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Nomenclature

Roman symbols
aI volumic interfacial area
Cβ crossing trajectories coe�cient
CD drag force coe�cient
CMa virtual mass force coe�cient
CL lift force coe�cient
dp droplet diameter
dh hydraulic diameter
Dt

12,ij turbulent dispersion tensor

Ek total energy of the phase k
Fr,i sum of interfacial forces
FD averaged drag force
FMa averaged virtual mass force
FL averaged lift force
gi gravitational acceleration constant
hk internal enthalpy of the phase k
hImk averaged enthalpy at the interface
Hk total enthalpy of the phase k
k1 turbulent kinetic energy of the vapor phase
kL1 turbulent kinetic energy of the vapor phase contained in the large eddies
kS1 turbulent kinetic energy of the vapor phase contained in the small eddies
k2 turbulent kinetic energy of the droplets phase
k12 vapor-droplets �uctuating velocity covariance
Kkin

2 coe�cient of eddy-di�usivity
ṁk mass �ux
Mk deferent forms of the averaged interfacial momentum transfer rate
M ′k
M ′′k
nki unit vector normal to the interface of the phase k
pk averaged pressure
p′k �uctuating pressure
pImk averaged pressure at the interface

PrT Prandtl turbulent number
qk
T turbulent heat �ux

Rep Reynolds particular number
Res shear Reynolds number
<2,ii Lagrangian auto correlation

Rij,k Reynolds stress tensor for the phase k
Sr non dimensional shear rate
t time
Tsat saturation temperature
Tk averaged temperature of the phase k
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uki averaged velocity of the phase k
u′ki �uctuating velocity
uImki averaged velocity at the interface
uσ averaged velocity of the mass �ux
vr relative velocity
Vd drift velocity
Vp particle volume
wi velocity of the interface
Wk power of the interface stresses
Z mass load

Greek symbols
αk volumetric fraction of phase k
δij Dirac distribution
εk turbulent dissipation rate of the phase k
ηr inverse of turbulent stokes number
µ1 dynamic molecular viscosity of the vapor
ν1 kinetic molecular viscosity of the vapor
νkin2 kinetic viscosity of the droplets
νT12 vapor-droplets turbulent viscosity
Πqk the averaged turbulent energy transfer

Π̃q2 the averaged turbulent energy gained by the droplets when they cross large eddies
Πw the averaged turbulent energy lost by the particles in the wake
χk the characteristic function of the phase k
σ interfacial surface tension
σk,ij the stress tensor of the phase k
ρk averaged density of the phase k
τij,k viscous stress tensor
τT1 turbulent time scale of the continuous phase turbulence
τp the characteristic time scale of the droplet
τF12 characteristic time scale of the momentum

transfer between the two phases
τ t12 time scale of the continuous phase turbulence

viewed by the droplets
Γk the averaged interfacial mass transfer rate
ξ2,ij the Lagrangian spectrum

Operators
<>2 statistical average over the dispersed phase
k average over the phase k
D
Dt the material derivative following the velocity of the undisturbed �uid
d
dt the material derivative following the velocity of a particle
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d
dt

the material derivative following the averaged velocity of the dispersed phase

Subscripts
1 vapor
2 liquid
r relative
i, j,m vector components

Superscripts
˜ noting the undisturbed characteristics of the vapor
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Chapter 1

General introduction

The two-phase �ows, gas-droplets or vapor-droplets, may occur in natural
and industrial situations. These �ows are subject of challenging research
in many industrial sectors such as production of electrical energy (steam
generators of power plants, condensers, heat exchangers), the petroleum in-
dustry (extraction and transport of petroleum products), gasoline and air
combustion in an automobile engine etc. Here we will focus our attention
on vapor-droplet �ow but most of the presented methods are applicable to
gas-solid and gas-liquid �ows as well.
The estimation of global characteristics of the heat transfer in a unit geome-
try, as the sub channel1 in nuclear applications and combustion chamber in
the automobile engine, is of high interest for many industrial applications.
But actually an accurate estimation depends on the local spatial �ow struc-
tures inside the unit geometry. For example, the estimation of the local
spatial distribution of the droplets through the unit geometry is essential for
a better understanding of the main phenomena occurring, as the combustion
or the heat transfer. Then the development of computer calculation tools
to simulate this type of �ow and complex geometries is helpful. In partic-
ular, the improvement of local physical modeling of turbulent two-phase is
of great relevance. The coexistence of the two-phase phenomena and the
turbulent structures, makes the simulation of these local characteristics very
complicated. Since the direct numerical simulation methods are too expen-
sive for the industrial applications, the simulation of averaged values over
sub grids inside these geometries appears to be the optimum solution. On
the contrary, the simulation of averaged values requires high modeling e�ort
to reproduce the local physics with a satisfying accuracy. The simulation
of the spatial distribution of droplets, models are required to reproduce the
macroscopic scale phenomena lost during the averaging process. For exam-
ple, the interaction between the vapor and the droplet at the level of the
interface as the friction and interfacial forces and the �uctuation of the ve-

1The �ow area between the fuel bars in the core of a nuclear reactor
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locities of the vapor and the droplets, are the main phenomena that should
be modeled.
In the present study, we consider a speci�c physical problem in the context
of nuclear safety. Actually, the vapor-droplet �ows play a major role in the
heat transfer problematic for the study of the accidental events in the nuclear
reactors.

1.1 Context of the study

One of the reference accident that may occur in PWR (Pressurized Water
Reactor) is LOCA (Loss of Coolant Accident). The LOCA is studied to de-
sign some emergency systems implemented in the basic nuclear installations.
The LOCA corresponds to the break of a pipe in the primary loop. This
accident is associated with a loss of pressure which leads to the vaporization
of the water in the reactor core and then to the rise of the temperature of
the assemblies. In the following sequence of events of the LOCA, the backup
systems inject liquid water into the core in order to cool the fuel assemblies,
this is called the re�ooding phase. Although the reactor by this time is sub-
critical so that little power is produced from �ssion, a large amount of decay
power exists and causes the fuel rod to have a temperature in the region
of 800 ◦C. Then the injected water rises up along the rods and evaporates
due to contact with the heated rods. This is followed by a violent evapora-
tion of water at the level of the interface between water and vapor, which
is called the quench front. The violent evaporation increases the vapor �ow
downstream of the quench front and causes the tear of water drops at the
front. These droplets have �rst an inertial departure then they will be en-
trained by the vapor. Going up in the �ow, these drops evaporate until they
disappear. Thus along an assembly during the re�ooding phase, the regime
of heat exchange between the �uid and the wall varies from bottom to top,
passing from purely convection water, to nucleate boiling, then vapor carry-
ing droplets and then vapor single phase. In this study, we focus on the area
of vapor-droplet �ow, where the cooling e�ectiveness of such a mixture is a
major concern. The droplets act as heat sinks for the vapor and control the
vapor temperature pro�le which, in turn, determines the wall heat transfer
rate.
For the thermal-hydraulic analysis in nuclear applications three main simu-
lation scales exists: The system scale, dedicated to the overall description of
the reactor circuits; the component scale, at which the reactor core is studied
using the 'porosity' concept and the CFD in open medium scale, which al-
lows one to go for a �ner description of the �ows and detect local phenomena.
The present work lays in the later category, where the simulation part of this
study deals with the adaptation of the CFD code Neptune_CFD (mainly
devoted to bubbly and separated-phase �ows) to the simulations of dispersed
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droplets two-phase �ow. Therefore, we focus our work on the droplets dis-
persed �ow inside a subchannel representing the �ow domain between four
rods. Figure 1.1 shows a representative �gure of the vapor-droplet turbulent
�ow, initiated at the level of the quench front,between two hot fuel rods in
a damaged PWR reactor core.
The mechanisms of heat transfer in such a dispersed �ow is illustrated

Figure 1.1: Representative �gure of the vapor-droplet turbulent �ow between
two hot fuel rods in a damaged PWR reactor core.

in �gure 1.2. These e�ects are distinguished by Andreani and Yadigaroglu
(1997) as follows:

• Convective heat transfer from wall to vapor
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• Convective heat transfer between vapor and droplets

• Direct contact wall-to-droplet heat transfer

• Radiative heat transfer from the wall to the droplets and the vapor

• Radiative heat transfer from the vapor to the droplets

• Transfer by droplets evaporation or vapor condensation

Figure 1.2: Representative �gure of the heat transfer mechanisms between a
hot wall and a vapor-droplet �ow

Each one of these mechanisms is a separate phenomenon that needs to be
modeled but it can be noticed that the distribution of the droplets is an
important factor that impacts the modeling of most of these mechanisms.
For example, the vapor-droplet convection depends on the distribution of
the droplets in the vapor while the radiation from the wall to the droplets
and the direct contact of the droplets with the wall depend directly on
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the distance separating between the droplet and the wall. Andreani and
Yadigaroglu (1997) noted that the droplets concentration and droplets
diameters are not uniformally distributed across the channel. Then, they
concluded that the 1-D models are not suitable in this case and even the 2-D
models, that consider an uniform droplets radial distribution (Webb and
Chen (1982)) are not suitable as well. The �rst model that combines the
2-D analysis of the vapor �eld with the radial migration of the droplets was
proposed by Kirillov et al. (1987). It takes into account the forces acting
on the droplets (drag, lift and virtual mass) Andreani and Yadigaroglu
(1997) proposed a Eulerian-Lagrangian 3-D model that treats in detail the
features of the droplets, vapor velocity and temperature �elds under typical
dispersed �eld �ow. Although this model de�nes most of the physical
phenomena that may occur, it uses the common closure models of these
phenomena without extending the research about the compatibility of these
models.
After many years of intense research into the re�ood process, high �delity
simulation of core re�ood remains elusive. Basic phenomena associated
with re�ood have been studied extensively with many separate e�ects and
integral experiments. Very basic analysis by researchers such as Andreani
and Yadigaroglu (1997) has also increased our understanding. However,
attempts to integrate this knowledge in the models, used by safety analysis
tools such as CATHARE (system scale tool), have still results with large
uncertainties and can not take into account many phenomena (ex: the
in�uence of the rod deformation). Typical shortcomings are noticed,
including poor predictions of vapor temperature downstream the quench
front.
Accurate prediction of droplets concentration is essential, since the void
fraction distribution a�ects the heat transfer rate in the reactor core.
The modeling of the droplets distribution is a composed problem since
it depends on several phenomena. The main phenomena that a�ect the
droplets distribution are the forces between the vapor and the droplets;
and the turbulence of the vapor and the droplets. The direct numerical
simulation (DNS) of these �ows is so expensive, due to the coexistence of
the two-phase and the turbulence phenomena. Therefore, subgrid models
should be used. They have to model accurately the e�ect of the turbulent
dispersion and of each force on the droplet distribution. Our general

objective is to ameliorate the modeling of the vapor-droplet �ow

(i.e. at CFD scale). Particularly the estimation of the radial

distribution of the droplets.

5



1.2 Process and plan of the study

The volume fraction distribution of the two phases depends on the size and
dispersion of the droplets in the �ow. The size of the droplets is controlled
by the rupture and coalescence mechanisms and the interfacial mass transfer
(evaporation/condensation). The distribution of the droplets is controlled
by the transfer of momentum between the two phases. Our study focuses
particularly on the latter point. We are restricted to �ows where the liquid
water �ows under the form of non-deformable spherical droplets that do not
interact with each other. Both phases are treated by a two-�uid approach
Euler-Euler.
In chapter 2, a description of two-phase �ow model is presented, using sepa-
rate mass, momentum, and energy equations for the two phases. These sepa-
rate balance equations are obtained in an averaging process starting from the
local instantaneous conservation equations of the individual phases. During
the averaging process, important information on local �ow processes are lost
and, consequently, additional correlations are needed in order to close the
system of equations. The terms that need closure models are then identi-
�ed, such as the terms of turbulence of the two phases and the terms of the
interfacial transfer of mass, momentum, and energy. Then the momentum
balance equation of the dispersed phase is derived via a statistical approach
starting from a Lagrangian point of view. This derivation is required for the
closure of the momentum interfacial transfer. Then we limit our interest on
the terms that impact the spatial distribution of the droplets in context of
our case of interest. A brief presentation of the di�erent forces allows to
understand the role of each force on the motion of the droplets. Conse-

quently, our objective becomes to identify the terms that are not

well modeled for the droplets �ow case.
In order to identify the terms that need a re�ned research, a parametric study
is proposed, in Chapter 3, to show the e�ect of the modeling of the various
terms speci�ed in chapter 2. We �rst present the calculation software and
the geometry of the study case with the choice of the mesh. A study case
with basic models is done and the results are presented. This test case helps
us to draw a general description of the droplets distribution, and to specify
the role of each term. After that we discuss brie�y the modeling of each term
regarding the basic models used in the test. At the end of this chapter

we specify the basic models which a�ect the radial distribution of

the droplets,which requires more research.
Chapter 4 discusses in details the models of turbulence of the both phases.
Two models of di�erent levels of numerical complexity and physical accuracy
are considered for each phase. For the continuous phase the choice between
an isotropic model k−ε and a non-isotropic model Rij−ε is studied, to check
if the modeling of the anisotropy of the vapor turbulence has an important
impact on the droplets distribution. For the droplets turbulence, two mod-
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els have been studied: the simple algebraic model called Tchen-Hinze (Tchen
(1947)) is compared with a more elaborated model called Q2Q12 (Simonin
(2000)). The results of di�erent combinations of these models are veri�ed
with the help of the experimental data realized in a similar case by Kulick
et al. (1994). Moreover the interfacial turbulence coupling between the two
phases is analyzed and the modi�cation of the modeling of this term in the
Q2Q12 model is proposed. The proposed modeling is then veri�ed based on
the experimental results of Kulick et al. (1994).
Due to its critical role in the prediction of the droplets distribution, the
modeling of the lift force is studied separately in chapter 5. A detailed bibli-
ographical study is presented about the classical analytical modelings of this
force (e.g. Auton (1987) and Sa�man (1965)). Then a parametric study is
presented about the compatibility of these models to the present case. Due
to recent DNS results achieved in this domain, as the results of Sugioka and
Komori (2006) and Zeng et al. (2009), we succeeded to propose two new
modelings. The �rst one is based on the model of Sa�man (1965) by extend-
ing the correction proposed by McLaughlin (1991) to cover a wide range of
Reynolds number and the second is a proposed numerical correlation that
�ts the results from DNS.
Back to the context of the study, chapter 6 is dedicated to check the impact
of the modeling proposed in this study on the thermal transfer through the
�ow. For this purpose, a series of simulations are achieved for a case with hot
walls. From the seven transfer mechanisms presented in �gure 1.2, only the
convection models are considered because the other models are still under
construction in parallel projects. The models are evaluated by quantifying
the heat extracted by �ow from the wall and results are presented.
Finally, a general conclusion and a perspectives will be drawn.
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Chapter 2

Governing equations for

two-phase �ow

2.1 Introduction

As described in the introduction, the simulation of the two-phase �ow vapor-
droplet, where vapor is considered as the continuous phase and droplets are
presented as dispersed inclusions, is required. A two-phase mixture can gen-
erally be divided into two purely monophasic regions, where physical quan-
tities obey the classical local balance equations, separated by interfaces in-
�nitely thin and massless. The simulation problem of this �ow is extremely
complex due to the coexistence of the local two-phase structures and the
physical quantities of the turbulent �ow. Detailed knowledge of local and
instantaneous characteristics of the two-phase turbulent �ow is inaccessible
due to the complexity of these structures. Therefore the numerical calcu-
lation of this type of �ows should pass through developed models, that use
simplifying hypotheses that permit to avoid the knowledge of the local and
instantaneous characteristics.
Several numerical approaches exist to simulate two phase �ows. The choice
between these approaches is usually a matter of balance between their phys-
ical accuracy and their numerical cost. In our case, Euler/Euler method
is chosen due to its light numerical e�ort. The Eulerian approach consists
in applying a statistical averaging on the variables and equations, in order
to de�ne average quantities that can be treated by the usual methods of
numerical analysis. In contrast to this simplicity in the treatment, the av-
eraged formulation is accompanied by a loss of information on turbulence
and interfacial exchanges and the appearance of new unknown terms. The
closure of these terms requires to develop mathematical expressions, what
we will call sub models. These sub models are responsible to reproduce the
physical e�ects lost in the averaging process. These physical e�ects are in
general, the turbulence of the two phases an the interfacial transfer of mass,
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momentum and energy. In our work we identify all these phenomena, but
we will focus our research on the models that have important impact on the
droplet's distribution inside the �ow domain.
In the following we justify our choice of Euler/Euler approach after a general
comparison between the di�erent numerical methods that can be proposed
for this kind of �ow. Then, the averaged equations of the two phases are
derived from instantaneous equations in a classical Eulerian approach. The
closure of the interfacial forces requires to know about the local instanta-
neous forces exerted by the vapor on a droplet. Therefore we present the
Lagrangian approach to derive the RANS (Reynolds Averaged Navier Stokes)
equations for the dispersed phase. Finally the two approaches are coupled
to close the interfacial momentum term.

