone.

Note that in the above lemma, [1 — 7rg, 7] is a not a cloud, since the inequality 7+ 7p > 1
does not hold, even if by construction, & = 5. N Py is not empty. Non-emptiness of
P = Pr. N Py, comes from mp (x) = wg(x) = 1 for an element x € G| N F, thus min(7g, 7F)
is normalized (see Section[3.3.2.2)). Example[3.§|and Proposition shows that this situation
described in Lemma also occurs in non-comonotonic clouds.

Proof of Lemma|D.1} To prove Lemma[D.T] we first recall a useful result by Chateauneuf [21]]
concerning the intersection of credal sets induced by random sets. This result is then applied
to the possibility distributions defined in Lemma [D.I]to prove that the associated lower prob-
ability is not 2-monotone. The main idea is to exhibit two events such that 2-monotonicity is
not satisfied for them. Consider the set .# of matrices M of the form

Fi | my | mp2 (D.6)

F, | myy | myy

where

myy+myp =my+mp = A

may+myy =mp;+myp=1-—2

Zmij:l

Each such matrix is a normalized (i.e. such that m(@) = 0) joint mass distribution for the

random sets induced from possibility distributions 7y, s, viewed as marginal belief functions.
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Following Chateauneuf [21]], the lower probability P induced by the credal set &2 = ;. N
Pr.; has, for any event E C 27, value

P(E)=min ) mj (D.7)
Me‘///(F,ﬂGj)cE

Now consider the four events F1, Gy, F1 NGy, Fy UGy. Studying the relations between sets

and the constraints on the values m;;, we can see that

P(F)=A
P(G))=1-2
P(FiNGp)=0.

For F; NG, just consider the matrix mj, = A,my; = 1 — A. To show that the lower probability
is not even 2—monotone, it is enough to show that P(F; UG) < 1. To achieve this, consider

the following mass distribution

mpp =min(A,1—21)
mip = A —my
myp =1—A—my

mjppy = min(),, 1— )u)
it can be checked that the matrix corresponding to this distribution is in the set .#, and yields

P(FLUG)) =mp+my +myp)
=my+A—my+1—-24—my
=1-mp=1—min(A,1-2)
=max(1—-21,1) <1

since (F, NGy) € (F1UG)) (due to the fact that G; € F»). Then the inequality
P(FLUG)+P(FiNGy) <P(F)+P(Gy) (D.8)

holds, which ends the proof. [
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Proof of Proposition 3.13] To prove Proposition[3.13] we again use the result by Chateauneuf
[21]] as in the proof of Lemma[D.1] that is we exhibit a pair of events for which 2-monotonicity
fails. Chateauneuf results are clearly applicable to clouds, since possibility distributions are
equivalent to nested random sets. Consider a finite cloud described by the general Equation

(3.35) and the following matrix Q of weights g;;

C’}’IC - CY_]'C . C,},ch - C’}’MC

By | qu - qij - Qv - qiM

By | apn - Qi - Qi+ - 9jM
By | g+ - 4a+nj 0 di+nG+1) oo dir)M

By = | gm - qmj -+ qu(iv1) - qMM

Respectively call Bel| and Bel, the belief functions equivalent to the possibility distribu-
tions respectively generated by the collections of sets {By|i =0,...,M — 1} and {C),‘|i = 1,...,M}.
From Equation (3.17), m (By;) = %1 — ¥ for i = 0,...,m — 1, and my(Cy,) = ¥; — ¥;-1 for
Jj=1,...,M. As in the proof of Lemma|D.I] we consider every possible joint random set such

that m(@) = 0 built from the two marginal belief functions Bel, Bel,.

Following Chateauneuf, let 2 be the set of matrices Q s.t.

M
qi- = Z%'j:'yi_%fl
=1
M

q4.j= Y 4ij =Y~ Yj-1
i=1

If i, s.t. BT,Z,OC% =0 theng;; =0

and the lower probability of the credal set &, 5 on event E is such that

P(E) = mi .
_( ) gélalo} - ZC qij (D.9)
(ByCy,*)CE
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Now, by hypothesis, there are at least two overlapping sets By, Cy, i > j that are not in-
cluded in each other (i.e. ByNCy,  {By;,Cy,,0}). Let us consider the four events By;, Cy,, BN
Cy,“, By UCy, . Considering Equation (D.9), the matrix Q and the relations between sets, in-
clusions By; C ... C By, Cyp“C...CCy and, fori=0,....M,Cy, C By imply:

P(By)=1-v
B(Cyjc> =7
P(ByNCy,) =0

for the last result, just consider the mass distribution gz = -1 — % fork=1,... .M.

Next, consider event By, UCy,“ (which is different from X by hypothesis). Suppose all
masses are such that g = %1 — Y. except for masses (in boldface in the matrix) g;;, q(i11)(i+1)-
Then, Cy,° C Gy, By C By, Cy° 7 By by definition of a cloud and By N Cy,“ # @ by
hypothesis. Finally, using Lemma [D.T] consider the mass distribution

q(i+1)j; = min(Y41 — %, Y — Vj-1)
q(i+1)(i+1) = Yi+1 = Yi —4(i+1);

qjj =Y —Yi-1—4q(>i+1)j

qj(i+1) = Min(Yir1 — %, Y — ¥Yj-1.)

It always gives a matrix in the set 2. By considering every subset of By UCy,“, we thus get

the following inequality
P(BrUCy ) <¥j—1+1 =%+ max(Yie1 — ¥, ¥ — Vj—1)- (D.10)
And, similarly to what was found in Lemma [D.I] we get
P(B7UCy,“) +P(B7NCy,) < P(By) + P(Cy,°), (D.11)

which shows that the lower probability is not 2—monotone. 0

Proof of Proposition First, we know that the random set given in Proposition 3.14]is
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equivalent to

Ej=By\Cy, =By \Cy, (D.12)

m(E;) =y —¥j-1

Now, if we consider the matrix given in the proof of Proposition this random set comes
down, fori=1,...,M to assign masses g;; = ¥; — ¥;—1. Since this is a legal assignment, we are
sure that for all events E C 27, the belief function of this random set is such that Bel(E) >
P(E), where P is the lower probability induced by the cloud. The proof of Proposition m
shows that this inclusion is strict for clouds satisfying the latter proposition (since the lower

probability induced by such clouds is not 2-monotone). [

Proof of Proposition 3.16] We build a sequence of outer and inner approximations of the con-
tinuous random set that converge to the belief measure of the continuous random set, while
the corresponding clouds of which they are inner approximations themselves converge to the

uniformly continuous cloud.