2.2 Numerical methods

For single-phase �ow there are two di�erent approaches to describe a �uid
�ow:

• The �rst approach, Eulerian, provides variations of di�erent charac-
teristics of the �uid at each instant at any point in the domain. The
Eulerian variables are functions of the time and position and will form
characteristic �elds. In �gure 2.1, the physical quantity G is attached
to the point A with coordinates x, y, z. At instant t1 this physical
quantity is equal to that of particle P1 which passed in A at instant t1.
While at instant t2, this physical quantity is equal to that of particle
P2 which passed in A at instant t2.

Figure 2.1: Eulerian system
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• The second, Lagrangian approach, which follows each particle as it
moves through space with time. We focus on the trajectories of �uid
particles where each particle has its own velocity. The di�erent physical
quantities are then functions of time. The identi�cation is usually done
by the three coordinates of the positions occupied by the particles
initially at t0. In (�gure 2.2), the particle P whose coordinates are
x(t), y(t), z(t), is the one found at the point P0 whose coordinates are
x0 = x(t0), y0 = y(t0), z0 = z(t0) at the time t0. Then the physical
quantity G which is attached to the particle P is a function of time t
and x0, y0, z0.

Figure 2.2: Lagrangian system

In two-phase �ows, it is obvious to use the Eulerian approach for the con-
tinuous phase. In contrast, the two approaches are possible for the dis-
persed phase. The Lagrangian approach provides more accurate representa-
tion of the local dynamics of the particles. But this approach is expensive,
when the calculation of large number of particle trajectories is required. So
there are two approaches for the computation of dispersed two-phase �ows:
(1) Eulerian-Lagrangian, also known as particle-tracking, and (2) Eulerian-
Eulerian, also known as two-�uid. In the �rst approach, the continuous-
phase is solved using the Navier-Stokes equations, and the individual parti-
cles are tracked. In the second approach, the dispersed phase is described
by the averaged characteristics of the population de�ned as �elds. Their
evolution obeys balance equations, which are quite similar to the Reynolds
Averaged Navier-Stokes (RANS) equations of single-phase �ows, with some
extra coupling-terms.
Navier-Stokes equations can be solved numerically by three main methods:
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(1) Direct Numerical Simulations (DNS), in which Navier-Stokes equations
are solved directly and no averaging or modeling is applied. DNS needs
resolution for all the scales of the �ow structures (turbulence structures),
thus very dense grids are used in order to reach the smallest scale, where
turbulence dissipation occurs. DNS requires a huge amount of computer ca-
pacity. (2) Large Eddy Simulation (LES) where the main �ow �eld is solved
from the Navier-Stokes equations and the smallest eddies are modeled. This
method also depends on the grid density (or �lter width). This means that
when we use a denser grid in LES we approach direct numerical simulations.
The choice of the density of the grid in LES depends on the level of the
required accuracy. But this choice in two phase �ow becomes more di�cult
because it becomes dependent on the size of the turbulent structure and on
the size of the particles of the dispersed phase. Also large eddy simulation
requires a huge amount of computer capacity. (3) RANS equations where
the averaging process leads to the appearance of new terms that should be
modeled. RANS does not require high computational e�ort but it demands
modeling.
Eulerian-Lagrangian DNS/LES is a high cost computational method so it
is used mostly as a research tool, in order to improve the models used in
the RANS simulations. Also Eulerian-Lagrangian RANS can become too
costly due to the large number of particles that need to be tracked to reach
the minimum level of accuracy. The Eulerian-Eulerian approach is somehow
comparable to the RANS approach of single-phase �ows and the computa-
tional e�ort is quite similar to it. Industrial applications, as the concerned
context case, require practical calculation tool with low numerical cost and
an acceptable level of accuracy. Therefore this approach will be considered
here. The major inconvenience of the Eulerian-Eulerian approach is that
it requires more levels of modeling to reproduce the main phenomena lost
during the averaging process. The present study aims to adapt the closure
models to the case of vapor-droplet �ow.
The derivation of the system of averaged equations of the two phases can be
based on a Lagrangian or on an Eulerian point of view. The most popular
simple way is to start from an Eulerian point of view by averaging the sepa-
rate local instantaneous phase equations accounted for the interfacial jump
conditions. This method is compatible with the nature of the continuous
phase, but such an averaging approach is very restrictive for the dispersed
phase because particle sizes and particle distances have to be smaller than
the smallest length scale of the turbulence. This approach is not able to
model some important phenomena as the turbulence correction of the in-
terfacial forces and the derivation of the transport equations of the kinetic
energy of the particles.
The other approach is to start from a Lagrangian point of view in which
the mixture (�uid-particles) is treated as an ensemble of �uid and discrete
particles. This is an statistical approach in the framework of kinetic theory
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by de�ning a point probability density function (pdf). The discretization of
the continuous medium (the vapor in our case) into particles is not a nat-
ural step. Here we should consider that the �uid particle can be seen as a
small element of �uid whose characteristic length scale is much larger than
the molecular mean free path and much smaller than the Kolmogorov length
scale. In contrast for the dispersed phase, when the interactions between
particles are negligible, the Lagrangian approach permits to study the dy-
namics of isolated particles and their interaction with the surrounding �uid.
Then we can obtain a realistic description of the dispersed phase �ow and
its in�uence on the continuous phase by summation over a large number of
particles. The statistical treatment of the Lagrangian equations permits to
derive simple formulations for the interfacial transfer laws and re�ects the
in�uence of the turbulence.
In the following we derive the averaged balance equations for the two phase
by the classical method (Eulerian), from the local instantaneous phase equa-
tions with the interfacial jump conditions. Then we derive the equations of
the dispersed phase by the probabilistic method (Lagrangian) in order to
close the interfacial terms.

2.3 Dynamic equations for single-phase and two-

phase �ows classical derivation

2.3.1 Instantaneous single-phase equations

The instantaneous single-phase equations, or the transport equations, are
the following:.

• Mass balance equation:

∂(ρ)

∂t
+
∂(ρui)

∂xi
= 0 (2.1)

where ρ is the density, ui is the instantaneous velocity in the xi direc-
tion, xi is i

th component of the position vector, and t is the time.

• Momentum balance equation:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= ρgi +

∂(σij)

∂xj
(2.2)

where gi is the gravity and σij is the stress tensor which can be written
in terms of the pressure p and the viscous stress tensor τij :

σij = −pδij + τij (2.3)
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In the case of Newtonian �uids the viscous stress tensor τij can be
written in the following form, (which means that the stress to rate-of-
strain relation is linearly isotropic)

τij = ρν(
∂ui
∂xj

+
∂uj
∂xj

)− 2

3
ρν
∂um
∂xm

δij (2.4)

where ν represents the kinetic viscosity.

• Total energy balance equation:

∂(ρE)

∂t
+
∂(ρEui)

∂xj
=
∂(ujσij)

∂xi
− ∂qi
∂xi

+ ρgiui +Q (2.5)

with

E = e+
1

2
uiui (2.6)

qi = −λ ∂T
∂xi

(2.7)

where E is the speci�c total energy, e is the speci�c internal energy, q
is the thermal conduction heat �ux, λ is the thermal conductivity and
Q is the volumetric heat source.

2.3.2 Instantaneous local equations for the two-phase �ow

For two-phase �ows, the two phases are separated by discontinuity sur-
faces (interfaces). These interfaces are supposed in�nitely thin and massless.
Then, the conservation equations are not continuous and di�erentiable all
over the domain. So we should de�ne a space where we can derive these quan-
tities, which permits us to write the conservation equations for the two-phase
�ows. These equations should be de�ned all over the space of distribution
and valid at every instant.
The distribution function introduces for every local and instantaneous quan-
tity φk, a new quantity φk χk de�ned on the whole two phase �ow domain.

Phase characteristic function

χk(M, t) is the phase characteristic function or presence function which in-
dicates the presence of the phase k at point M and instant t. The phase
index k takes the values 1 for the continuous phase (vapor) and 2 for the
dispersed phase (droplets).
If at instant t, the point M is located in the phase k then

χk(M, t) = 1 (2.8)
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else:

χk(M, t) = 0 (2.9)

The derivatives of the function χk read

∂χk
∂t

= ωink,iδ (2.10)

∂χk
∂xi

= −nk,iδ (2.11)

where −→nk is the unit vector normal to the interface and oriented outward of
the phase k, −→ω is the velocity of the interface, and δ is the Dirac distribution
function on the interface (�gure 2.3).

Figure 2.3: Interface jump

Two-phase equations

Two-phase local instantaneous equations are established by multiplying the
local instantaneous equation of the single-phase �ow by the phase indicator
function χk. After integrating χk in the di�erent derivative operations, by
using the derivation properties of χk, we got the following equations for
each phase:

• Mass balance equation for the phase k:

∂(χkρk)

∂t
+
∂(χkρkuki)

∂xi
= ρk(ωi − uki)nkiδ (2.12)

• Momentum balance equation for the phase k:

∂(χkρkuki)

∂t
+
∂(χkρkukiukj)

∂xj
= χkρkgi +

∂(χkσkij)

∂xj

+ [σkij − ρkuki(ukj − ωj)]nkjδ
(2.13)
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• Total energy balance equation for the phase k:

∂(χkρkEk)

∂t
+
∂(χkρkEkuki)

∂xi
=

∂(χkσkijukj)

∂xi
− ∂χkqki

∂xi
+ χkρkgiuki + χkQk

+ [σkijukj − qki − ρkEk(uki − ωi)]nkiδ
(2.14)

We consider that the interface has no mass and no internal energy in the sur-
face unit, but it carries surface tension forces. Thus the interfacial conditions
of mass, momentum and total energy are added to these:∑

k=1,2

ρk(ωi − uki)nkiδ = 0 (2.15)

∑
k=1,2

[σkij − ρkuki(ukj − ωj)]nkjδ = Fsiδ (2.16)

∑
k=1,2

[−σkijukj + qki + ρkEk(uki − ωi)]nkiδ + Fsiωi = 0 (2.17)

Fsi is the i
th component of the surface tension force, in section 2.5 we present

a detailed closure of this term.

2.3.3 Averaged local equations

Several types of averaging can be de�ned and applied.

Averaging operator: Properties and de�nition

The averaged formulation are related to the de�nition of an average
operator, which must verify a number of essential properties known as
Axioms of Reynolds, which are:

• linearity

φ+ θ = φ+ θ ; λθ = λθ (2.18)

where φ and θ are random variables and λ is a constant.

• idempotence

φθ = φ θ (2.19)
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• commutativity with derivation operations

∂φ

∂xj
=

∂φ

∂xj
;

∂φ

∂t
=
∂φ

∂t
(2.20)

Then any local instantaneous variable can be decomposed into a mean and
a �uctuating value which verify:

φ = φ+ φ′ φ′ = 0 (2.21)

Principally because of the random attitude of the turbulent �ow characteris-
tics, this operator can be de�ned as the limit of arithmetic mean of a number
N of phenomenon realizations, where N tends to in�nity.

φ = lim
N→∞

N∑
0

φ (2.22)

Normally the time and spatial averaging are used. These averages satisfy
the properties of the Reynolds axiom only when the �ow is steady and ho-
mogeneous.

φ =
1

Ω

∫
Ω
φdω ; φ =

1

∆t

∫ t+∆t

t
φdτ (2.23)

All these kinds of averages are equivalent if they verify the Reynolds axioms.
Then it is not necessary to precise what kind of average is used to establish
the mean value equations.
In two-phase �ows, the common averages are:
• The classical Eulerian phase average

φ =
φχk
αk

(2.24)

where αk = χk is the volume fraction of phase k. It is possible to de�ne a
�uctuation associated to this average.

φ′′ ≡ φ− φ (2.25)

Then the averaged density of the phase k is de�ned by:

ρk =
ρkχk
αk

(2.26)

• For the local balance equations, it is more practical for problems with
variable density to de�ne a Favre type average weighted by the density which
is written

θ
k ≡ ρkθχk

ρkχk
=
ρkθχk
αkρ̃k

(2.27)
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The main interest of this average is to take into account the variations in
phase densities. The �uctuation associated to this average is

θ′ ≡ θ − θk ; ρkθ′χk = 0 (2.28)

Important remark: Practically the averaged density will be calculated by
using classical Eulerian average and will be noted later as ρk for purpose
of simplifying the notations. Other quantities will be averaged using Favre
average. We will use the following simpli�ed notation

θ
k
k = θk (2.29)

Mass balance equations

After averaging the mass balance equations 2.12, we got:

∂(αkρk)

∂t
+
∂(αkρkuki)

∂xi
= Γk k = 1, 2 (2.30)

where uki is the Favre averaged velocity of phase k.
The right hand side of the equation, Γk, is the new term which appears after
the averaging process. This term accounts for the averaged interfacial mass
�ow rate. It represents the local balance of evaporation/condensation at the
vapor/droplet interface. It is de�ned by

Γk = ρk(ωi − uki)nkiδ (2.31)

This term can not be calculated easily as a function of the main (solved) vari-
ables then it should be modeled. The closure of this term will be presented
in the next paragraph.

Momentum balance equations

After averaging the momentum balance equations 2.13 we obtain:

∂(αkρkuki)

∂t
+
∂(αkρkuki ukj)

∂xj
= αkρkgi −

∂αkpk
∂xj

+
∂

∂xj
[αk(τij,k − ρkRij,k)] + [(−pkδij + τij,k)− ρkuki(ukj − ωj)]nkjδ

(2.32)

Two new terms appear after the averaging of the momentum equation:

• The Reynolds stress tensor Rij,k, which accounts for the turbulence of
the �ow is the average of

αkρkRij,k = ρku
′
kiu
′
kjχk (2.33)
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where u′ki is the �uctuation velocity of the phase k. Rij,k is not solved
directly; and it should be closed by mean of a turbulence model.

• The interfacial momentum transfer term

[(−pkδij + τij,k)− ρkuki(ukj − ωj)]nkjδ

The term transfer of momentum at the interface has been the subject of
several modelings. According to the authors, this term can be divided
in di�erent ways into several contributions in order to separate the
di�erent physical phenomena. Therefore the contribution accounting
for the classical forces acting on a particle (i.e. drag force, added mass,
lift ...) is di�erent from one author to another. In the following we will
pass over di�erent decompositions of this term before choosing a form
to be used.

� First it is proposed to isolate a term Mk which accounts for the
perturbation of the stress tensor near the interfaces, then Mk

contains the local e�ects of the drag and the wake as noted by
Simonin (1991a). We write the right hand side (RHS) of the
momentum balance equation

RHS = αkρkgi −
∂αkpk
∂xj

+
∂

∂xj
[(αkτkij)− αkρkRij,k]

+ [−pkδij + τkij − ρkuki(ukj − ωj)]nkjδ (2.34)

we start by decomposing the pressure terms in RHS as follows

∂αkpk
∂xj

= αk
∂pk
∂xj

+ pk
∂αk
∂xj

(2.35)

[pkδij ]nkjδ = [p′kδij ]nkjδ − pk
∂αk
∂xj

(2.36)

(2.37)

as well as separating the term of the interfacial momentum �ow
into a mean and a �uctuating part

−ρkuki(uki − ωj)nkjδ = −ρku′ki(uki − ωj)nkjδ+ Γkuki (2.38)

now we can write the right hand side of the momentum balance
equation as follows

RHS = αkρkgi−αk
∂pk
∂xj

+
∂

∂xj
[(αkτkij)−αkρkRij,k]+Mk +Γkuki

(2.39)
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where

Mk = [−p′kδij + τkij − ρku′ki(ukj − ωj)]nkjδ

= [−pkδij + τkij − ρkuki(ukj − ωj)]nkjδ − Γkuki − pk
∂αk
∂xj

(2.40)

� However, other authors express di�erently the interfacial forces
(which are related to the classical forces of drag,lift...). Thus,
Drew (1992) preferred to write separately the force induced by
the mass transfer from the other interfacial contributions:

RHS =
∂

∂xj
[αkσkij−αkρkRij,k]+αkρkgi+Γku

Im
ki +M ′ki (2.41)

where uImki is the averaged velocity at the interface and it is de�ned
by using an average weighted by the mass �ux going out from the
phase k through the interface

uImki =
ukiṁkδ

ṁkδ
= −ukiṁkδ

Γk
(2.42)

which is equivalent to

Γku
Im
ki = −ρkuki(ukj − ωj)nkjδ (2.43)

M ′k represent the impact of the stresses (pressure and viscous
stresses) on the interface:

M ′k = σkijnkjδ (2.44)

� Ishii (1975) used the term M ′k after subtracting a term related to
the averaged pressure on the interface, noted pIk:

M ′′ki = [−(pk − pIk)δij + τkij ]nkjδ = M ′ki − pIk
∂αk
∂xi

(2.45)

where the averaged pressure at the interface reads

pIk =
1

aI
(pk

∂χk
∂nk

) =
1

aI
(pkδ) (2.46)

with aI is the volumic interfacial area

aI =
∂χk
∂nk

= δ (2.47)

19



which permits to write the right hand side of the equation (RHS)
under the form:

RHS = αkρkgi − αk
∂pk
∂xi

+
∂

∂xj
[(αkτkij)− αkρkRij,k]

+ Γku
Im
ki +M ′′ki + (pIk − pk)

∂αk
∂xi

(2.48)

So M ′′k takes into account the local variation of the pressure �eld
near the interfaces.

� Finally, similar to what has been done for the pressure, Hewitt
et al. (1990) and Ishii and Mishima (1984) proposed to separate
the contribution of the averaged viscous stress at the interface
from the term of the interfacial momentum transfer. Then RHS
can be written as follows:

RHS = αkρkgi − αk
∂pk
∂xi

+
∂

∂xj
[(αkτkij)− αkρkRij,k]

+ Γku
Im
ki +M ′′′ki + (pIk − pk)

∂αk
∂xi
− τ Ikij

∂αk
∂xi

(2.49)

where

M ′′′ki = [−(pk − pIk)δij + (τkij − τ Ikij ]nkjδ = M ′ki−pIk
∂αk
∂xi
−τ Ikij

∂αk
∂xi

(2.50)

In this work, we neglected the e�ect of the local variation of the pressure and
the viscous stresses near the interface, and the decomposition of Drew (1992)
is considered. Therefore the interfacial momentum transfer is decomposed
into two terms

1. Γku
Im
ki accounts for the momentum transfer due to the mass transfer

and it is the average of

Γku
Im
ki = −ρkuki(ukj − ωj)nkjδ (2.51)

The contribution depending on the mass transfer is small in comparison
with the other contributions. Therefore the interfacial velocity uImki is
closed in a simple way as follows

uImki =

{
u2i, Mass transfer from 2→ 1 (evaporation)

u1i, Mass transfer from 1→ 2 (condensation)
(2.52)

2. M ′k presents the interfacial momentum transfer that remains after sub-
stitution of the mass transfer contribution,

M ′k = σij,knkjδ (2.53)
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At this step, the form of the momentum balance equation is written as fol-
lows

∂(αkρkuki)

∂t
+
∂(αkρkuki ukj)

∂xj
= αkρkgi −

∂αkpk
∂xj

+
∂

∂xj
[αk(τij,k − ρkRij,k)] +M ′ki + Γku

Im
ki (2.54)

The �nal form of the momentum balance equation used in our simulations
will be presented in section 2.5 with slight modi�cations.
M ′k accounts for the interfacial forces between the two phases. This term
should be modeled precisely because it plays a major role in the comprehen-
sion and the simulation of the two-phase �ow. The modeling of this term is
not possible via the Eulerian approach. In order to close this term we should
consider the dispersed phase as a population of particles. Then we study the
dynamics of the isolated particles and their transfer with the surrounding
�uid, via a Lagrangian approach. This approach permits to treat the forces
exerted by the �uid on each particle separately then to average them over the
ensemble of particles. These steps are presented in details the next section
of this chapter.
The distribution of the droplets and the vapor over the domain is mainly
controlled by the momentum balance equations. Therefore the closure of
these terms and their impact on the simulation are the main object of our
study.

Total enthalpy balance equations

The averaged total energy equation is written in terms of total enthalpy
variable:

Hk = Ek +
pk
ρk

; Hk = hk +
uki

2

2
(2.55)

where Hk is the total speci�c enthalpy, hk is the speci�c enthalpy, and Ek is
the total energy of the phase k.
Then, the total enthalpy balance equation can be written as follows:

∂

∂t
(αkρkHk) +

∂

∂xi
(αkρkHkuki) = αk

∂pk
∂t
− ∂

∂xi
[αk(qki + qki

T )]

+
∂(αkτij,kukj)

∂xi
+ αkρkgiuki + αkQk

k

+ Wk + Π′k + Γk(
1

2
(uImki )2 + hImk )

(2.56)

The turbulent heat �ux qk
T is de�ned as:

−αkqkT = −αkρkH ′ku′ki + χkτij,ku
′
kj (2.57)
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For the interfacial energy transfer we will introduce the following terms:

• Power of interfacial stresses:

Wk = σkijukjnkiδ (2.58)

• Interfacial heat transfer by thermal conductivity:

Π′k = −qkinkiδ (2.59)

• Kinetic energy transfer due to mass transfer:

1

2
(uImki )2Γk = −1

2
ρku

2
k(uki − ωi)nkiδ (2.60)

• Enthalpy transfer due to mass transfer:

hImk Γk = −ρkhk(uki − ωi)nkiδ (2.61)

The interfacial enthalpy that appears in this equation is the enthalpy
hImk averaged in the same way we averaged the velocity in equation
(2.42) and closed in the same way of the equation (2.52).

The �ow of water droplets in the hot vapor, involves heat and mass transfer
between the two phases. The droplets act as heat sinks for the vapor and
a�ect the vapor temperature which, in turn, determines the wall heat transfer
rate.
The thermal exchanges between the two phases are considered as source
terms in the energy and the mass balance equation of both the phases. In
order to model these terms we use the interfacial energy jump condition
de�ned in equation (2.17). After averaging the jump condition we can write∑

k=1,2

[
Wk + Π′k + Γk(

1

2
(uImki )2 + hImk )

]
= 0 (2.62)

where Wk is neglected. Then, we consider that the interface can not store
thermal energy, the net energy transferred to the interface by vapor and
droplet corresponds to the phase change by vaporization (or condensation).
Thus the mass transfer rate Γk is given by

Γ2 = −Γ1 =
Π′2 + Π′1
Hσ2 − Hσ1

(2.63)

The droplet interface is supposed to be at thermodynamic equilibrium. It
is thus supposed to be at saturation conditions (Tsat, Psat). Then Π′k is
the rate of heat transfer to the interface, due to the di�erence between the
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temperature of the phase k and the temperature of the interface Tsat. H
σ
2−Hσ1

is the enthalpy di�erence that corresponds to the latent heat of vaporization
at Tsat.
Expressions for the interfacial heat transfers are obtained by assuming that
each phase has an average temperature denoted by Tk.

Π′k = Coef(Tk − Tsat) (2.64)

where the constant Coef is the heat transfer coe�cient between the phase
and the interface. This coe�cient is given by appropriate closure laws, for
example Ranz Marchall's model for the heat transfer in the vapor side and
Hendou (1992) model for the heat transfer in the liquid side.
Since our interest is limited to the dynamic section of the �ow, no further
study about the modeling of these terms will be presented.

2.4 Derivation of dispersed phase Eulerian model-

ing from particles point of view

The closure of the interfacial momentum transfer is not possible from a
pure Eulerian point of view of the particle dynamics. The dispersed phase
consists basicly from isolated particles whose size is small in compare of
the characteristic scales of mixture properties evolution. The interaction
between the particles stays negligible, then the problem can be treated
from another point of view, by considering the dispersed phase as isolated
particles. The Lagrangian approach permits to study the dynamics of
separated particles and their transfer with the surrounding �uid. Then, the
summation over a large number of particles permits to obtain a realistic
description of the dispersed phase and its in�uence on the continuous phase.
This statistical treatment of the Lagrangian equations permits to derive
simple and su�ciently realistic formulations for the interfacial transfers
with averaged quantities.

2.4.1 Probability density function

The dispersed phase statistics in turbulent two-phase �ows may be described
in terms of the probability density function (pdf) f2(cp, µp;x, t) de�ned such
that f2(cp, µp;x, t)δcpδµpδx is the probable number of particles who's center
of mass at instant t is located in the volume [x, x + δx] with a translation
velocity u2 in [cp, cp + δcp] and a mass m2 in [µp, µp + δµp].

f2(cp, µp;x, t) = 〈δ2(x, t)δ(u2 − cp)δ(m2 − µp)〉 (2.65)

where 〈.〉 represents an ensemble averaging over a very large number of "iden-
tical" realizations of the two-phase �ow and δ2(x, t) is a dispersed phase
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function which is de�ned to be

δ2(x, t) =

{
1 if any particle center is located at x at time t

0 otherwise
(2.66)

The evolution equation of the (pdf) can be de�ned in a general manner as

∂f2

∂t
+

∂

∂xj
[cp,jf2] = − ∂

∂cp,j

[
〈du2,j

dt
|cp, µp〉f2

]
− ∂

∂µp

[
〈dm2

dt
|cp, µp〉f2

]
(2.67)

d/dt is the material derivative operator following the velocity of a particle
de�ned as

d·
dt

=
∂·
∂t

+ u2,j
∂·
∂xj

(2.68)

Then
du2,j
dt is the acceleration of a particle measured along the particle's path

due to the exchange with the �uid and to the in�uence of the external �elds.
The above approach presents the evolution with respect to the change of
velocity. Otherwise, it can account for additional e�ects such as change in
temperature of the particle as well as the particles' collisions. This can be
done by a simple extension in the probability density function de�nition and
the corresponding evolution equation.

2.4.2 Discrete particle momentum conservation equation

The classical approach of the study of the interaction between a particle and
the surrounding �uid, supposes that we can de�ne at each point of the �uid
�ow, two �elds of characteristic variables, one �eld of characteristic variables
undisturbed and another one disturbed by the presence of the particle. The
variables of the undisturbed �elds will be noted with an over tilde (ex: θ
will be noted θ̃). The earlier work to estimate the forces acting on a particle
in a �uid, was in the end of the 19 th by Stokes (1850). They studied the
case of a spherical non deformable particle placed in a liquid at rest. Lately
the Maxey and Riley (1983) and Gatignol (1983) extended the validity of
this theory for non-homogeneous �ows with low Reynolds numbers and then
for high Reynolds numbers. Then the equation of motion of a particle of
mass m2, accounting for the interaction with the �uid and the e�ect of the
external forces is written in a general form

m2
du2,i

dt
= m2gi −

πd3
p

6

∂p̃1

∂xi
+ Fr,i + [uσ,i − u2,i]

dm2

dt
(2.69)

This is also the equation of the trajectory of a particle, which is used in the
Lagrangian treatment of the dispersed phase. The �rst term on the right
hand side of the above equation represents the force due to the external
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�elds (gravity). The second and third terms represent the forces applied
by the surrounding �uid �ow on the particle. The second results from the
locally undisturbed �uid �ow �eld which should be considered as if the par-
ticle don't exist. It is written in terms of the instantaneous undisturbed
pressure p̃1 gradient measured at the particle center. The third comes from
the perturbation induced by the presence of the particle and can be well
approximated as the sum of the inter-facial forces ( drag, virtual mass, lift
force...). The last term accounts for the momentum transported by the mass
�ux exchange with the continuous phase where uσ is the averaged velocity of
the mass �ux crossing the particle surface and it is approximated as uσ ≈ u2.
Then the corresponding term in the pdf transport equation can be thus writ-
ten as

∂

∂cp,i

[
〈du2,i

dt
|cp〉f2

]
=

∂

∂cp,i

[(
gi −

1

ρ2

∂P1

∂xi

)
f2

]
− ∂

∂cp,i

[
〈 1

ρ2

∂p̃′′1
∂xi
|cp〉f2

]

+
∂

∂cp,i

[
〈Fr,i
m2
|cp〉f2

]
+

∂

∂cp,i

[
〈 [uσ,i − u2,i]

m2

dm2

dt
|cp〉f2

]
(2.70)

The second term on the right hand side represents the e�ect of the pressure
gradient �uctuations on the particle acceleration; where the undisturbed
pressure p̃1 is decomposed into a mean and a �uctuating par

p̃1 = P1 + p̃′′

2.4.3 Dispersed phase averaging

De�ning a probability density function (pdf) of the dispersed phase allows
to describe the statistics of this phase and then the possibility to apply an
averaging process over the dispersed phase. This averaging process is the
passing step from the Lagrangian description into a Eulerian description
of the motion. Thus after presenting an expression of the instantaneous
forces acting on a particle in equation (2.69), we apply the dispersed phase
averaging using the (pdf) in order to have a macroscopic description of the
forces.
The dispersed phase average of any function ψ(u2) may be obtained by the
integration over the particle property space as