First, consider a finite collection of equidistant levels o; s.t. 0 =0 < o < ... <0, =1
(aj—1 —a; =1/n¥i=1,...,n). Then, consider the following discrete non-comonotonic clouds

[8,,7,], [On, ) that are respectively outer and inner approximations of the cloud [r,§]: for

every value r in R, do the following transformation

71'(1’) = o witha € [OCl'_l, OCi] then En(l’) = o; and ﬁn(l’) =01
8(r) = & with & € [a;_1, ;] then §,,(r) = &j—1 and 8, (r) = &}

This construction is illustrated in Figure for the particular case when both 7 and § are

unimodal. In this particular case, fori =1,...,n

{xeR|z(x) > o} = [x(a;—1),y(cti—1)] with & € [04_1, 04]

{x e R|&(x) > o} = [u(0n),v(0y)] with & € [, o]

{reR[7(x) = a} = [x(a),y(o)|a € [, 0]
{X € ng(x) > OC} = [u(a,-,l),v(oc,-,l)]a S [aifl,oc,-]

Given the above transformations, #(x,,) C Z(rn) C #(&,), and lim,,_... Z(x,) = P (7)

and also limy, ... Z(T,) = Z(x). Similarly, Z(1-9,) C Z(1-0) C Z(1—0,), limy_e P (1 —
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Figure D.1: Inner and outer approximations of a non-comonotonic clouds

8,)=2(1—-8)andlim, ... Z(1—38,) = P(1—3§). Since the set of probabilities induced by
the cloud [x, 8] is & ()N .Z2(1—§), itis clear that the two credal sets & (x,)NZ?(1—9,,) and
P (T,) N P(1 —§,), are respectively inner and outer approximations of Z(x) N Z2(1 —§).
Moreover:

lim #(z,) NP (1-96,)= 2 (x)NP(1-9)

n—oo
and

lim 2(%,) NP2 (1-8,) = 2(r)NP(1-3).
n—oo
The random sets that are inner approximations (by proposition [3.14)) of the finite clouds
[6,,m,] and [3,,,| converge to the continuous random set defined by the Lebesgue measure

on the unit interval o € [0, 1] and the multimapping @ — E such that
Eq={reR|(n(r) > o)A (6(r) < a)}. (D.13)

In the limit, it follows that this continuous random set is an inner approximation of the contin-

uous cloud. O]
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D.3 Proofs of Section

Proof of Proposition[5.3] Note that the bpa of each (m,.# )m form the same vector of masses
(mi1,...,m;py), and to simplify notations, we will refer to masses only by their index, and
mj := m; ; for some i. To prove Proposition [5.3) we’re first going to express the value that
should assume, on elements x(;.y) of Z(;.y), a possibility distribution outer-approximating
(m, y)RSI,XU:N)- We’re going to express it in terms of masses mj, j =1,...,M, and then we

will show that this expression is equivalent to the distribution n&(l_N) given by Equation (5.2).

Let us express the value of the outer approximation in terms of masses m; ;. First, note that

focal sets of (m,.#) RST X1y, have the general form x¥ | E; ., with mass [TY_, m;;,.

For a given value j € [M], the focal sets of (m, ) g, X, that are included in x¥ | E; ;

but not in xi.\':lEiJ,l are, fork=1,...,N,

{Q Eijx @ Eijlii<ij}
iC[N] iC[[N]
| =k |=n—k
with @ standing for cartesian product, and |I| for the cardinality of /. Note that for a fixed
value k, there are (IZ ) different subset of [N] having cardinality k. Following Dubois and
Prade [89], we can define a mass function defined on focal sets that are cartesian products of
the type x| E; ; (i.e., aj-cuts of distributions ;) by

N
N
N
m*(xi:]Ei’j):Z (k)mk’] Z mjl...mjnfk
kzl j17~~~>jn—k<j

and, as all the vectors of weights are the same, we can reduce the polynomial }. ;- mj ...mj _,

(<N B = Y (];])mk,j (ZW)M

k=1 I<j

k<
and get

this mass function sums up to one, corresponds to a possibility distribution, and outer-approximates
(m, F) RSLX )" Now, let us consider (as done by Dubois and Prade [89]) an element x(;.y) €
(XN Eij)\ (¥, E; j—1) (recall that E; j C E; j_ for any i € [N] and j € {2,...,M}), that
is an element x(;.y) that is in the cartesian product of aj-cuts, but not @;_;-cuts. Note that
only these elements have to be considered, since the outer-approximation is consonant with

focal sets of the type xf.V: 1Ei j. Given the outer-approximating mass m* given above on sets
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xf.V:IE,-J, we have

/

T 1.n) (x(1:v)) = Zm*(xivz1Ek7i)

] (EWm(En) )- @

i>j \ k=1 I<i

the equality from the second to the third line being again obtained by reducing the polynomial

. Z .mjl...mjnfk.
J1esJn—k <l

Given our choice of x(;.y), we also have that min;—;  n(m(x;)) = @j. What we want
to check is that, if by applying Equation (3.2), we have min;—; _n(7/(x;)) = Oc;-? To an-

swer this, first remark that m;(x;) = o = Y, m;, and that Equation (5.2) can be rewritten
i>
(—=DN*TH(E m; — 1)N 4 1. Checking that min—; _ y(7/(x;)) = ot} then amounts to prove the
iz
following equality:

N N—k
1L (Z)m, (Zmz> =DV (Y m -1V +1 (D.14)

i>j \ k=1 I<i i>]

checking N = 1 is trivial, and N = 2 has been originally checked by Dubois and Prade [89].

We now prove its validity for any N. First, note that

(5= (o) £ (o (2) - () £ (e ()

and
N N—k N N
N k

Z (k)(ml) Zml = Zml — Zml

k=1 I<i 1<i I<i
if we now denote C; := ) m; the cumulation of masses my, ..., m;, the first member of equation

I<i

can be rewritten

N N
Y (Zm) - <Zmz> =) ((G)" = (Ci-1)") = (Cu)" — (Cj-1)"

i>j I<i I<i izj
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and, likewise, the second member can be rewritten

N+1 (Zml> _1 — N—H Zml +1= 1)N+1(—1)N<Cj,1)N+1

i>j i<j

= (=D C- )Y +1 = (Cu) = (Cj)"

since Cyy = 1 by definition. This finishes our proof. 0

D.4 Proofs of Section

Full Proof of Proposition using linear programming. We assume that functions u,, F,F
are differentiable in R. Then the following primal and dual optimization problems can be

written for computing the lower expectation of the function u,:

Primal problem:

Dual problem:
Max. w=co+ |7, (—c(t)F (1) +d (t)F () dr

Minimize v = [~ u, (x)p (x)dx
subject to
p(x)=>0,J2p(x)dx=1,

— [Lap (x)dx > —F (x),

J2wp (x)dx = F (x).

subject to
co+ Ji (=c(t) +d (1)) dr < uq(x),c0 €R,
c(x)>0,d(x)>0.

The proof of equations (6.13)-(6.14) and (6.17) then follows in three main steps:

1. We propose a feasible solution of the primal problem.

2. We then consider the feasible solution of the dual problem corresponding to the one

proposed for the primal problem.