{ψ}2 =
1

n2

∫
ψ(cp;x, t)f2(cp;x, t)dcp (2.71)
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where n2 is the mean number of particles per unit volume in the two-phase
mixture (or particle number density)

n2(x, t) =

∫
f2(cp;x, t)dcp (2.72)

It is generally more convenient to introduce the dispersed phase mass
weighted average

〈ψ〉2 =
1

α2ρ2

∫
µpψ(cp;x, t)f2(cp;x, t)dcp (2.73)

where ρ2 is the mean particles density and α2 is the dispersed phase volu-
metric fraction given by (Simonin (2000))

α2ρ2 = n2{m2}2 =

∫
µpf2(cp;x, t)dcp (2.74)

Then any variable ψ can be averaged by the dispersed phase average, so it
can be decomposed into a mean part Ψ and a �uctuating part ψ′′ as follows

ψ = Ψ + ψ′′

The mean velocity of the droplets U2 reads

α2ρ2U2,i = α2ρ2 〈u2,i〉2 =

∫
µpcp,if2(cp;x, t)dcp u′′2,i = u2,i−U2,i (2.75)

where u′′2,i is �uctuation particle velocity. Therefore the particle's kinetic
stress components (or the particle's Reynolds stress tensor components)〈
u′′2,iu

′′
2,j

〉
2
can be expressed as follows

α2ρ2

〈
u′′2,iu

′′
2,j

〉
2

=

∫
µp[cp,i − U2,i][cp,j − U2,j ]f2(cp;x, t)dcp (2.76)

General equation for the transport of 〈ψ〉2 can be derived from the pdf
transport equation (2.67). By integrating over the particle properties (see
Simonin (1996)), one can �nd:

∂

∂t
α2ρ2 〈ψ〉2+

∂

∂xj
α2ρ2 〈u2,jψ〉2 = α2ρ2

〈
du2,i

dt

∂ψ

∂u2,i

〉
2

+α2ρ2

〈
dm2

dt

[
∂ψ

∂m2
+

ψ

m2

]〉
2

(2.77)

2.4.4 Mass balance (ψ = 1)

On replacing ψ by the value 1 in equation (2.77) we can write

∂(α2ρ2)

∂t
+
∂(α2ρ2U2,i)

∂xi
= Γ2 (2.78)

26



The left hand side of the equation is deduced easily since 〈1〉2 = 1 and
〈u2,i〉2 = U2,i. The �rst term of the right hand side is equal to zero since
∂1
∂u2,i

= 0, and the second term is de�ned as Γ2

Γ2 = α2ρ2

〈
1

m2

dm2

dt

〉
2

(2.79)

Where Γ2 is the mean interface mass transfer rate.

2.4.5 Momentum balance (ψ = u2,i)

By substituting u2,i in place of ψ in equation (2.77) we can write

∂

∂t
α2ρ2 〈u2,i〉2 +

∂

∂xj
α2ρ2 〈u2,ju2,i〉2 = α2ρ2

〈
du2,i

dt

∂u2,i

∂u2,i

〉
2

+ α2ρ2

〈
dm2

dt

[
∂u2,i

∂m2
+
u2,i

m2

]〉
2

(2.80)

Then we decompose the velocity of the droplets into as averaged part and
�uctuating part

u2,i = u′′2,i + U2,i

so the left hand side (LHS) of the equation can be written

LHS =
∂

∂t
α2ρ2 〈u2,i〉2 +

∂

∂xj
α2ρ2 〈u2,ju2,i〉2

=
∂

∂t
α2ρ2U2,i +

∂

∂xj
α2ρ2U2,iU2,j

+
∂

∂xj
α2ρ2

〈
u′′2,iu

′′
2,j

〉
2

since (
〈
u′′2,jU2,i

〉
2

= 0)

= α2ρ2
∂

∂t
U2,i + α2ρ2U2,j

∂

∂xj
U2,i +

∂

∂xj
α2ρ2

〈
u′′2,iu

′′
2,j

〉
2

+ U2,i

[
∂

∂t
α2ρ2 +

∂

∂xj
α2ρ2U2,j

]
(2.81)

Using the mass averaged equation (2.78) we can write

LHS = α2ρ2
∂

∂t
U2,i+α2ρ2U2,j

∂

∂xj
U2,i+

∂

∂xj
α2ρ2

〈
u′′2,iu

′′
2,j

〉
2
+U2,iΓ2 (2.82)

The right hand side (RHS) of the equation (2.80) can be written as

RHS = α2ρ2

〈
du2,i

dt

〉
2

+ α2ρ2

〈
dm2

dt

u2,i

m2

〉
2

(2.83)
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du2,i
dt can be deduced from the equation (2.69) as

du2,i

dt
= gi −

1

ρ2

∂p̃1

∂xi
+
Fr,i
m2

+
1

m2
[uσ,i − u2,i]

dm2

dt
(2.84)

then we substitute the equation (2.84) in equation (2.83) to write

RHS = α2ρ2gi − α2[
∂P1

∂xi
+
∂ 〈p′′1〉2
∂xi

] + α2ρ2

〈
Fr,i
m2

〉
2

+ Uσ,iΓ2 − α2ρ2

〈
dm2

dt

u2,i

m2

〉
2

+ α2ρ2

〈
dm2

dt

u2,i

m2

〉
2

(2.85)

Finally we use the equality between equation (2.82) and equation (2.85) to
write the �nal form of the momentum balance equation as follows

α2ρ2
∂

∂t
U2,i + α2ρ2U2,j

∂

∂xj
U2,i =

∂

∂xj
[−α2ρ2

〈
u′′2,iu

′′
2,j

〉
2
] + α2ρ2gi

− α2[
∂P1

∂xi
+
∂ 〈p′′1〉2
∂xi

] + [Uσ,i − U2,i] Γ2

+ α2ρ2

〈
Fr,i
m2

〉
2

(2.86)

• The �rst term on the right hand side of the equation represents the
transport momentum by the velocity �uctuations, where the particle
kinetic stress tensor needs to be modeled or computed in an additional
submodel (model of turbulence of the dispersed phase).

• The second term represents the in�uence of the external body force
�elds (gravity) acting on the particle.

• The third term presents the in�uence of the mean and pressure gra-

dients of the continuous phase. α2
∂〈p′′1〉2
∂xi

represents the e�ect of the
inhomogeneous distribution of the pressure of the "undisturbed" �ow
on the dispersed phase. This term is generally negligible in gas-solid
�ows but should be taken into account in liquid-solid or bubbly �ows.
The closure of this term is not discussed here since in our case, we
are interested in vapor-droplet �ow which is similar to gas-solid �ow,
where the density of the dispersed phase is very big with respect to the
density of the continuous phase.

• The fourth term represents the in�uence of the interphase mass trans-
fer,

Uσ,iΓ2 = α2ρ2

〈
uσ,i
m2

dm2

dt

〉
2

where Uσ,i is the mean velocity of the mass �ux crossing the particle
surfaces (Uσ,i ≈ U2,i)
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• The last term represents the mean interphase momentum transfer rate
coming from the local perturbation induced by the presence of the
particle. This term is generally considered as the sum of the drag
force, virtual mass force, lift force and history force. The history force
should take into account the instationary viscous e�ects. In the rest
of our study we will consider that the e�ect of this force is negligible
with respect to the other forces. Therefore we can write that

α2ρ2

〈
Fr,i
m2

〉
2

= α2ρ2

〈
fDi
m2

〉
2

+α2ρ2

〈
fAMi
m2

〉
2

+α2ρ2

〈
fLi
m2

〉
2

(2.87)

Where each one of these terms accounts for the rate of interfacial ex-
change of momentum due to the force. So we will present the models
of forces acting on a single isolated droplets then by averaging over
the dispersed phase 〈〉2 we got the mean rate of momentum transfer
corresponding to this force.

Drag force

The drag force is a surface force due to the movement of a droplet in the
vapor. It takes into account the drag due to the surface friction and to the
droplet shape. This force acts in a direction opposite to the oncoming �ow
velocity. It exists whenever there is a relative motion between the two phases
even if this motion is non-accelerated. The ascending velocity of a droplet
is determined thanks to the balance between this force and the gravitational
forces. The general form of the drag force, acting on a spherical droplet,
reads

fDi = −3

4
ρ1
CD
dp
Vp|vr|vr,i (2.88)

vr,i is the relative velocity between the two phases. This velocity is expressed
in terms of the velocity of the droplet and the velocity of the vapor undis-
turbed by the presence of this droplet

vr,i = u2,i − ũ1,i (2.89)

Vp is the particle volume, dp is the droplet diameter, and CD is the drag
coe�cient. The mean rate of momentum transfer that corresponds to this
force, FDi , is obtained by averaging equation (2.88) by the dispersed phase
average

FDi = α2ρ2

〈
fDi
m2

〉
2

= −α2ρ2

〈
3

4
ρ1
CD
dp

Vp
m2
|vr|vr,i

〉
2

= −α2ρ2

〈
3

4

ρ1

ρ2

CD
dp
|vr|vr,i

〉
2

(2.90)
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The closure of this term by Simonin (2000) reads

FDi = α2ρ2

〈
fDi
m2

〉
2

= −α2ρ2
1

τF12

〈vr,i〉2 (2.91)

where the τF12 is the mean particle relaxation time

τF12 ≈
ρ2

ρ1

4

3

dp
CD

1

〈|vr,i|〉2
(2.92)

〈vr,i〉2 is the averaged value of the local relative velocity between each droplet
and the surrounding vapor �ow

〈vr,i〉2 = 〈u2,i − ũ1,i〉2
A major closure problem that appears here, is the averaging of the undis-
turbed �uid velocity ũ1,i via the dispersed phase average. ũ1,i can be decom-
posed into a mean and a �uctuating part

ũ1,i = U1,i + ũ′1,i (2.93)

If we suppose that the averaged vapor velocity of the undisturbed �ow seen by
the droplet is equal to the averaged vapor velocity, then the closure problem
becomes related directly to the averaging of the undisturbed vapor velocity

�uctuation seen by the droplet
〈
ũ′1,i

〉
2
. In this paragraph we de�ne this

term as the drift velocity Vd,i

Vd,i =
〈
ũ′1,i
〉

2
(2.94)

Then the drift velocity Vd,i is the conditional average of the locally undis-
turbed vapor velocity �uctuation with respect to the particle distribution.
The closure of this velocity is discussed later in a separate paragraph.
Now we can write

Vr,i = 〈vr,i〉2 = U2,i − (U1,i + Vd,i) (2.95)

This permits us to close the relative velocity modulus 〈|vr|〉2. First, we
decompose the relative velocity into a mean and a �uctuating parts,

vr,i = Vr,i + v′′r,i (2.96)

then we can write

〈|vr|〉2 = (Vr,iVr,i +
〈
v′′r,iv

′′
r,i

〉
2
)
1
2 (2.97)

We suppose that the �uctuation of the relative velocity can be written in a
simple way as the di�erence between the droplet's velocity �uctuation and
the undisturbed vapor velocity �uctuation

v′′r,i = u′′2,i − ũ′1,i (2.98)
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then

〈|vr|〉2 = ((U2,i−U1,i−Vd,i)2+(
〈
u′′2,iu

′′
2,i

〉
2
−2
〈
ũ′1,iu

′′
2,i

〉
2
+
〈
u′1,iu

′
1,i

〉
2
))

1
2 (2.99)

We de�ne k2 as the turbulent kinetic energy of the dispersed phase, and k12

as the particle-�uid velocity �uctuation covariance,

k2 =
1

2

〈
u′′2,iu

′′
2,i

〉
2

(2.100)

k12 =
〈
u′′2,iũ

′
1,i

〉
2

(2.101)

and we suppose that the turbulent kinetic energy of the undisturbed �uid
seen by the droplet is equal to the turbulent kinetic energy of the vapor
averaged over the vapor phase

k1 =
1

2

〈
u′1,iu

′
1,i

〉
2

=
1

2
u′1,iu

′
1,i (2.102)

where u′1,iu
′
1,i is equal to Rij,1, which is de�ned in equation (2.33).

Finally, we can write

〈|vr|〉2 = ((U2,i − U1,i − Vd,i)2 + (2k2 − 2k12 + 2k1))
1
2 (2.103)

The drag force is written as the sum of a laminar contribution and a turbulent
contribution

FDi =

Laminar part︷ ︸︸ ︷
−α2ρ1

3

4

CD
d
〈|vr|〉2 (U2,i − U1,i) +

Turbulent part︷ ︸︸ ︷
α2ρ1

3

4

CD
d
| 〈|vr|〉2 Vd,i (2.104)

In the present study, we use a drag coe�cient CD developed by Wallis (1969)
for the isolated and diluted particles �ow:

CD =

{
24
Rep

[1 + 0.15Re0.687
p ]α−1.7

1 for Rep < 1000

0.44α−1.7
1 for Rep ≥ 1000

(2.105)

The particle Reynolds number Rep is given in terms of the diameter of the
droplet dp, the averaged magnitude of the relative velocity 〈|vr|〉2, the dy-
namic viscosity of the vapor µ1, and the density of the vapor ρ1:

Rep = ρ1
〈|vr|〉2 d
µ1

(2.106)

The limit of validity between the two forms of CD is associated with very
high Reynolds numbers. It expresses that when the drag is dominated by the
interaction between the droplets, the calculation of individual drag coe�cient
is meaningless. But, when the droplets behave as isolated particles, CD
depends only on the droplets particle Reynolds number. In our study case,
the particular Reynolds number does not reach the value of 1000 and the
droplets behave as isolated particles.
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Virtual mass force

When a particle is accelerated through a �uid, the surrounding �uid in the
immediate vicinity of the particle will also be accelerated. The particle
apparently behaves as if it has a larger mass than the actual mass, thus
the net force acting on the particle due to this e�ect has been called virtual
mass or added mass force. In the case of vapor-droplet �ow the virtual mass
force is considered of second order since the density of the droplets is very
high with respect to that of the vapor. We use here the analytical solution
derived by Auton et al. (1988) for the virtual mass force in a non-uniform and
non-stationary �ow. Then the virtual mass force acting on a single spherical
particle reads

fMa
i = −ρ1VpCMa

(
Dũ1,i

Dt
− du2,i

dt

)
(2.107)

where d/dt is the material derivative following the particle path, de�ned in
equation (2.68), and D/Dt is the material derivative following the velocity
of the undisturbed �uid de�ned as

D·
Dt

=
∂·
∂t

+ ũ1,j
∂·
∂xj

(2.108)

In order to simplify this equation, we suppose that the acceleration of the
vapor in this equation can be written following the velocity of a droplet:

Du1,i

Dt
' du1,i

dt
(2.109)

This hypothesis may have an impact in the cases where the density of the
particles is much smaller than the density of the �uid (e.g. bubbly �ows).
But in our case droplets �ow, the virtual mass force plays a minor role, there-
fore this hypothesis is considered. Then we obtain the averaged expression
of the virtual mass force

FMa
i = α2ρ2

〈
fMa
i

m2

〉
2

= −ρ1CMa

[
∂

∂t
(α2 〈vr,i〉2) +

∂

∂xj
(α2 〈u2,jvr,i〉2)