3. We show that the two solutions coincide and, therefore, according to the basic duality

theorem of linear programming, these solutions are optimal ones.
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First, we consider the primal problem. Let ¢’ and a” be real values. We can check that the

function

dF (x) /dx, x<d
p(x) = 0, ad<x<d

dF (x) /dx, d’'<x
is a feasible solution to the primal problem if the following conditions are respected:
| pwac=1,

which, given the above solution, can be rewritten

a oo
/ dF + / dF =1,
oo a’
which is equivalent to the equality
F(d)=F(d"). (D.15)
We now interest ourselves in the dual problem. Let us first consider the sole constraint
c0+/ (—c (1) +d (1)) dt < g (x), (D.16)
X

which is the equivalent of the primal constraint p (x) > 0. We then consider the following

feasible solution to the dual problem as co = u, (<),

W(x), x<d 0, x<d'
c(x)= d(x)= :
0, x>d —u, (x), x>d"

The inequalities ¢ (x) > 0 and d (x) > 0 are valid provided we have the inequalities @’ <a <d”
(i.e. interval [d’,a"] encompasses maximum of u,). By integrating ¢ (x) and d (x), we get the

increasing function
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and the decreasing function

D(x) :/xwd(t)dt: U (@") —uq (), x<d”

U (¥) —ug (), x>d"
Let us rewrite condition as follows:
co+C(x)+D(x) <uy(x). (D.17)
If x < @, equation reads
o+ 1tq (x) —uq (d') +uq (d”) —ug (00) = ug (x).
Hence
ug (d") =u, (d'). (D.18)

If d <x<d”, wehave co+u,(a”) —u, (o) < h(x) which means that for all x € (a’,a") we
have h(a") (=u,(d')) < h(x) (i.e. u, (a”) and @’ are the minimal values of the function u, (x)
in interval x € (a’,d").) If x > d”, then we get the trivial equality co+ u, (x) — 1, (00) = u, (x).
The two proposed solutions are valid if and only if equation (D.I5)) is valid for the primal
problem and equation is valid for the dual problem. In order to do it, let us consider
the function

0 (o) =uq (F' (@) ~wa (F (@),

which, being a substraction of two continuous functions (by supposition), is continuous. Since

the function 1, has its maximum at point x = a, then, by taking & = F (a), we get the inequality

¢ (Y) =g (Ffl (E(a))> —u,(a) <0

and, by taking y = F (a), we get the inequality

¢ (1) =g (a) —ua (F' (F(a))) >0.

Consequently, there exists 7 in the interval (F (a),F (a)) such that ¢ (y) = 0 (since ¢ is con-
tinuous). Therefore, there exista' =F ' (y) and a” = F~' (y) (hence, equality lb holds)
such that equality u, (a’) = u, (a”) in (D.18)) is valid. We find the values of the objective
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functions

a' o )
N— /0 o (1) dF + / g (x) dF,
a//

wmax=co+/0°°(—c(t)F(r)+d(r)E(z))dr.

and, by using integration by parts together with equations (D.15)-(D.I8)), we can show that
equality Wmax = Vmin holds, with 7 the particular solution of equation (6.17)) for which opti-

mum is reached, as was to be proved. L]
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Appendix E

Remarks on Nested-Disjoint clouds

Some of the non-monotonic clouds violating conditions of Proposition [3.13|correspond to the
case where, for any pair of events {By,Cy,|i,j = 1,...,n}, we have By NCy, € {By,Cy,, 0},
with at least one pair By;,Cy, of non-empty sets such that By N Cy, = 0. In other words,
Vi, j, By and Cy, are either nested or disjoint. They can be called nested-disjoint clouds and

they are fully described by the existence of three indices j > k > [ s.t.

the sets {By|i < j}U{Cy|i <k} form a nested sequence (E.1)
CyNBy=0 Vi k>i>1 (E.2)
C,=0 Vi>kandCy £0 Vi<k (E.3)
ByNCy =ByorCy, i>k, f<lI. (E.4)

and these four statements induce the fact that (Cy, UBy;) C By, since we know that By, C
By—.Cy, N By; = 0 (Statement 1} and Cy NBy— € {C,,,,BW} (Statement ). Given
these facts, Cy, DBW = Cy,, otherwise we end up with a contradiction. The structure of
this particular case is summarized by Figure (where only the most important sets are

represented).

We have strong reasons to think that these particular clouds, although not generalized p-
boxes, can still be represented by random sets. A first reason is that we can associate to the
sets By,...,By; a possibility distribution (i.e. they are nested and are associated to lower
probability bounds), while the sets {By|i < j} U{Cy|i <k} form a nested sequence and can
thus be associated to a generalized p-box. The nested-disjoint clouds could then be seen as a
convex mixture of two random sets, thus giving again a random set. Secondly, this conjecture

is reinforced by the following simple example: Let us consider a cloud whose cuts are such
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that By, By, Cy, with By C By, Cy, C By and Cy, N By = 0, together with the two weights
%> > 1. This cloud is nested-disjoint, and the belief function such that m(By) = 1 — P,
m(By;) = > — 11 and m(Cy,©) = y; models the same credal set as this cloud (since the presence

of Cy, only induces a bound over its upper probability).

Finally, it should be noted that, in the case of continuous clouds, this subclass does not
exist, since when distribution 6 is such that sup,. - §(x) > 0 and 3, 7 are not comonotonic,
we can always exhibit two cuts that are overlapping.

Figure E.1: Structure of a nested-disjoint cloud



Appendix F

Generalized p-boxes on complete chain

In this appendix, we study the notion of generalized p-boxes defined on a totally ordered
space £  (i.e., a complete chain), and where 2~ is not necessarily finite. Such spaces are
quite general, since they encompass in one sweep all finite spaces on which a total order is
defined, as well as product spaces R?, provided these last ones are equipped with a total order
between elements. Note that, in order to be as general as possible, and to be coherent with
Walley’s [203] approach, we also consider finitely additive probabilities, which was not the

case previously.

The discussed results are part of an on-going work with Enrique Miranda and Matthias
Troffaes [150]. As we shall see, many of the results concerning generalized p-boxes on pre-
ordered finite spaces (see Section [3.2)) extends more or less straightforwardly to the case of
(not necessarily finite) totally ordered spaces, but some of them do not extend so easily. Most

proofs are omitted, and we limit ourselves to main notions and results.

As before, we denote by £ (.Z") the set of all bounded and real-valued functions f on 2.
Let E be the lower expectation of some credal set. Then, a lower expectation E defined on a
lattice of gambles % C .Z(Z") is called n-monotone when if for all p € [N], p < n, and all

fifi fpin

Yy e (fA/\ﬁ) >0. (F.1)

IC{1,....,p} i€l

With A the point-wise minimum. A lower expectation which is n-monotone for all n € [N] is

called completely monotone, and is the counterpart of co-monotone capacities.