]
(2.110)

if we split the relative velocity vr and the velocity of the dispersed phase u2

into averaged and �uctuating velocity we get:

FMa
i = −ρ1CMa[α2

(
∂Vr,i
∂t

+ U2,j
∂Vr,i
∂xj

)

)
+ Vr,i

(
∂α2

∂t
+
∂(α2U2,j)

∂xj

)
+

∂

∂xj
(α2

〈
u′2,jv

′
r,i

〉
2
)] (2.111)
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using the mass balance equation of the dispersed phase we can write

FMa
i = −ρ1CMa

[
α2
dVr,i

dt
+

∂

∂xj
(α2

〈
u′2,jv

′
r,i

〉
2
)

]
(2.112)

where d/dt is the material derivative following the averaged velocity of the
dispersed phase. Considering that the relative �uctuating velocity can be
written as the di�erence between the �uctuating velocity of the particles
and the �uctuating velocity of the undisturbed �uid

v′r,i = u′2,i − ũ′1,i (2.113)

gives

FMa
i = −ρ1CMa

[
α2
dVr,i

dt
+

∂

∂xj
(α2

〈
u′2,ju

′
2,i

〉
2
−
〈
u′2,j ũ

′
1,i

〉
2
)

]
(2.114)

We consider that
〈
u′2,ju

′
2,i

〉
2
and

〈
u′2,j ũ

′
1,i

〉
2
are isotropic, then we can write

k2δij =
3

2

〈
u′2,iu

′
2,i

〉
2

(2.115)

k12δij = 3
〈
u′2,j ũ

′
1,i

〉
2

(2.116)

the averaged form of the virtual mass force is written as

FMa
i = −ρ1CMa

[
α2
dVr,i

dt
+

∂

∂xj
(α2

〈
u′2,ju

′
2,i

〉
2
−
〈
u′2,j ũ

′
1,i

〉
2
)

]
(2.117)

then the �nal form virtual mass force is written as follows

FMa
i =

Laminar part︷ ︸︸ ︷
−ρ1α2CMa

[
d
−→
Vr

dt

]
−

Turbulent part︷ ︸︸ ︷
ρ1CMa

∂

∂xi

(
(
2

3
k2 −

1

3
k12)α2

)
(2.118)

CMa, is the virtual mass coe�cient which is not general in all the �ow con-
�gurations and should be adapted to the simulated �ow. For the case of
diluted �ow of isolated spherical inclusions we use

CMa =
1

2
(2.119)

In our special case, the virtual mass force is negligible beside the drag force.
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Figure 2.4: Lift force on a particle in a shear �ow

Lift force

When a droplet moves in a shear �ow and more generally in a rotational
�ow, it experiences a transverse force. This force is called the lift force,
and it is essential for predicting the lateral dispersion of the droplets in
vertical pipe �ows. The lift force acting on a single particle can be written as

fLi = ρ1VpCL(vr ∧ rot(u1))i (2.120)

We apply the same steps used for the virtual mass and the drag force in order
to average the lift force. The �uctuating part of the lift force is neglected
since we suppose that the velocity �uctuations are uncorrelated with the
�uctuations of vorticity. So the averaged form of the lift force can be written
in the form

FLi = −α2ρ1CL (Vr ∧ rot(U1))i (2.121)

This force is important in our study since it a�ects the radial distribution of
the droplets. According to Auton (1987) the lift coe�cient is equal to 0.5.
The analytical model of Auton is valid for the case of a spherical particle
placed in a weak shear �ow of an inviscid �uid. This is somehow far from
our study case. Therefore the impact of this force on the simulation results
will be quanti�ed in the next chapter.
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Drift velocity

In order to model the averaged momentum transfer rate according to the
drag and the added mass forces, it is necessary to know the averaged rela-
tive velocity between the two phases. This velocity is de�ned as the di�erence
between the velocity of the droplet and the velocity of the surrounding vapor
undisturbed by the presence of the droplet. The major closure problem that
appears here is the modeling of the undisturbed vapor velocity, ũ1, measured
along the particle paths. Particularly, to the term of the conditional expec-
tation of the undisturbed �uid velocity �uctuation, ũ′1, measured along the
particle paths,〈ũ′1,j |cp〉. This term is de�ned as the drift velocity, and it is
due to the correlation between the instantaneous distribution of the parti-
cles and the �uid large turbulent eddies (large with respect to the size of the
particle). The drift velocity takes into account the dispersion e�ect due to
the particle transport by the �uid turbulence.
According to the theoretical case of particles suspended in homogeneous tur-
bulent �ow (Simonin et al. (1993a)), the velocity of drift can be written as

Vd,i = −Dt
12,ij

 1

α2

∂α2

∂xj 1
α1

∂α1

∂xj

 (2.122)

where the �uid-particle turbulent dispersion tensor −Dt
12,ij is expressed in

terms of the covariance tensor between the turbulent velocity �uctuations of
the two phases and the �uid-particle turbulent characteristic time:

Dt
12,ij = −τ t12

〈
u′2,j ũ

′
1,i

〉
2

(2.123)

τ t12 is the turbulence time scale of the vapor viewed by the droplets, the
formulation of this term will be given later in the turbulence chapter. This
modeling of the drift velocity will be used in the present work. However, in
chapter 4 we will present another modeling for the drift velocity based on
a stochastic Langvin type Lagrangian description which permits to derive a
transport equation for the drift velocity, proposed by Simonin (2000).

2.5 Interfacial momentum transfer

The method presented in the last section permits to close the interfacial
momentum transfer term M ′2,i of the momentum balance equation of the
dispersed phase equation (2.54), developed by a pure Eulerian point of view.
Moreover, the interfacial momentum transfer term M ′1,i of the continuous
phase will be closed by using the interfacial jump condition of the momen-
tum equation (2.16).
First, we compare the dispersed phase momentum balance equations ob-
tained by the Eulerian approach, equation (2.54), and from the particles
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point of view, equation (2.86). After neglecting the e�ect of the viscous
tensor on the droplets, we get the following relation

−∂α2p2

∂xj
+M ′2,i = −α2

∂P1

∂xj
+ α2ρ2

〈
Fr,i
m2

〉
2

(2.124)

Let us de�ne M ′2,i as

M ′2,i = α2ρ2

〈
Fr,i
m2

〉
2

(2.125)

Then we can write

−∂α2p2

∂xj
+M ′2,i = −α2

∂P1

∂xj
+M ′2,i (2.126)

if we replace the left hand side of the last equation in the equation (2.54),
then we can write the �nal form of the momentum balance equation of the
dispersed phase as

∂(α2ρ2u2i)

∂t
+
∂(α2ρ2u2i u2j)

∂xj
= α2ρ2gi − α2

∂P1

∂xj

+
∂

∂xj
[α2(τij,2 − ρ2Rij,2)] +M ′2,i + Γ2u

Im
2i (2.127)

For the momentum balance equation of the vapor, the closure of the term
M ′1,i is required. Starting by averaging the momentum interfacial jump con-
dition in equation (2.16)we can write

M ′2,i +M ′1,i = Fsiδ (2.128)

Lhuillier (2003) cited that the force of surface tension per unit volume
can be expressed as the divergence of a tensor as follows

Fsiδ = div < δiσ(I − ninj) > (2.129)

where I is the identity tensor. If σ, the surface tension, is constant (we
neglect the Marangoni1 type e�ects) , this equation can be written as

Fsiδ = σdiv(< δi > I− < δi(ninj) >)

= σ(div < δi > I − divQ) (2.130)

1Marangoni forces are tangential forces that appear at the surface of a �uid because

of the change in surface tension along the interface, due to a temperature gradient or the

surfactant concentration gradient along the interface. The Marangoni e�ect is responsible

of the jump of tangential stresses across the interface. These forces can cause convection

in �uids, even in zero gravity, when the natural convection disappears
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according to Lhuillier (2003) Q is the area tensor and its decomposed into a
spherical part and its stress deviator tensor as follows

Q = (aI/3)I + qwithq =< δi((ninj)− I/3) > (2.131)

The tensor q is the tensor of the anisotropy of the surface, therefore in the
case of closed surfaces as spherical particles this tensor is equal to zero.
Lhuillier et al. (2000) showed that

< δi >≈ aI (2.132)

where aI is the density of the interfacial area in a unit volume, which permits
to write

Fsiδ = σdiv(< δi > I− < δi(ninj) >)

= σ(
∂

∂xj
(aI)− ∂

∂xj
(aI/3)− divq

= 2/3σ
∂

∂xj
σ(aI) (2.133)

For the case of dispersed spherical droplets with constant diameter, aI is
expressed in terms of the droplets volume fraction alpha2

aI =
6α2

d
(2.134)

So �nally we can write

Fsiδ =
4

d
σ
∂

∂xj
α2 (2.135)

We use the equations (2.126) and (2.128) to write

M ′1,i = Fsiδ + α2
∂P1

∂xj
− ∂α2p2

∂xj
−M ′2,i

= −M ′2,i + Fsiδ +
∂

∂xj
(α2(P1 − p2))− P1

∂α2

∂xj
(2.136)

and

∂α2

∂xj
= −∂α1

∂xj
(α1 = 1− α2) (2.137)

so

M ′1,i = −M ′2,i + Fsiδ +
∂

∂xj
(α2(P1 − p2)) + P1

∂α1

∂xj
(2.138)

Then we de�ne

M ′1,i = M ′1,i − P1
∂α1

∂xj
(2.139)
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to write

M ′1,i = −M ′2,i +
∂

∂xj
(α2(P1 − p2)) + Fsiδ (2.140)

From Delhaye (1974) we can conclude that the jump condition of the pressure
near the interface apply the low of Laplace

(p2 − P1)δ =
4σ

d
δ (2.141)

we substitute equation (2.141) in equation (2.140) to get

M ′1,i = −M ′2,i −
∂

∂xj

(
α2

[
4σ

d

])
+ Fsiδ

= −M ′2,i − α2
∂

∂xj

[
4σ

d

]
−
[

4σ

d

]
∂

∂xj
α2 + Fsiδ (2.142)

using the equation (2.135), to write

M ′1,i = −M ′2,i + α2
∂

∂xj

[
4σ

d

]
(2.143)

Since we consider that we are in a case where the diameter of the droplets is
constant, the second term of the right hand side of the equation is neglected
and we can deduce that

M ′1,i = −M ′2,i = −α2ρ2

〈
Fr,i
m2

〉
2

(2.144)

According to this, we can use the equation (2.139) to write the �nal form of
the momentum balance equation of the continuous phase as follows

∂(α1ρ1u1i)

∂t
+
∂(α1ρ1u1i u1j)

∂xj
= α1ρ1gi − α1

∂P1

∂xj

+
∂

∂xj
[α1(τij,1 − ρ1Rij,1)] +M ′1,i + Γ1u

Im
1i (2.145)

By this method we close the momentum balance equations of the two phases
using one pressure P1, which is called one pressure model.
This coupling step shows the importance of starting from a Lagrangian de-
scription of the particles motion inorder to reach the �nal closure of the
Eulerian formulations. The interfacial forces will play the major role on the
motion of the droplets inside the vapor. So as the drag force and the vir-
tual mass force control the droplet motion in the sense of the �ow the lift
force will a�ect the traversal motion of the droplets. The earlier closure of
the forces regarded the general form of each force without discussing the
model of closure of the forces' coe�cients (CMA, CD, CL). The impact of
these forces and the models of closure of the coe�cients are discussed in the
following chapters.
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2.6 Turbulence modeling

In our study case, vapor-droplet vertical upward �ow, the �ow is initiated
at the level of the quench front by a violent evaporation in a depressurized
nuclear reactor. The velocity of the vapor between fuel bars is large enough
to create a turbulent �ow. The turbulence phenomenon may have a major
e�ect on the �ow characteristics, and the turbulent structures may interact
with the droplets and modify their distribution. The averaging process on
the balance equations yields the appearance of turbulent quantities corre-
sponding to the mean of the �uctuating velocities u′kiu

′
kj . These terms are

also called Reynolds stress tensor of the phase k and are noted Rij,k.
In the momentum balance equations the turbulence terms act as a momen-
tum source. So the gradients of the tensor Rij,2 acts as a momentum source
term for the droplets and may modify the distribution of the droplets. The
turbulence of the dispersed phase interacts on the turbulence of the con-
tinuous phase. This interaction is modeled via algebraic relations or via
interfacial transfer terms of the turbulent quantities. Therefore Rij,1 has an
indirect impact on the droplets distribution. A successful modeling of turbu-
lence of both phases greatly increases the quality of our simulations. In the
next chapter we quantify the impact of turbulence modeling on the droplets
distribution. The turbulence modeling is discussed in details in a separate
chapter.

2.7 Conclusion

This chapter presents a detailed derivation of the RANS equations used in
Euler/Euler model for two phase �ow. The averaging process yields the
appearance of unknown terms which requires extra sub models to simulate
the physical phenomena. We limit our interest to the terms that impact
the spatial distribution of the droplets. These terms are the Reynolds stress
tensors of the two phases and the momentum interfacial transfer term.
Averaging the Lagrangian particle's trajectory equation using the particle
distribution function (pdf) permits to close the interfacial momentum
transfer term. The gradient of the Reynolds tensor is understood as a
source term in the momentum equation and it impacts the mean motion of
the particles. After a brief presentation of the forces we could understand
the role of each interfacial force on the motion of the droplet. The virtual
mass force and the drag force play the major role on the propagation of
the droplet in the main direction of the �ow, while the lift force plays the
major role in the radial direction. The gradients of the Reynolds tensor
act as forces in both directions. Therefore this chapter ameliorates our
comprehension of the problem by limiting it to the sub models that simulate
these forces. The general form of each interfacial force had been presented
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in this chapter without discussing the models of closure for the coe�cients
of these forces. In the next chapter, we will quantify the e�ect of these
forces on the results by analyzing experimental and numerical data. This
analysis will help to test the compatibility of the used models in our case
and to specify where more concentration is required.
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Chapter 3

Main forces involved in

droplets dispersion

3.1 Introduction

In the previous chapter, we identi�ed that the motion of the droplets is af-
fected by the modeling of two main terms, the turbulence term, and the
interfacial momentum transfer term. The interfacial momentum transfer
term is decomposed into three main forces: drag force, virtual mass force
and lift force. The gradient of the turbulent term presents a source term in
the momentum balance equation and can be understood as a force acting on
the mean droplets motion. Besides, we saw that the turbulent term is used
in the closure of the �uctuating parts of the forces. The modeling of each
term is a research aspect that has been studied before by other authors. In
previous studies of two-phase dispersed �ow, we can �nd di�erent models
proposed for the closure of these terms. The choice of the appropriate model
usually depends on the �ow conditions as the geometry and the nature of the
dispersed phase. So the choice of some models can be evident for our study
case since they have been tested before in similar cases. While the research
projects about other models are still under discussion. In this chapter we
restrict our research to the models that have a main impact on the results
and in the same time that are not well de�ned yet for our study case.
For this aim, a parametric study is proposed to show the e�ect of the model-
ing of the various terms speci�ed in the theoretical chapter. First we present
the calculation tool and a study case geometry with the choice of the mesh.
A simulation test case with basic models is executed and the results are pre-
sented. This test case helps us draw a general description of the droplets
distribution. During the description, we specify the role of each term in the
mechanism of droplets distribution. Some parametric tests are presented to
show the important impact of some terms. After that we discuss brie�y the
modeling of each term regarding the basic models used in the test case. At
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the end of this chapter, we specify the models that will be the subject of the
rest of our study.

3.2 Calculation tool

NEPTUNE_CFD is a three dimensional two-�uid code developed more es-
pecially for nuclear reactor applications. This local three-dimensional model
is based on the classical two-�uid one pressure approach, including mass,
momentum and energy balances for each phase. The NEPTUNE_CFD
solver, based on a pressure correction approach, is able to simulate multi-
component multiphase �ows by solving a set of three balance equations for
each �eld (�uid component and/or phase) (Guel�, 2007), (Mimouni, 2008,
2009). These �elds can represent many kinds of multiphase �ows: distinct
physical components (e.g. gas, liquid and solid particles); thermodynamic
phases of the same component (e.g.: liquid water and its vapor); distinct
physical components, some of which split into di�erent groups (e.g.: water
and several groups of di�erent diameter bubbles); di�erent forms of the same
physical components (e.g.: a continuous liquid �eld, a dispersed liquid �eld,
a continuous vapor �eld, a dispersed vapor �eld). The solver is based on a
�nite volume discretization, together with a collocated arrangement for all
variables. The data structure is totally face-based, which allows the use of
arbitrary shaped cells (tetrahedral, hexahedral, prism, pyramid ...) including
non conforming meshes.

3.3 Geometry and mesh

Figure 3.1: Minimal surface called "sub-channel"
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As it is mentioned, the context of our study is the treatment of a LOCA
accident that may occur in a PWR nuclear reactor. The main problem in
simulating the �ow in the PWR is the complex geometries where the �ow
between the fuel rods is bounded by the rods but it is an open medium,
where the �ow traverses between the rods. Our particular application is
the cooling process of the rods that contain the nuclear fuel. In the core
of a PWR, the fuel assemblies consists of cylindrical rods of circular section
(mostly 9.5 mm in diameter). For numerical simulations it is necessary to
de�ne an elementary geometry that represents the physical feature but also
small enough to be compatible with the computing power and memory of
computers. Such a geometry (shown in �gure 3.1) is called "sub-channel" and
represents the area between 4 rods. We then de�ne an equivalent hydraulic
diameter dh, and our simulations are e�ected in a circular pipe:

dh =
4A

P
(3.1)

where A is the �ow section and P is the perimeter. In this case dh ' 11.7
mm so in our study case we consider a cylindrical pipe with a diameter of
the same order of magnitude d = 20 mm. In PWR the fuel rods are about
4 meters long but the vapor-droplet �ow occurs in the lower part of the core
after the quench front. Therefore, we consider a 3 meters long tube, after
verifying that this distance is su�ciently long.
The inlet conditions of the general study case are chosen in the same data

Figure 3.2: The geometry

range that may occur in LOCA accident. The inlet volumetric fractions are
99.5 % of vapor and 0.5 % of water droplets. The droplets and the vapor
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enter with a uniform radial distribution from the bottom of the tube. This is
thus a dilute �ow. The diameter of the droplets is considered to be constant
and equal to 0.5 mm. The temperature of the vapor at the inlet is equal to
573 K while the droplets temperature is 372 K. The condition of adiabatic
walls is considered in this study case in order to concentrate on the dynamic
characteristics of the �ow. The vapor enters with a velocity equal to 10 m/s
at the bottom of the pipe while the droplets velocity is 2 m/s.
Neptune_CFD can simulate only 3D cases, so we will take a small section
of the pipe considering two symmetry planes. The angle formed by the two
symmetric planes is θ ' 10 degrees. The used mesh is composed of 61800 cells
and the majority of the cells are of hexagonal shapes. While constructing the
mesh we took into account two main factors. The width of the �rst cell near
the wall (dr+), and the ratio of the cell height over the cell width (dZ/dR)
or cell elongation. This simulation is very sensitive to the ratio of the cell
height over the cell width. A very long cell may have a negative impact,
and (dZ/dR) should normally not be bigger than 10. Therefore a very �ne
mesh near the wall require a large number of longitudinal cells. Thus, the
discretization of mesh is regular in the longitudinal direction with 600 cells
and also regular in the radial direction with 50 cells (�gure 3.2). This gives
us a wall coordinate dr+ ' 5 near the wall, and cell elongation of order
25 (dZ/dR). This mesh has been chosen after several mesh sensitivity tests.
In �gure 3.3, we present the volume fraction distribution of the vapor over
the pipe section produced by using four di�erent meshes. We can notice the
importance of the cell elongation by comparing the case of the mesh (50x150)
with the case (50x600). Then, the simulation becomes not sensitive to the
vertical re�nement as we see in the case (50x1500) neither to horizontal
re�nement as in the case (100x3000). Moreover a simulation over full 3D
tube has been done and similar results have been obtained.

3.4 General study case �ow description

First of all a general description of the �ow is drawn regarding the dynamic
mechanism of the dispersion of the droplets over the tube. A general case of
simulation was done using the model k − ε for the vapor phase turbulence,
the model Tchen-Hinze for the droplets turbulence, the model of Auton
for the lift force, and the model developed by Wallis (1969) for the drag
coe�cient. In �gure 3.4, we present the volume fraction distribution over
the tube section. Directly after the inlet, the droplets get away from the
wall. After a small distance the concentration of the droplets in the center
decreases so the droplets go toward the wall. It means that there is a force
that pushes the droplets away from the wall and a force that pushes the
droplets away from the center.
In �gure 3.5, we present the vapor volume fraction distribution for several
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Figure 3.3: Mesh sensitivity

cases obtained by varying the kinetic turbulent energy of the vapor at the
inlet of the tube. It shows that as we increase the turbulent kinetic energy
of the vapor at the inlet, the concentration of the droplets at the center
decreases more quickly. This suggests that the force that pushes the droplets
away from the center is directly related to the turbulence intensity in the
�ow. This force is the source term caused by the gradient of the Reynolds
stress tensor of the droplets Rij,2 in the momentum balance equation. The
relation between the turbulent kinetic energy of the vapor and that of the
droplets will be discussed later in the next chapters. For now our aim is
only to show the direct impact of the turbulence on the radial distribution
of the droplets.
As seen in the tests of �gure 3.5 for example, the droplets are always far

from the wall. After analyzing the forces in these tests, we �gured out that
the force that pushes the droplets away from the wall toward the center,
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Figure 3.4: The volume fraction distribution over the tube section for a
general case

just after the inlet, is the lift force. The importance of this force is shown in
�gure 3.6, where we present two tests, the �rst one with the lift force and the
second one in neglecting the lift force. When the lift force is neglected, the
concentration of the droplets increases in the near wall area. Therefore, we
can conclude that the lift force plays a major role in the radial distribution
of the droplets over the tube section.
Droplets pushed from the wall meet droplets pushed from the center to
form a concentration zone of the droplets, (here we notice that the volume
fraction of the droplets is locally more than 0.8 % while the uniform volume
fraction at the inlet was 0.5 %). This concentration zone goes up through
the tube until it reaches the center. The competition of the two forces after
the inlet controls the main direction of the droplets velocity. The large
inertia of droplets permits them to retain this velocity direction far from
the inlet. Thus, the phenomena at the pipe inlet a�ect the �ow evolution
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Figure 3.5: The e�ect of increasing the turbulent kinetic energy of the vapor
on the droplets distribution over the tube

all over the pipe. For example, the competition between the two forces after
the inlet determines the resulting acceleration direction of the concentrated
droplets and a�ects the height at which they meet the center. This e�ect
can be seen in �gure 3.5, which shows that the e�ect of the turbulence
increase as we increases the turbulent kinetic energy of the droplets at the
inlet. In these tests the lift force is the same for the three tests. In other
words, we increased the force that pushes the droplets toward the wall
which changes direction of the acceleration of the concentrated droplets.
Consequently, the zone with higher droplets concentration meets the center
at a higher point.
If the upper part of the pipe, also in �gure 3.4, we can see that after certain
height the concentrated droplets move away from the center toward the wall.
This orientation of the droplets toward the wall, in this zone, is explained
as follow. The important concentration of the droplets at the center causes
important vertical deceleration of the vapor in this zone. This deceleration
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Figure 3.6: The e�ect of the lift force on the droplets distribution over the
tube

of the vapor inverses the gradient of the vapor's mean velocity, so it inverses
the sign of the shear. Since the lift force direction depends on the sign
of the shear rate, it inverses its sense and it pushes the droplets from the
center to the wall. The vertical deceleration and acceleration of the droplets
is controlled by the vertical component of the forces mainly the drag force.
Then beside its e�ect in the vertical distribution of the droplets the drag
force has an indirect impact on the radial distribution of the droplets.

3.5 Discussion about the model of each force

After explaining the role of each term on the distribution of the droplets,
now we discuss brie�y the importance and the modeling of these terms. This
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discussion aims at restricting our study toward the models that play a critical
role and seems not to be compatible with the dispersed droplets case. For
the closure of interfacial forces, the bibliographical review shows that the
models of the closure of the drag force and the lift force usually depend
on two main characteristics of the �ow: the particle Reynolds number Rep
de�ned in equation (2.106) and the non dimensional shear rate of the �ow α
de�ned as

α =

(
dp/2

u1z

)(
∂u1z

∂x

)
(3.2)

Where dp is the particle diameter, and u1z is the mean vapor velocity in the
vertical direction.
So �rst of all we will place our study with respect to these two variables.
According to the presented geometry and the considered inlet conditions,
Rep is greater than one and reaches an order of 102. The non dimensional
shear rate α reaches high values near the wall but it stays lower than 0.5 in
the major part of the �ow. Theoretically, the drag force, the virtual mass
force, and the gravity forces play the major role in the vertical propagation
of the droplets. In the case of droplets �ow, the virtual mass force shows to
be so small, and the vertical propagation of the droplets is mainly controlled
by the competition between the drag and the gravity force. In the previous
chapter, we presented the model of the drag force with a drag coe�cient
developed by Wallis (1969) in equation (2.105). This model was initially
developed for the �ows with solid particles. In recent studies, the validity
of this model has been con�rmed by the DNS calculations predicted by
Kurose and Komori (1999) as shown in the �gure 3.7. This �gure shows
the evolution of the drag coe�cient with respect to the particle Reynolds
number Rep, in a shearless �ow. Sugioka and Komori (2006) studied the
sensitivity of the drag coe�cient to the shear rate of the �ow. As shown in
�gure 3.8, the drag coe�cient on a spherical droplet increases with the shear
rate for a �xed value of the particle Reynolds number, and the dependence
of the drag coe�cient on the shear rate is more obvious for higher particle
Reynolds numbers. The di�erence in the drag between a spherical droplet
and a rigid sphere in a linear shear �ow never exceeds 4%, but the drag on
a spherical droplet is a little smaller than that on a rigid sphere. For our
study case, the �ow of spherical droplets, the used model is able to predict
the drag coe�cient with a degree of uncertainty that varies according to the
particular Reynolds number and shear rate. This uncertainty stays in the
range of 10% which is acceptable for our study case. Therefore the actual
model will be considered for the rest of our study.
The analysis of the results shows the important role of the lift force on

the radial distribution of the droplets in the pipe. In the previous chapter,
we presented a general model of the lift force proposed by Auton (1987).
This model concerns the �ow about a sphere placed in a weak shear �ow of
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Figure 3.7: Comparison of the drag coe�cient in a uniform shearless �ow
for a solid particle: (•) DNS results predicted by Kurose and Komori (1999);
solid line: the drag coe�cient prediction by the empirical expression of Wallis
(1969)

.

an inviscid �uid. A wall-bounded �ow with high particle Reynolds number
does not satisfy the hypothesis of Auton. The lift force appears to be
over-predicted where we see that all the droplets are pushed away from the
wall and concentrated in the center of the pipe. Therefore, the closure of
this force will be discussed in a separate chapter.
The other important term is the turbulence term. In the test case we
showed brie�y the e�ect of the value of this term on the droplet distribution
by changing the inlet condition. The change of the value of the turbulent
kinetic energy at the inlet had an e�ect on the forces acting on the droplets
distribution. That means that the value and the gradients of the turbulent
Reynolds tensor has an impact on the droplets distribution. As it is shown
in momentum balance equations we have two main turbulent terms which
are the two Reynolds stress tensors of the continuous phase and dispersed
phase. These two turbulent quantities are not independent because of the
turbulent interaction expected between the two phases. The turbulence
of the continuous phase is already a complex phenomenon. Turbulent
dispersed two-phase �ow with the co-existing droplets and vapor is more
complex. For a good simulation of the turbulence phenomena, we should
simulate the turbulence of the dispersed phase, the turbulence of the
continuous phase and the turbulent interaction between the two phases.
Simulation of turbulent �ows at CFD scale poses the challenge of choosing a
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Figure 3.8: The ratio of the drag coe�cient CD, on a spherical droplet in a
linear shear �ow to that in a uniform shearless �ow,cD0, versus the particle
Reynolds number, Rep, Sugioka and Komori (2006).

model that introduces the minimum amount of complexity while capturing
main physical phenomena. In the presented case, k − ε model was used to
simulate the turbulence of the continuous phase and Tchen-Hinze model
was chosen for the turbulence of the dispersed phase. These models are
considered as low-cost models from the numerical point of view. In a
separate chapter, we will discuss the compatibility of these models in our
case. Moreover more complex models will be tested to show the impact of
the strong hypothesis of k − ε and Tchen-Hinze on the results.