303



304 Generalized p-boxes on complete chain

F.1 Characterization of generalized p-boxes

As said before, 2", < is here an order complete chain, and we take x < y as a brief notation for
x <yandx #y. So < is transitive, reflexive, and anti-symmetric, and for any two elements x,
y € Z we have either x < y, x =y, or x > y. For simplicity, we assume that 2" has a smallest

element 0 »- and a largest element 1 4.

We will use the same notation for an event A and its indicator function 1(4) . This means

that, in the following, E(A) will denote the lower expectation of 14 .

F.1.1 Definition

With the term distribution function, we shall refer to any function F : 2~ — [0, 1] which is non-
decreasing (with respect to <) and satisfies moreover F (1) = 1. F(x) provides information
about the cumulative probability on the interval [04-,x]. Note that we need not to impose
F(042) = 0. Also note that distribution functions are not assumed to be right-continuous.
Given a distribution F on 2" and a value x € 2", we note F(x") the right-limit F(x") =
inf{F(y),y > x} and F(x~) the left-limit F(x~) = sup{F(y),y < x}[}

Definition F.1. A generalized probability box, or generalized p-box, is a pair [F,F| of dis-
tribution functions from 2" to [0, 1], satisfying F(12-) =F(lg)=1and F<F. If Z isa
closed interval on R, then we call the pair [F, F] a p-box.

Similarly to its definition on other spaces, a generalized p-box is interpreted as lower and

upper probabilities P on the set of events

A ={[0g,x]lxe Z}U{(y12]lye 27}

Py

7([02°,x]) := E(x) and Py (0, 1.2]) = 1 = F (). (F.2)

for classical p-boxes, it was already mentioned by Walley [203, Section 4.6.6] and proved
by Troffaes [193, p. 93, Thm. 3.59] that B[Eﬂ is a coherent lower probability. The proof

extends easily to the present case, and thus P is a coherent lower probability on 2", and

10r, equivalently, F(x*) = limy—x(F (x)) and F (x~) = limy—x(F (x))
y>x y<x
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corresponds to the lower envelope of a credal set ’@[E,F]’ which is here the set of all finitely

additive probabilities satisfying constraints (F:2).

Given a generalized p-box, we can consider the set of distribution functions that lie be-

tween F and F,
®(F.F)={F|F <F<F}.

We can easily express the lower expectation E F.F) in terms of ®(F,F): E F.F| is the lower

envelope of the lower expectations of the cdfs F that lie between F and F':

E[Ef} (f) = Fegg,ﬁ) Er(f) (E.3)

for all functions f on Z". A similar result for p-boxes in the unit interval can be found in [203,
Section 4.6.6].

We now study and characterize this lower expectation E F.F) In order to do so, we will
first study it on a restricted and useful set .7# of indicator functions, that is the field of events

generated by %, and will then extend the results to any kind of event and then to any function

in 2.

F.1.2 The Field o7

The field of events J# generated by the domain % of p-boxes corresponds to events of the
type

[0 ,x1] U (x2,x3] U+ - U (X2, X25+1]

for x; <xp <x3 < - <xppy1 in Z (if n is 0 we simply take this expression to be [02-,x1])
and

(x2,x3] U+ - U (X20, %20 +1]

for x; < x3 < -+ <x2,41 in 2. Clearly, these events form a field: the union and intersection
of any two events in 77 is again in ¢, and the complement of any event in .77 also is again
in J7.
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In the case of a precise cdf FEI, Pr has a unique extension to a probability charge on J7.

Proposition F.1. E . restricted to 7 is a probability charge. Moreover, for any A € 7 which
contains 0 g, that is A = [0 97,x1] U (x2,x3] U+ - U (X2, X2+1), it holds that
n

Ep(A Z (x2k+1) — F (x2x)) (F4)

and for any A € 7 which does not contain 0 9, that is A = (xp,x3) U+ U (X2, X2n+1),

n

=Y (F(rar1) —F(xn))

k=1

This proposition can be extended to p-boxes in the following way

Proposition F.2. For any A € ¢ which contains 04, that is A = [0 ,x1] U (x2,x3] U+ U
(X210, X2n+1], it holds that

Epp(A)=F(x)+ zn: max{0, F (xae+1) — F(x2¢) } (F.5)
=1

and for any A € S which does not contain 0 g, that is A = (xp,x3) U+ U (X210, X20141),

Epp(A)= Y max{0, F (xok41) — F (x2) } (F.6)
=1

Among other things, this proposition shows that Remark [3.2] can be extended to the case
where .2 is an infinite totally ordered space. Next results show that p-boxes on totally ordered
spaces induce a completely monotone lower expectation (see Equation (F.I])), thus somewhat
extending Proposition [3.4] (since on finite spaces, there is a duality between co-monotonicity
and the fact of being a random set).

F.2 The lower expectation of p-boxes: A Choquet Integral

Representation

As shown in [149], the lower expectation E of a (precise) distribution function F on [0, 1] is

completely monotone. Generalizing this result to distribution functions on a totally ordered

2A precise cdf is such that F = F =: F
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space 2" is straightforward. However, given this, and Eq. (F.3), we cannot establish the
complete monotonicity of E. z, because the lower envelope of a set of completely monotone
lower expectation is not necessarily completely monotone. Next results indicate that such an

envelope is indeed completely monotone in the case of generalized p-boxes.

Let Bﬁf a denote the restriction of £ F.F) to ¢ (That is, to the lower probabilities induced

by [F,F] of events in J# ). Note that we have already derived closed form expressions for
B‘[}E 7 in Proposition

Theorem F.3. Bﬁf 7 is a completely monotone coherent lower probability.

And the inner measure B[ F, of B[ PR defined as

H o A
B[Ef}*(A) - CE;EC AB[LF] (), (E7)
coincides with E[EE on all events [203], Cor. 3.1.9, p. 127]. It allows us moreover to charac-

terise the lower expectation on all function on . .2, as is shown in the following theorem:

Theorem F.4. The lower expectation E F,F| of B[E.F} to all functions in £ X is given by the

Choquet integral (C) [ - dfif 7 and is completely monotone as well.

This theorem confirm that generalized p-boxes on totally ordered spaces continue to be
completely monotone, as they are for finite totally (pre-)ordered spaces. As the above expres-
sion is not very manageable, it is desirable to dispose of more manageable ones. Nevertheless,
the use of an equivalent random set is not possible anymore, since the duality between random
set representation and complete monotonicity do not longer forcefully hold on infinite spaces.
In order to give more manageable expressions, we will consider the upper limit topology on

Z which is the topology generated by the base
T:= {(xay] ZX,yG ‘%'ax<y}u{[03{,x] X e gbr}

As we have indicated (Proposition , Pp 1 18 a completely monotone (and therefore coher-
ent) lower probability on the field 7Z generated by 7. For any function f on 2, let us define

its lower oscillation as the gamble

osc(f)(d):= sup inf f(x). (F.8)
cet: decxeC

which comes down to consider the supremum of all lower semi-continuous functions domi-

nated by f (recall that a function g dominates another function f if f < g).
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Given a subset A of 2, it follows from Eq. that the lower oscillation of 1(4) is the
indicator function of the set

B:={deA:3Cetst.deCCA}= |J C=int(A)=o0sc(14)); (F9)
Cet: CCA

note that B is the union of the elements of the base 7 that are included in A, and is therefore

the topological interior of A in the upper limit topology. The following Lemma then follows:

Lemma F.1. For any subset A of 2", E(A) = E(B), where B =int(A) is given by Eq. (E.9).

What this result tells us is that the natural extension of a generalized p-box is characterised
by its restriction to lower semi-continuous gambles (and, in the case of events, to the restriction

to open sets). It allows us to rewrite the Choquet integral of Theorem [F.4] as

supasc(f)

E(f) = infosc(f)+ fosel) E({osc(f) = x})dx = E(osc(f)), (F.10)

an expression which is indeed more manageable.

Above results also allow us to determine the expression of the lower expectation E on the
subsets of .2~ which are open in the upper limit topology. Before that, we need to introduce
some preliminary notions. Let B be an open subset of 2", and let us show that B is a union of
pairwise disjoint open intervals of 2". Recall that by open we are referring here to the upper

limit topology, so the subinterval (a, b] is also open for any a,b in 2" such that a < b.

Definition F.2. [176] A set S is called full if [a,b] C S for any a < b in S. Given a set B and
an element x of B, the full component C(x,B) of x in B is the largest full set S which satisfies
xeSCB.

The full components {C(x,A): x € A} of aset A C .2 form a partition of A [176] 4.4(a)].
This partition has a countable number of elements in the particular case where 2~ = [0, 1], but
not necessarily in general (since, contrary to the case where 2 is the real line, we can consider
the set (a,al). The following Lemma shows that if A is open, each of these full components is

an open interval.

Lemma F.2. Let B be a subset of 2. If B is open, so are its full components.

This allow us to state the following lemma, showing that the lower expectation E is additive

on full components.
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Lemma F.3. Let B be an arbitrary subset of 2, and let (B))).c be the full components of B.
Then E(UpeaB)) = Xaca E(By).

Note that this lemma extends to totally ordered spaces the part of Remark [3.2] stating that
the lower probability of disjoint unions of consecutive elements was the sum of the lower

probabilities of every such union.

All these results allow us to deduce that the lower expectation E is characterised by the
value it takes on the full components of the open sets. From Lemmal[F.2] these full components
are open intervals of .2", and are therefore of the form [0 4-,x], (x,y],[04,x) or (x,y), forx <y
in 2. It follows from Proposition [F.2| that E([04,x]) = F(x) and E((x,y]) = max{0,F (y) —
F(x)} forany y <xin 2". On the other hand, we deduce from Theorem|F.4|and Equation
that

E([02,x)) = F(x—) and E(x,y) = max{0,F (y—) — F (x)} (E.11)

forany x <yin 2 .

F.3 Approximating lower expectation by limits of p-boxes

Now that we have studied and characterized the lower expectation induced by a p-box on
totally ordered spaces, we give an expression allowing to approximate the lower expectation
by limits of discrete p-boxes. This approach is quite close to the one considered in chapter []
using linear programming for computing lower expectations of p-boxes defined on the real
line. Nevertheless, there are at least three important differences between the two approaches:
the space here is more general, we consider finitely additive probabilities, and no continuity
assumptions are made about functions f. Consider a p-box [F,F] on 2. Let (F,)n, (F,)n be

increasing and decreasing sequences of cdfs converging point-wise to F and F, respectively.

For ease of notation, denote by P, the lower probability associated with [F,F],, that is,
P, = E[;Ef A, and &, the induced credal set, and let E,, be the lower expectation corresponding
to &,. Since F,, < F and F, > F, it follows that ®(F,F) C ®(F,,F,) (or, equivalently,
‘@[Ef] C Z,, and Eq. implies that £,, < E. Moreover, the same argument implies that
E,<E,. foranyn e [N],solim,E, =sup,E, < E. The following proposition shows that

the converse holds too:

Proposition F.5. E(f) =1im, E,(f) for any gamble f.
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Next, we use this Proposition to establish an expression for the lower expectation of a
generalised p-box in terms of discrete generalized p-boxes. For any natural number n > 1, and
i €{2,...,n}, define the sets A7 := F! ([0,4]) A1 := F' (=1 47),Br:=F~'([0,1]) and

B! :=F ' ((=1,1]). Clearly, both {A”,...,A?} and {BY,...,B} are partitions of 2". Define
F, and F, by

i—1 .
— . = ifxeBl'andx# 14,
Fu(x)=1iifxc Al F,(x)={ " ’ #lo (F.12)
1 ifx=1y-

Lemma F.4. The following statements hold for all x € X"

(i) Foranyn € [N], F, and F,, are cdfs, F,(x) < F(x), and F (x) < F,(x).
(ii) lim, F,(x) = F(x) and lim, F ,(x) = F (x).
(iii) (Egn)n, (Fan)n are increasing and decreasing sequences of cdfs such that F (x) = lim,, F . (x)

and F (x) = lim, Fn(x).

If we can find a simple expression for the lower expectations induced by P,, for our partic-

ular choice of F, and F,, then we also have a simple expression for E F.F| via Proposition

To derive such a simple expression, we consider G, ..., G, and Gy, ..., G, defined by
1 ifF (x)>1 _ 1 ifF,(x)>4
0 otherwise 0 otherwise

and the following proposition holds

Proposition F.6. For eachn € [N], E, = ;Y11 Eg g,

Hence, all we need to characterise the lower expectation induced by [F, F], is to determine
the lower expectation induced by a degenerate p-box, i.e. one where the lower and upper cdfs
only assume the values 0 and 1. Note that a degenerate p-box (G,G) is uniquely determined
by

={xe2:G(x)<Gx)} ={x€ Z:G(x)=0and G(x) =1}.

as G(x) = G(x) = 0 on the left of this interval, and G(x) = G(x) = 1 on the right of it. The
following proposition characterize the lower expectation E; ¢ induced by such degenerate

p-boxes:
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Proposition F.7. Let (G,G) be a degenerate p-box, and f € L (Z). If 09 ¢ I

(i) If Iigg) = (a,b) then E 5(f) = infre (4 p) f(2).
(ii) IfI(QE) = (a, D] then EQE<f) = hmyib infze(a,y] f(2).
(lll) lf](gé) = [a,b) then EQ,E(f) = hmxia infze(x7b]f(Z).