3.6 Conclusion

An overall description of the �ow permitted to identify the role of the dif-
ferent terms on the droplets distribution. A test case with common generic
models was done. A brief bibliographical study was presented to con�rm the
use of the model of Wallis (1969) for the prediction of the drag force coe�-
cient. The radial distribution of the droplets over the pipe section is mainly
a�ected by the lift force, the model of turbulence of the continuous phase,
and the model of turbulence of the dispersed phase. Auton model used for
the prediction of the lift force apparently predicts an important e�ect of this
force. To our knowledge, a lift model suitable for the case of the droplets
does not exist. Moreover, the choice of the turbulence models is not evident.
Therefore, the modeling of the lift force and the turbulence modeling will be
presented in separated chapters. While studying the turbulence modeling
we will test the low cost models and the impact of the considered hypothesis
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on the results. Moreover more complex models will be tested to check their
ability on ameliorating the results. Finally, the problem is now restricted
into three main models, the lift force model, the turbulence model of the
continuous phase and the turbulence model of the dispersed phase.
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Chapter 4

Turbulence modeling

4.1 Introduction

In the context of the re�ooding phase of a LOCA (Loss Of Coolant Acci-
dent), the vapor-droplet upward �ow is initiated at the level of the quench
front by a violent evaporation in a depressurized core of the nuclear reactor.
The velocity of the vapor between fuel rods is large enough to create a tur-
bulent �ow. Moreover the real geometry of the core contains the spacer grids
between the fuel rods. The high temperature of the fuel rods during the acci-
dent may cause the ballooning of some rods and �ow section restrictions. All
these complex geometries are extra e�ects that favor the turbulence of the
�ow. Therefore turbulence is an essential phenomenon for the targeted ap-
plication of our study. In the simulation, these extra geometry e�ects are not
taken into account. A simple geometry is considered in order to concentrate
on the phenomena that occur in two-phase turbulent �ow. The co-existence
of dispersed phase and continuous phase, implies extra complex phenomena
as the turbulence of the two phases and the turbulent interaction between
the two phases, beside the e�ect of the turbulence on the droplets' spatial
distribution.
As shown in the previous chapters, the turbulence quantities have a remark-
able e�ect on the droplets' distribution. The corresponding terms are related
to the mean of the �uctuating velocities u′kiu

′
kj . These terms are also called

Reynolds stress tensor of the phase k and are denoted by Rij,k.
In the Euler/Euler approach, these turbulent quantities are estimated via
turbulence models. There is a large variety of turbulence models proposed,
and the choice of the suitable model presents a crucial question. The model
should introduce the minimum amount of numerical complexity (CPU time),
while capturing the essence of the relevant physics. In two-phase �ows, we
should choose the appropriate model to calculate turbulence of the contin-
uous phase, and another model to calculate the agitation of the dispersed
phase. Besides, special attention should be paid to the modeling of the tur-
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bulent interaction between the two phases.
This chapter is organized as follows: �rst the isotropic turbulence model
k − ε and the nonisotropic model Rij − ε, are presented for the modeling of
the turbulence of the continuous phase in section 4.2. Second, two turbu-
lence models for the dispersed phase are presented in section 4.3, one based
on simple algebraic relations that calculates the dispersed phase turbulence
from the continuous phase turbulence, Tchen-Hinze, and the other based on
adding two transport equations for the turbulence characteristics of the dis-
persed phase, Q2Q12. The adequacy of these turbulence models is discussed
theoretically with respect to the case of vapor-droplet pipe �ow. Third,
numerical simulations using these di�erent models are compared with a gas-
particle experimental case in section 4.4. In section 4.5, a detailed study is
presented for the modeling of the two-way coupling terms, that we showed
to be a key issue of the modeling. Then, we propose a new formulation
for the turbulence coupling term and show how it allows to recover the ex-
perimental results. In section 4.6, we analyze the impact of the modeling
of the two phase turbulence on the spatial distribution of the droplets in a
con�guration close to our case of interest. And �nally, a conclusion on the
turbulence modeling is drawn.

4.2 Turbulence modeling of the continuous phase

The turbulence of the continuous phase, vapor, is modeled in the framework
of RANS turbulence models. The models of turbulence of the continuous
phase in a two-phase �ow di�er from models of single-phase �ow through
several additional production and destruction (sink) terms arising from
the interaction with the dispersed phase. The majority of industrial CFD
applications today are conducted with two-equation eddy viscosity model
(EVM), especially the k − ε model, while the Reynolds stresses transport
model (RSTM) or Rij − ε, remains exceptional. Several studies were
done to evaluate RSTM model in other �ow con�gurations. In the case
of single-phase �ows in presence of mixing vanes, Lee and Choi (2007)
have concluded that RSTM is helpful to see the e�ect of secondary �ow.
Ikeda et al. (2006) used k − ε model, they con�rmed its ability to predict
the averaged velocity, but they mentioned that it may be insu�cient
for narrow channel �ow conditions that include non isotropic e�ects. In
our case, both mixing vanes and narrow channels have to be considered.
Moreover two-phase �ow cases induce new e�ects, like the accumulation
of dispersed phase particles, and interaction between these particles and
the continuous phase turbulence. Several authors studied the turbulence
modeling in the case of water �ow with gas bubbles. As an example, a
RSTM model adapted to bubbly �ows is studied in Chahed (1999) and
used to perform simulations of basic bubbly �ows. This model is interesting
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but it requires a doubled computational e�ort; because it accounts for two
scales of turbulence, the �rst one is the turbulence of the �uid seen in a
single phase �ow and the second is the pseudo turbulence which considers
the �uctuation caused by the motion of the bubble. In Mimouni et al.
(2009), the authors proposed a turbulence modeling that takes into account
the Reynolds tensor for the continuous phase only, while a more basic
modeling is used for the dispersed phase. Also in Mimouni et al. (2009) it is
concluded that the use of eddy viscosity models may be su�cient for water
bubbly �ows in vertical pipes but not for complex geometries especially
when swirling �ows are involved. In our case, unlike the gas bubbles, water
droplets have important inertia and the anisotropy of the vapor turbulence
may in�uence the concentration of the droplets. Therefore this anisotropy
may play an important role even in a simple pipe. To analyze these ef-
fects, the two models k−ε and Rij−ε will be studied in details in this section.

4.2.1 k − ε turbulence model

This model is based on Bousinesq's analogy employing the eddy viscosity
as the model parameter. The eddy viscosity assumption transforms the
Reynolds stress gradient into a di�usion-like transport term. k − ε model
describes energy process in terms of production and dissipation, as well as
transport through the mean �ow or by turbulent di�usion. The formulation
of the standard k− ε modeling concept for the single-phase �ow is provided
in Jones and Launder (1972). In this approach two quantities are de�ned:
the turbulent kinetic energy of the vapor k1

k1 =
1

2
u′1iu

′
1i (4.1)

and the turbulent dissipation rate of the vapor ε1

ε1 = ν1
∂u′1i
∂xk

∂u′1i
∂xk

(4.2)

where ν1 is the molecular kinetic viscosity of the vapor. The Bousinesq-eddy
viscosity approximation assumes that the principal axes of the Reynolds
stress tensor Rij,1 are aligned with those of the mean strain-rate tensor at
all points of the turbulent �ow and that the ratio of proportionality between
the two stresses is the turbulent eddy viscosity of the vapor νT1 .

−Rij,1 +
2

3
k1δij = νT1 (

∂u1i

∂xj
+
∂u1j

∂xi
− 2

3

∂u1m

∂xm
δij) (4.3)

and

νT1 = Cµ
k2

1

ε1
(4.4)
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where Cµ = 0.09.
In the case of two-phase �ow, the turbulent predictions of the continuous
phase are carried out with the standard k − ε model supplemented with
additional terms accounting for the interfacial turbulent momentum transfer
Πq1. Then the transport equations allowing to compute k1 and ε1 are
written in the approximate forms:

• The transport equation of the turbulent kinetic energy, k1

α1ρ1

[
∂k1

∂t
+ u1,j

∂k1

∂xj

]
=

∂

∂xj
[α1ρ1

νT1
σk

∂k1

∂xj
]+α1ρ1(Prod1+G1−ε1)+Πq1

(4.5)

with the constant σk = 1.

• The transport equation of the turbulent dissipation rate, ε1, reads

α1ρ1

[
∂ε1

∂t
+ u1,j

∂ε1

∂xj

]
=

∂

∂xj
[α1ρ1

νT1
σε

∂ε1

∂xj
]

+ α1ρ1
ε1

k1
[Cε1Prod1 + Cε1max(G1, 0)− Cε2ε1]

+ Cε4
ε1

k1
Πq1 (4.6)

with Cε1 = 1.44, Cε2 = 1.92, Cε4 = 1.2 and σε = 1.3.

where Prod1 is the production contribution

Prod1 = −Rij,1
∂u1i

∂xj
(4.7)

G1 is the strati�cation attenuation term modeling the correlation between
�uctuating density and velocity.

G1 = − νT1
PrT

1

ρ1

∂ρ1

∂xi
gi (4.8)

where PrT is Prandtl turbulent number which is equal to 0.9.
Πq1 models the in�uence (destruction or production) of the dispersed phase
on the continuous phase (in our case the in�uence of the droplets on the
vapor)

Πq1 = α2F
12
D

ρ2

ρ2 + ρ1Cma
(k12 − 2k1) + α2F

12
D Vdi(u2i − u1i − Vdi) (4.9)

where Cma is the virtual mass coe�cient, and k12 = u′1iu
′
2i is the covariance

of the �uctuating velocities of the two phases which is calculated in the
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model of turbulence of the dispersed phase. The averaged drag force F 12
D , is

expressed in terms of the drag coe�cient CD and the relative velocity |Vr|
and the droplet diameter d as follows

F 12
D =

3

4

ρ1

α1

CD
d
|Vr| (4.10)

where

|Vr| = ((
−→
U2 −

−→
U1 −

−→
Vd) + 2k1 − k12 + 2k2)1/2 (4.11)

For the case of the droplets where (ρ2 >> ρ1), the virtual mass coe�cient
can be neglected from the equation of Πq1. More details about the modeling
and the role of this term is discussed in section 4.5.

4.2.2 Rij − ε turbulence model

The Reynolds stresses transport model (RSTM) Rij − ε is a higher level,
elaborated turbulence model. In RSTM, the eddy viscosity approach has
been discarded and the Reynolds stresses are directly computed. The exact
transport equation of the vapor Reynolds stress tensor R1,ij , accounts for
the directional e�ects of the Reynolds stress �elds and it is written in the
following way:

∂R1,ij

∂t
+ u1,j

∂R1,ij

∂xj
=

Pij︷ ︸︸ ︷
−
(
u′1,iu

′
1,m

∂u1,j

∂xm
+ u′1,ju

′
1,m

∂u1,i

∂xm

)
+

Gij︷ ︸︸ ︷(
fiu′1,j + fju′1,i

)

+

Φij︷ ︸︸ ︷
p′

ρ

(
∂u′1,i
∂xj

+
∂u′1,j
∂xi

)
−

εij︷ ︸︸ ︷
2ν

(
∂u′1,i
∂xm

∂u′1,i
∂xm

)
+Πq1

+
∂

∂xm

Dij︷ ︸︸ ︷ν
∂u′1,iu

′
1,j

∂xm︸ ︷︷ ︸
Dν
ij

−u′1,iu′1,ju′1,m︸ ︷︷ ︸
Dt
ij

− p
′

ρ

(
u′1,jδjm + u′1,iδim

)
︸ ︷︷ ︸

Dp
ij


(4.12)

The right hand side of the transport equation is decomposed into the
following terms: Pij is the production contribution due to the velocity gradi-
ents, Gij is the production due to body forces, Φij is the redistribution due
to pressure �uctuations, εij is the viscous destruction, Dij = Dν

ij +Dt
ij +Dp

ij

are the di�usion terms due to viscosity, turbulence and pressure respectively,
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and Πq1 is the in�uence (destruction or production) of the dispersed phase
on the continuous phase.
The modeling of Rij − ε depends on the same principles applied in the mod-
eling of k − ε, by referring to the turbulent characteristic scales of time and
length:

τ =
k

ε
, L =

k
2
3

ε

The turbulent production term, Pij , comes from the shear of the mean
velocity. The expression of Pij does not require any particular modelling.
Also the turbulent production term by the body forces, Gij , which concerns
the gravity force, does not require any special modeling.
Some terms in the Reynolds stress tensor transport equation can not be
computed directly and must be modeled. A modeling from Hanjalic and
Laurence (2002) is presented below.

• The turbulent energy interfacial transfer term, Πq1:
This term comes from the interfacial forces between the continuous
and the dispersed phase, and it is modeled in the same way as for the
model k − ε.

• The viscous dissipation,εij :
The large turbulent structures are not a�ected by the viscosity, while
small eddies may be considered locally isotropic. Therefore, the viscous
dissipation, which is associated to small structures, is considered locally
isotropic:

εij =
2

3
εδij (4.13)

• The di�usion term, Dij :
The term of turbulent di�usion is modeled due to a generalized gradient
di�usion expression as follows:

Dt
ij =

∂

∂xn

[
Csu′nu

′
1,m

k

ε

∂u′1,iu
′
1,j

∂xm

]
(4.14)

The terms of di�usion due to pressure and viscosity, Dp
ij and D

ν
ij , are

generally neglected. It is su�cient to adjust the constant Cs to take
them into account.

• The term of pressure redistribution, Φij :
Experience shows that the pressure �uctuations tend to redistribute the
turbulent stresses in a way that makes them tend toward an isotropic
state. This term is decomposed into several expressions that can af-
fect the sources of turbulence. After some calculations and physical
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considerations, Hanjalic and Laurence (2002) obtain the following de-
composition:

Φij = Φij,1 + Φij,2 + Φij,3

� Φij,1 is the term of slow return toward the isotropy. In the absence
of turbulent shear production or volume forces, far from the wall,
the force �uctuations become isotropic turbulence. Based on this
observation, Hanjalic and Laurence (2002) proposed the following
model:

Φij,1 = −C1ε1

(
u′1,iu

′
1,j

k
− 2

3
δij

)
In two-phase �ows, the dispersed particles also a�ect the mech-
anisms of redistribution of turbulent energy. The tendency of
sheared dispersed �ows towards the isotropy may be faster than
the corresponding single-phase �ows. To account for that diphasic
property, the term of the slow return to isotropy Φij,1, according
to Chahed (1999) reads:

Φij,1 = −C1

(
1

τT1
+
α

τp

)(
u′1,iu

′
1,j −

2

3
kδij

)

where τT1 = k1
ε1

is the characteristic time scale of the vapor tur-
bulence and τp is the characteristic time scale of a particle with
τp = CDd/Vr

� Φij,2 and Φij,3 are the terms of the fast return toward the
isotropy. These terms act directly on the terms of production Pij
and Gij as follows:
Φij,2 = −C2

(
Pij − 2

3Pδij
)

with P = 1
2Pmm

Φij,3 = −C3

(
Gij − 2

3Gδij
)

with G = 1
2Gmm

Hence, the model equation for ε has the form:

∂ε

∂t
+u1,j

∂ε

∂xj
=

∂

∂xi

(
Cε
k

ε
u′1,iu

′
1,j

∂ε

∂xj

)
+(Cε1P +Cε3G+Cε4k

∂u1,j

∂xj
−Cε2ε)

ε

k

The coe�cients of the Rij − ε model are given in (Table 4.1).

Cs C1 C2 Cω1 Cω2 Cε Cε1 Cε2 Cε3 Cε4
0.2 1.8 0.6 0.5 0.3 0.18 1.44 1.92 1.44 0.33

Table 4.1: Constants of the model Rij − ε
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4.2.3 Adequacy of the models k−ε and Rij−ε in the studied
case

RSTM model may be more time and storage-consuming, however, EVM
models may have major weaknesses. Mimouni et al. (2009) resumed the
short coming and de�ciencies of EVM models and among them k− ε model,
as follows

1. limitation to linear algebraic stress-strain relationship (poor per-
formances whenever the stress transport is important, e.g., non
equilibrium, fast evolving, and separating �ows),

2. insensitivity to the orientation of turbulence structure and stress
anisotropy (poor performance where normal stresses play an impor-
tant role),

3. inability to account for extra strain (streamline curvature, skewing,
rotation).

In our case of a vapor-droplet upward �ow inside a vertical thin tube, the
normal turbulent stresses are expected to be more important than the radial
turbulent stresses, this induces shear stresses and turbulence anisotropy. Be-
sides, the existence of inertial droplets in some areas decelerates the vapor
�ow, and this induces local shear stress far from the wall. This also implies
streamlines curvatures. These predictions drive us to test the two models
in order to check if, in this case, Rij − ε is able to capture extra physical
phenomena that are ignored by the k − ε. In section 4.6, we will quantify
the e�ect of these phenomena on other �ow properties, particularly on the
droplets dispersion.