(iv) If I g5 = la,b] then Eg 5(f) = limxsalimyibinfze(x’y}f(z).

On the other hand, if 0 9~ € I(Q G then

(a) If IG5 = [02,b) then E; 5(f) = infcpo,, 4] f(2)-

(b) lf](g76) = [03{,[7] then EQ,E(f) = hmyi)b lnfze[()f’y} f(Z)

Concluding, if we consider now the lower expectattion E}, of (Fou,Fon) as defined in
Eq. (F12), it follows from Proposition [F.5] and Lemma [F.4| that (E’), is an increasing se-

quence of functionals that converges point-wise to the lower expectation E of [F,F|. By
Proposition E!, can be calculated as a convex combination of natural extensions of degen-

erate p-boxes, whose expressions follow from Proposition |F.7

We thus end up with expressions allowing to compute the lower expectation of any gen-
eralized p-box defined on totally ordered spaces as a combination of lower expectations of
degenerate generalized p-boxes, this last lower expectations being easier to compute. Among
other things, these results also show that extending results found on finite spaces is far from

being always trivial, not to say impossible, as show the next section.

F.4 Relating random sets with p-boxes on the unit interval

In the case of generalized p-boxes defined on finite (pre-)ordered spaces, Proposition [3.4] in-
dicates that they are equivalent to special kinds of random sets. This extends relatoins already

hinted by Ferson et al. [104] for p-boxes defined on the discretized real line.

Here, we study the extensions of such results to p-boxes defined on the (continuous) unit
interval [0, 1] on the real. Note that, up to a transformation, this is equivalent to study p-boxes
defined on any closed interval of the real line. Relating random sets to such p-boxes is easier

than relating random sets to generalized p-boxes defined on a totally ordered space .2, due
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to some properties: for instance, the number of full components of any open set B is always
countable (which is not the case on 2, see Definition ; and, using the Borel o-field on
[0, 1], we can establish a link between these p-boxes and random sets, while considering fields
of measurable sets on 2~ would require many mathematical subtleties not forcefully desirable

for a first study.

Coherently with previous notations, we denote by -£(]0, 1]) the set of bounded real-valued

functions on [0,1]. Given F and F, let us define their pseudo-inverses by

for all @ € [0,1]. These are non-decreasing maps from [0, 1] to [0,1]. Because F < F, it
follows that L < U. Let I": [0,1] — ([0, 1]) be the multi-valued mapping given by I'(a) =
[L(a),U(a)], with [L(),U()] a closed interval whose lowest and highest elements are re-
spectively L(a) and U(a). Define, for each a € [0, 1], the lower prevision Q  on Z([0,1]) as

follows:

Q,(f) =inf{f(x)lx e T(a)};

ie., @ is the lower expectation relative to J, the credal sets modeling ignorance on the set
I'(er). Any such lower expectation is coherent and completely monotone, as was shown in

[51, Theorem 10]. For any function f, we define the lower expectation Q[F 7 on f by

1
Oy pf)= /0 Q,(f)da.

which is a Lebesgue inner integral. Q[F a is a coherent lower expectation, induced by the
random set defined by I'. Now, the question we want to investigate in this section is to which
extend the random set defined by I is related to the p-box [F, F], that is what are the relation-

ships between the lower expectations g[ o and E.

) ]

Our results show that, in general, lower expectations Q[ P and E do not coincide, conse-
quently Proposition [3.4] do not in general fully extend to more general cases, and there is no
longer one-to-one correspondence between p-boxes and specific random sets. However, we
will show that the relation between p-boxes and random sets continue to hold for particular

cases of practical interest.
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F.4.1 Lower expectation on general functions

Let us first introduce some notations. Given a distribution function F, let £ be the mapping
givenby F(x) = F(x*) =inf{F(y) :y > x} forany x € [0,1),F (1) = 1. In other words, F (x) is
the right-continuous approximation of F'. Note that the functionals L, U defined above do not

change if we replace F, F by their right-continuous approximations F, I%, and as a consequence
Q; #(f) = Qp #(f) for any function f in ([0, 1]).

For any precise p-box described by a distribution function F', we will denote Q. and, for

any o € [0,1], Qa’ - the particular lower expectations

Q7 and Q,, induced by F. Similarly,
we will denote Lr and Ufr the mappings L and U induced by F, and I'r the associated multi-

valued mapping.

Our next proposition shows that the lower expectations Q[F 7 (f) and P 7 (f) do not

coincide on all functions:

Proposition E.8. The lower previsions Q[ and }—)[Ef] coincide on the class &~ of events if

- F,F]
and only if F and F are right-continuous.

Proof. First consider a precise p-box F. Given the definition of lower expectations Q,. and

Qa,F’

QmF([O,X]) =l&eUr(a)<x&e F(y)>aVy>x;

from this, we can deduce that [0, F(x™)) C {a: Q , .([0,x]) = 1} C [0,F (x™)], whence Q,.([0,x]) =
F(x") (whereas Pr([0,x]) = F(x)). Similarly,

Qa’F((x, ))=1&Lp(a)>x<Jy>xst F(y) <a,

whence (F(x"),1] C {a: Q. ((x,1]) = 1} C [F(x"),1] and consequently Q,.((x,1]) =1~
F(x") (whereas Pp((x,1]) = 1 — F(x)). We deduce from this that the coherent lower expecta-
tion Q. coincides with Py on ¢ if and only if F is right-continuous. An equivalent reasoning

can be separately used on F and F when the p-box is not reduced to a precise one. [

This show that Q[F 7 and B[ FF] do not coincide in general, and thus that the two models
are not equivalent. The next example show that this is still true even if we consider only

right-continuous distribution functions F.

Example F.1. Let us consider the distribution function F on [0, 1] given by F(x) = x for all

x, and let A be the set of the irrational numbers on [0,1]. It follows from the definition of
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Lp and Up that Lp(a) = Ur(a) = a for all « in [0,1], whence I'(a) = {a} for all o and

consequently O (A) =I4 (). Hence, Q[ (A) = folAda* =1

F.F|
On the other hand, it follows from Theorem[F.4|that Ex(A) = sup{Pr(C) : C CA,C € #}.

But since the only element of .77 which is included in A is the empty set, we deduce that
Ep(A)=0. ¢

F.4.2 Lower expectation on continuous functions

We now proceed to demonstrate that the lower expectation given by our random set expression
coincide with £ when the function f is continuous. For this, we shall first state that any (pre-
cise) distribution function has a unique expectation when considering continuous functions.
A similar result in the case of distribution functions on the unit interval was established in
[149, Section 3.3] (where it is also shown that, when considering non-continuous functions,
the lower and upper expectations induced by a precise distribution function do not forcefully
coincide).

Let f be a continuous function on [0, 1], i.e., a function such that f(d~) = f(d) = f(d™)
for any d € [0,1]. Let on the other hand F be a cdf, and let E be the dual upper expectation of
E, given by E(f) = —E(—f) for all functions f. Then E is the upper envelope of the set of
expectations given F to all functions, and E(f) = E(f) if and only if expectation of F to f is
unique. We have the following proposition:

Proposition F.9. Let F be a precise distribution function and let f be a continuous gamble.
Then E(f) = E(f).

Using this Proposition, we are going to prove that Q[F 7

gambles. We will first relate the functional Q[ FF to the functional that we can define for each

of the distribution functions F that belong to ®(F,F). Let F be such a distribution function,

coincides with £ on continuous

we then have the two following lemmas:

Lemma E5. O (f) = infreqr 7 Qa’F(f)for any a € [0,1] and any f € £(]0,1)).

Lemma F.6. Let F be the right-continuous approximation of F. Their expectations to contin-
uous functions f in Z[0,1] coincide, that is Er(f) = Ez(f) for any continuous functions f
in Z10,1].

These two lemmas together allow us to state the following theorem:
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Theorem F.10. For any continuous function f on [0,1], E(f) = Q. #(f)-

Proof. For any continuous function f,

E(f)= inf Ep(f)= inf Ep(f)= inf Q(f)
FEQ(EF) FEQ(F.F) FEQ(EF)

where the second equality follows from Lemma [F.6| and the third from the fact that O is the

expectation induced by P (from Proposition [F.8)), which is unique for continuous functions
(Proposition . Since Q. =(f) = Q. 7(f) for any function f on [0, 1],

1
inf Qﬁ(f) = Feél(léf)QF(f) = Feér(l;f) 0 Qa,F(f)da

Feg(F.F)
1 1
> inf da = / do=0,.=(f),
= pE Oy p(da= |0, (f)da= 0y £(f)
where the one but last equality follows from Lemma Hence, E(f) > Q. #(f) for any

continuous function f.

By Proposition QO 7 1s an extension of P = to events in 2, and therefore dominates

E;f on all functions. But Lemma implies that

Epp(f)= inf Ep(f)= inf Ez(f)= inf_ Ep(f)=E;;(f)

=EF Fe¢(F,F) Fe¢(FF) Fe¢(F.F) -

for any continuous function f. Here, the third equality follows from the fact that given F €
¢(F,F), there exists some F’ € ¢(F,F) such that F = F’, which implies that Ep = E» = E 5,
on continuous functions. We deduce that

EF F(f) = E;f(f) < Q;f(f) = Qﬁf(f)

L

for any continuous function f, and consequently we have the equality. 0

Consequently, we can safely use the random set induced by I" to compute lower expecta-
tions induced by [F, F] on continuous functions. Recall that Example indicates that this
equality between Q[EF] and E does not extend in general to all gambles. Nevertheless, the
case where expectations have to be computed for continuous functions is general enough to

be of practical interest.
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F.5 Conclusions

In this appendix, we have mainly explored an extension of generalized p-boxes presented in
Section [3.2] that is the case where generalized p-boxes are defined on totally ordered spaces
that are no longer necessarily finite. This setting encompass in one sweep both generalized
p-boxes on such spaces, p-boxes defined on the real line and on product spaces of the real line

(provided elements are totally ordered).

We have shown that many of the results from Section [3.2] but not all, could be extended to

this more general case, however not without introducing many mathematical subtleties.

In particular, generalized p-boxes on totally ordered spaces remain completely monotone,
and this allows to give a closed and manageable form of the lower expectation induced by
such a p-box in term of a Choquet integral. We have also shown that the correspondence with
random sets do not hold anymore in general, thus demonstrating that one has to be cautious
when extending results to more general cases. However, the correspondence still holds when

computing lower expectations of continuous functions.

Other interesting results are those showing that a generalized p-box on totally ordered
spaces is totally characterized by the values it takes on the open sets of the upper-limit topol-
ogy, and that lower expectations induced by a generalized p-box can be approximated by limits

of degenerate p-boxes.

There are still a few open problems and future lines of research steaming from this study;
one would be the study, for generalized p-boxes defined on totally ordered spaces, of the prop-
erties we have established in Section[F:4] A number of complications arise in that case because
of the topological structure within 2Z°. A more general open problem would be the connec-
tion of generalized p-boxes with other uncertainty models, like clouds. In particular, they
could be useful model when linguistic assessments are both positive and negative assessments
(see [45]). A first step, which perhaps would not be too difficult to do, would be to extend our
results to completely (pre-)ordered spaces, that is to drop the property of asymmetry on the

relation on 2.



Appendix G

(Ir)relevance statements, structural

judgments and event trees

In Section we studied how the notion of forward irrelevance could be related to the
notion of independence in event-trees. We saw that, for particular event-trees (i.e., standard

ones) the two notions were equivalent.

As discussed in Section [5.2.4] forward irrelevance statements are likely to be the most
useful and sensible type of independence to use in a number of situations, particularly those
involving uncertain processes. However, other statements of independence, or even of struc-
tural properties of the uncertainty about variables, are likely to be more useful in some other

situations. This is why we now briefly discuss two related matters:

e How some results relating forward irrelevance with other notions of independence,

namely strong and repetition independence, translate in event trees.

e How the symmetric notion of epistemic independence, discussed by Walley [203, Ch.9]

could be set into event trees as well.

G.1 Forward irrelevance, strong independence and repeti-

tion independence

Recall that we consider variables Xi,...,Xy assuming values on 27,..., 2y, and that vari-

ables X} are indexed following a "time" index k (i.e., they form a process), that is, the value of
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X} is always known before.

By using the marginal extension [148], it is possible to build a joint model &(;.y) by
combining local credal sets Py, = {P(:[x(11))} defined on 2|, and for allk =0,...,N —
1, X(1.6) € Z(1:x), With some abuse of notations for x(.g), meaning that nothing has been
observed yet. These credal sets are equivalent to local uncertainty models concerning the value
of Xi+1, knowing that X(1.5) = x(1.1). A statement of forward irrelevance allow to reduce the
number of local credal sets to assess, since it comes down to consider that @x( 1 = P11, for
any x(1.) € £(1:1) and forallk=0,...,N — 1. In other words, our local predictive model about
the value of X; do not depend of values of variables X(;.1). In the corresponding standard
event tree, this means that our local models f@xazk) attached to situation x1.;) do not depend

on the situation we have reached in the tree.

Since we have equivalence between independence in standard event trees and forward
irrelevance of variables X, ..., Xy, we can use the results relating forward irrelevance to strong

and repetition independence [50] to discuss these two notions inside standard event trees.

First, strong independence between marginal credal sets 7, ..., &y can be obtained by
choosing, foreach k= 1,...,N — 1 the same probability P(-|x;.x)) in F for all x5y in Z(1.4),
that is by assuming, in addition to forward irrelevance, a functional dependence between the

sets &2

X(1:k)
lead to tighter results.

The following example shows that this added constraints on credal sets &7, indeed

Example G.1. Again, we illustrate the concept of strong independence with an event-tree
describing two successive flipping of coins. We consider two successive flips of different
coins. The first coin is known to be fair, and #| reduces to probability P(h) =1/2,P(t) =1/2,
while nothing is known about the second coin, which could have two identical sides, and &7,
is such that P(h) € [0,1]. Now, consider the function such that f(z,h) = f(h,t) = 0.6 and
f(t,t) = f(h,h) = —0.4. On the tree is also indicated the lower expectations of this function
obtained by assuming strong independence between the two flips.

929
T~
p2a(t,7)=1/2 p22(h,1)=1/2
t7{?/ E("”)(f):()l \h,?
— ~ — ~.
plf.’(t?[)e[OJ] pl,?(tvh)g[()?” ph,?(h’l)e[OJ] ph,?(hvh)e[071]
it Ep(f)=-04 th Wt~ Eu(f)=06 ik
E(tt) (f) =-04 E(th) (f) =0.6 E(ht) (f) =0.6 E(hh) (f) =04

The fact that strong independence lead to a tighter uncertainty is clearly visible in the
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example, since E () (f) = 0.1, while simple forward irrelevance would have lead to E (o) (f) =

—0.4. This is due to the fact that strong independence enforce py, 2(h,t) = p; 2(t,1).

This also shows that assuming strong independence generally imply that backward recur-
sion and local computations cannot be used any longer to computer lower expectations. This
means that computing with an assumption of strong independence becomes more complex
than computing with an assumption of epistemic independence, since one has to consider

lower expectations generated by every possible combinations of extreme points in credal sets
P IEEEEE & N-

Second, when 21 =...= 2y =% and &) =... = Py = &, repetition independence
is obtained by choosing the same probability P(-) and P(:|x(;,)) in & for all x(1.4) in Z(; )
and all 1 <k <N —1. As for strong independence, local computations cannot be used to
computing lower expectations with an assumption of repetition independence, nevertheless an
assumption of repetition independence requires less computational effort than one of strong

independence, since one only has to consider one computation per extreme points of &.

G.2 Towards a characterization of epistemic independence

in event-trees

We now examine, on the simple example of two successive coin flipping, how notions of
epistemic independence, the symmetric counterpart of epistemic irrelevance, could be related

to specific event-trees. Note that materials presented in this section are still very preliminary.

Let us consider two variables X, X, assuming values in 27, .25. Given a joint uncertainty
model on these two variables, an assessment of epistemic independence can be translated by
the fact that E(fi|x2) = E(f1) and E(f>2|x1) = E(f>) for any x; € 2] and x, € 23, with f; an

Zi-measurable function, and E the lower expectations associated to situations in an event-tree.

Now, to make sense of the notion of epistemic independence in event trees, we need to
build trees such that the values of X1, X can be observed in any possible ordering. In our small
example, we will also need to use the notion of weak independence [179, Chapter 8]: two vari-
ables in a tree are weakly independent if there is no move that influences them botl*ﬂ 1.e., if for
any situation s outside the initial one, we have either E(f1) = E, (5 (f1) or E;(f2) = E,y(5)(12)
for any functions fi, f>, and with m(s) the mother of s, that is the situation immediately pre-

IBut different moves originating from one situation can influence different variables
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ceding s.

Example G.2. Let us consider the following event tree, describing two successive flips of two
coins, and allowing for the two flips to be observed in any possible ordering. Labels are
again explicit enough. Moves for which both variables X, X, could be influenced have been
numbered (other moves can only influence one variable, since the value of the other is already

known). Also pictured are the cuts where the value of a particular variable is revealed.

The following table summarizes under which conditions variables X; (first flip), X, (second
flip) are influenced by each move (Moves 1, 2, 3, 4 being the only ones for which both variables

can be influenced):

Infl. 1 2 3 4
Xi Always Always Eq (fi) #E(fi) Esn(fi) #E(S)
Xo | Eo(f2) ZE(f2) Eqp(f2) #E(f2) Always Always

Note that X;,X, are weakly independent in the above tree if and only if inequalities of the
above table turn into equalities. It can be seen that this is equivalent to epistemic independence

between X1, X>

The above example suggest that, when considering variables X1, ..., Xy assuming values in
21,..., ZN, epistemic independence could be related to weak independence in an event tree
where d(J) = Z(1.n)> and where, at each step of the tree the value of a variable X; is known,
and the daughter of a situation consist of the cartesian products of all spaces of variables whose

value is not yet known.
However, using such trees to characterize epistemic independence do not look very ap-

pealing at first sight, for various reasons:

e It is not obvious which form the immediate predictive model &1, bearing on Z/;.y),

should have in order to ensure epistemic independence of X1, ..., Xy.
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e As emphasized by Shafer [179], the notion of weak independence is rather unstable,

compared to the stronger notion of independence.

e Built trees do not appear very "intuitive" at first sight, and poorly related to the standard

trees used to characterize forward irrelevance.

However, Shafer [179] also mentions that it is possible to transform a tree so that weak
independence between two variables become classical independence (i.e., not influenced by
the same situation). It seems possible to do something likewise in our case, and this would

lead to the following tree:
-

t,t

That is, a tree where we have introduced an additional variable X, that we will call
the sorting variable, and which would determine in which order are revealed the variables
X1,...,Xn. Such a variable do not increase the final dimension of the final space, but would
allow to relate more easily epistemic independence to local predictive models. Note that each
subtree after the sorting variable would be equivalent to a standard tree where the order of ob-
servation is determined by the value of X. This suggests that epistemic independence would

be equivalent to forward irrelevance in each of these sub-trees.
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ABSTRACT

It often happens that the value of some parameters or variables of a system are imperfectly
known, either because of the variability of the modelled phenomena, or because the avail-
able information is imprecise or incomplete. Classical probability theory is usually used to
treat these uncertainties. However, recent years have witnessed the appearance of arguments
pointing to the conclusion that classical probabilities are inadequate to handle imprecise or
incomplete information. Other frameworks have thus been proposed to address this problem:
the three main are probability sets, random sets and possibility theory. There are many open
questions concerning uncertainty treatment within these frameworks. More precisely, it is
necessary to build bridges between these three frameworks to advance toward a unified han-
dling of uncertainty. Also, there is a need of practical methods to treat information, as using
these framerowks can be computationally costly. In this work, we propose some answers to
these two needs for a set of commonly encountered problems. In particular, we focus on the

problems of:

e Uncertainty representation
e Fusion and evluation of multiple source information
e Independence modelling

The aim being to give tools (both of theoretical and practical nature) to treat uncertainty. Some

tools are then applied to some problems related to nuclear safety issues.

KEYWORDS : Imprecise probabilities, belief functions, possibility theory, rep-
resentation, information fusion, nuclear safety, independence
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