4.3 Turbulence of the dispersed phase

The turbulence of the continuous phase (vapor) is already a complex phe-
nomenon, turbulence of dispersed multi-phase �ows makes the problem more
complex. As soon as the droplets have su�cient inertia and �nite size their
agitation are less correlated with the agitation of the vapor and meanwhile
the presence of the droplets in�uences the continuous phase turbulence inten-
sity. The importance of the turbulence of the dispersed phase comes from its
direct e�ect on the spatial distribution of the droplets. Hence it may have an
important e�ect on the heat and the mass transfer between the two phases.
There was less understanding of the dispersed phase turbulence until the late
80's of the last century. Over a long period, of time the most popular theory
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was Tchen-Hinze's "particle-tracking-�uid" theory (see Hinze (1975)). This
theory considers a strong hypothesis which imposes a large dependency of
the particle turbulence on the �uid turbulence. According to this theory
the particle turbulent �uctuation is always weaker than the �uid turbulent
�uctuation. It is valid when the Stokes number is very small. In the frame
work of two �uid-models, Elghobashi et al. (1984) combined the continuous
phase k − ε turbulence model with an algebraic particle turbulence model.
Similar approaches have been taken by Melville and Bray (1979), Chen and
Wood (1985), Mostafa and Mongia (1988), etc. All of these approaches are
based on the idea of Tchen-Hinze's theory. Others model the particle's ag-
itation and take into account its own convection di�usion and production
due to its mean motion and not only the e�ect of the �uid turbulence as
predicted by the Tchen-Hinze's theory. Some models calculate the turbu-
lence quantities characterizing the dispersed phase from one-equation model
(a transport equation for the turbulent kinetic energy of the dispersed phase
and an algebraic relation for the dissipation rate) as the model k − ε − kp
proposed by Zhou and Huang (1990). In dilute dispersed two-phase �ows,
turbulent transport has a di�erent nature due to the non viscous character
of the particles' �ow, thus the dissipation rate, whose existence as a viscous-
dependent variable is not possible. Therefore in the present work, a di�erent
modeling method proposed by Simonin (2000) namely the Q2Q12, is used.
Besides transport equation for the turbulent kinetic energy of the dispersed
phase, the model employs a transport equation for the vapor-droplet veloc-
ity covariance. This variable allows to model a sink of turbulence instead
of the dissipation rate, and it takes into account the turbulence destruction
e�ect caused by the drag force. The impact of the choice between the model
Q2Q12 and Tchen-Hinze on the droplets distribution is studied here.
In the momentum balance equations of the vapor and the droplets, the �uc-
tuation of the droplets is presented by mean of two terms that need proper
closures

• The particle kinetic stress tensor u′2iu
′
2j represents the mean transport

of particle momentum by the velocity �uctuations. By considering that
the droplets' �uctuations are isotropic, this stress tensor is considered
equal to the turbulent kinetic energy of the droplets k2:

k2 =
1

2
u′2iu

′
2i (4.15)

The energy k2 characterizes the droplets' agitation, and not a liquid
phase turbulence inside the droplet.

• The tensor of covariance between the velocity �uctuations of the two
phases u′1,iu

′
2j , is also considered isotropic

k12 = u′1,iu
′
2i (4.16)
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These two turbulent terms appear in the momentum balance equation of the
dispersed phase. Also, these terms are used in the closure of the interfacial
forces. In the previous chapters, it appears that the value and the evolution of
these terms particularly the kinetic turbulent energy k2 is of high importance.
The gradient of k2 acts as a radial force and impacts directly the spatial
distribution of the droplets. Two turbulence models are considered: Tchen-
Hinze model and Q2Q12 model.

Tchen-Hinze model

Tchen-Hinze model is an algebraic model that evaluates the turbulent ki-
netic energy k2 of the dispersed phase and the covariance k12 mainly from
the turbulent kinetic energy k1. Tchen (1947) was the �rst who developed
this method under restrictive hypotheses.
Other work were done on the same subject, as the work of Hinze (1975) and
Deutch (1992) which aimed to limit some of these very restrictive hypothe-
ses. Here we present a brief study of this work starting with the hypotheses
of Tchen (1947) then the consequent modi�cations proposed to reach the
�nal modeling of k2 and k12 used in our study.
The aim of Tchen (1947) was to estimate the coe�cient of dispersion of par-
ticles in function of the �ow characteristics for small non-deformable spheres
in a turbulent �eld. This theory is based on �ve hypotheses.

1. The turbulence of the liquid is stationary and homogeneous in a �-
nite dimensional domain. Therefore, the �uctuating movement of the
inclusions may reach an asymptotic value.

2. The particle Reynolds number Rep is smaller than unity. Then the
drag force can be calculated via linear model. The Stokes law can be
used.

3. The characteristic diameter of the particle is less than the scale of Kol-
mogorov. Then the size of inclusions does not provoke spatial �ltering
of the turbulence of liquid. With the assumption (2), the derivative
along the particle path is equivalent to the derivative following a �uid
particle.

4. During its motion the particle follows always the same �uid element.
Therefore the Lagrangian statistics following a �uid particle is equiva-
lent to the Lagrangian statistics following a particle.

5. No external forces are acting on the particles. This can be deduced
from hypothesis 4.

Using these �ve hypothesis, Tchen (1947) could write a linear equation of
trajectory of a particle.
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du2,i(t)

dt
= −u2,i(t)− u1,i(t)

τF12

+b
u1,i(t)

dt
−c
∫ t

t0

d

dτ
(u2,i(τ)−u1,i(τ))

dτ√
t− τ
(4.17)

with τF12 is the characteristic time scale of the particle in the motion of the
�uid

τF12 =
1

FD
(
ρ2

ρ1
+ CMa) (4.18)

and the coe�cients b and c are respectively equal to:

b =
1 + CMa
ρ2
ρ1

+ CMa

c =
9

dp

√
ν1
π

ρ2
ρ1

+ CMa
(4.19)

Tchen (1947) showed that the dispersion of the particles tends toward the
di�usion of the �uid particles. Hinze (1975) added other hypothesis to the
work of Tchen (1947) considering that the �uid turbulence is isotropic. Due
to linearity of the transport equation of the particle's velocity, the isotropy
of the liquid is transmitted to the particle's �uctuation. Consequently, the
terms of velocity variance, Lagrangian correlations of the velocity, and the
Lagrange spectrum of the inclusions can be written more simply as follows:

• The variance of the particle velocity:〈
u′

2

2

〉
2

=
1

2

〈
u′2,iu

′
2,i

〉
2

• The Lagrangian autocorrelation of the �uctuating velocity of the par-
ticles:

<2,ii(τ) =

〈
u′2,i(t0)u′2,i(t0 + τ)

〉
2〈

u′2,i(t0)u′2,i(t0)
〉

2

(4.20)

and the Lagrangian correlation

<2 =
1

3
<2,ii(t)

• The Lagrangian spectrum of the particles' �uctuating velocities

ξ2(t) =
1

3
ξ2,ii(t)
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where

ξ2,ij(w) =

√〈
u′2,iu

′
2,i

〉
2

〈
u′2,ju

′
2,j

〉
2

2π

∫ ∞
−∞
<2,ij(τ)exp(−Iwτ)dτ

• Lagrangian integral time scale

τ t2 =
1

3
τ t2,ii

where

τ t2,ii =

∫ ∞
0
<2,ij(τ)dτ

Tchen (1947) applied Fourier transformation to this linearized trajectory
equation. After neglecting the Basset force, he could write the Lagrangian
Spectrum of the particles ξ2 in terms of that of the �uid ξ1.

ξ2

ξ1
=

(τF12)−2 + bw2

(τF12)−2 + w2
(4.21)

Consequently, the variance of the �uctuating velocity of the particles could
be written in terms of the Lagrangian spectrum of the liquid〈

u′
2

2

〉
2

=

∫ ∞
0

ξ2(w)dw =

∫ ∞
0

(τF12)−2 + bw2

(τF12)−2 + w2
ξ1(w)dw (4.22)

Then Hinze (1975) considered that the Lagrangian correlation of the �uid
velocity can be written in the following exponential form

ξ1 = exp(
τ

τ t1
) (4.23)

with τ t1 the characteristic time scale of the liquid turbulence. Integrating the
equation (4.22) leads to

〈
u′

2

2

〉
2

=

b2 +
τ t1
τF12

1 +
τ t1
τF12

〈
ũ′

2

1

〉
2

(4.24)

With the same method, Desjonqueres et al. (1986) derives the equation of
the �uid-particle velocity covariance in terms of the turbulent kinetic energy
of the �uid:

〈
ũ′1u

′
2

〉
2

=

b+
τ t1
τF12

1 +
τ t1
τF12

〈
ũ′

2

1

〉
2

(4.25)
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with 〈
ũ′1u

′
2

〉
2

=
1

3

〈
ũ′1,iu

′
2,i

〉
2

(4.26)

The theory of Tchen-Hinze presents the major inconvenience that the parti-
cles follow, the same �uid elements during their motion. This hypothesis does
not allow to take into account the slip velocity between the two phases. Con-
sequently, this hypothesis neglects the e�ect of concentration of the droplets
in some zones. In the present case, the droplets may have tendency to mi-
grate away or toward the tube walls to form concentration zones. In this case
the turbulent kinetic energy of the �uid "seen" by the particles is di�erent
from the turbulent kinetic energy of the �uid.
The second inconvenient of this hypothesis is neglecting the slip velocity
between the particle, then it does not take into account the external forces
acting on the particle.
Deutch (1992) proposed an extension of the theory of Tchen-Hinze to take
into account these phenomena. This extension is based on the work of
Csanady (1963) who studied the e�ect of the slip velocity on the disper-
sion of particles in a cloud in the atmosphere. This phenomenon is called
the "crossing -trajectories e�ect". Csanady (1963) showed that the function
of auto-correlation of the liquid turbulence "seen" by the liquid could be
written in the following form:

<12(τ) = exp(− τ

τ t12

) (4.27)

with τ t12 which represents the characteristic time scale of the liquid turbulence
"seen" by the particles:

τ t12 = τ t1(1 + β2 |Vr|2〈
u′

2

1,i

〉
2

)−
1
2 (4.28)

with β the ratio of the Lagrangian integral time scale over the Eulerian
integral time scale and it is taken (0.7 < β < 1).
Deutch (1992) took the principal results of Csanady (1963) and wrote an
equation of movement equation (4.17) for a bubble, considering that the
particle Reynolds number Rep is greater than unity. He considered that the
interaction time between the inclusion and the large turbulent eddies in the
slip direction is identical to that of Csanady (1963). But in the perpendicular
direction to the slip, Deutch (1992) modeled the time scale in the following
way:

τ t12,⊥ = τ t1(1 + 4β2 |Vr|2〈
u′

2

1,i

〉
2

)−
1
2 (4.29)
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After all this process, the �nal equations of the Tchen-Hinze model, that we
will consider here, are

k2 = k1

[
b2 + ηr
1 + ηr

]
k12 = 2k1

[
b+ ηr
1 + ηr

]
(4.30)

b and ηr are functions of the drag coe�cient F
12
D and the virtual mass coef-

�cient Cma, and two speci�c time scales:

b =
ρ1 + α1Cma
ρ2 + α1Cma

ηr =
τT12

τF12

(4.31)

τF12 is the characteristic time scale of the momentum transfer between the two
phases, and τT12 represent the time scale of the continuous phase turbulence,
viewed by the dispersed phase that takes into account the crossing trajectory
e�ect.

τF12 =
α1Cma + ρ2

α1F 12
D

τT12 =
τT1
σα

(
1 + Cβξ

2
r

)−0.5
(4.32)

with σα equal to Prandtl turbulent number, Cβ is the crossing trajectory

coe�cient equal to 1.8, and ξr = 〈|
−→
Vr|〉2√
2
3
k1
.

In the case of the droplets ρ2 is larger than ρ1 then the factor b is very small
with respect to one,

ρ1 << ρ2 ⇒ b =
ρ1 + α1Cma
ρ2 + α1Cma

<< 1 when (α1Cma) ' 1

Also in the case of heavy particles as droplets the Stokes number is considered
to be larger than one. Then, ηr, which is the inverse of the turbulent Stokes
number, is smaller with respect to one, and k2 is so small with respect to k1.

b << 1 and ηr << 1⇒
[
b2 + ηr
1 + ηr

]
<< 1⇒ k2 << k1

In a case where ηr much larger than one, k2 will stay smaller than k1 but it
can reach a value comparable to k1.
It is necessary to note here that there are two ways to use the model Tchen-
Hinze with the model Rij − ε. The �rst method is to calculate each com-
ponent of the Reynolds turbulent stress tensor of the droplets Rij,2 from
its corresponding term in Rij,1 via the algebraic formulas of Tchen model
equation (4.30),

Rij,2 = Rij,1

[
b2 + ηr
1 + ηr

]
Rij,12 = 2Rij,1

[
b+ ηr
1 + ηr

]
(4.33)
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Due to this method the turbulence anisotropy of the continuous phase is
transmitted to the turbulence of the dispersed phase via the linearity of
Tchen formulas. The second method is to calculate the turbulent kinetic
energy of the continuous phase k1 as half of the sum of the diagonal
components of the Reynolds stress tensor of the continuous phase Rij,1.
Then, the calculated k1 is used in the calculation of k2 considering that the
dispersed phase turbulence is isotropic.

Q2-Q12 model

This model assumes that kinetic stress tensor of the droplets Rij,2 is isotropic,
therefore this stress tensor is calculated by using Boussinesq analogy em-
ploying eddy viscosity as a model quantity. The transport equations of the
turbulence kinetic energy of the droplets k2, and the vapor-droplet velocity
covariance k12, are derived in the framework of the Lagrangian method using
the probability distribution function (pdf) de�ned in section 2.4.3. The tur-
bulent momentum transfer between �uctuating motions is obtained in terms
of �uid particle velocity covariance given by an additional transport equa-
tion derived from a stochastic Lagrangian description of the �uid velocity
�uctuation along the particle paths based on Langevin-type model.
This model can take into account the e�ects of collision between the parti-
cles, but we will not consider it in the present study where droplet �ow is
diluted.

Modeling of the droplets' kinetic energy transport equation: k2

equation In section 2.4, we showed that the transport equation of any
mean quantity 〈ψ〉2 can be derived in equation via the equation (2.77). Then,
here we will start by deriving the transport equation of the particles �uctu-
ating stress tensor Rij,2 by substituting (ψ = u2,iu2,j) in the equation (2.77),
so that

α2ρ2

[
∂

∂t
+ U2,m

∂

∂xm

] 〈
u′′2,iu

′′
2,j

〉
2

=
∂

∂xm

[
−α2ρ2

〈
u′′2,mu

′′
2,iu
′′
2,j

〉
2

]
− α2ρ2

[〈
u′′2,mu

′′
2,i

〉
2

∂U2,j

∂xm

+
〈
u′′2,mu

′′
2,j

〉
2

∂U2,i

∂xm

]
+

[
Rσ,ij −

〈
u′′2,iu

′′
2,j

〉
2

]
Γ2

− α2ρ2

[〈
Fr,i
m2

u′′2,j

〉
2

+

〈
Fr,j
m2

u′′2,i

〉
2

]
(4.34)
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• The �rst term on the right hand side of the equation represents the
transport of the kinetic stress by the velocity �uctuations and is ap-
proximated using an eddy-di�usivity closure assumption derived from
the third-momentum mean transport and velocity shear in�uence

∂

∂xm
α2ρ2

〈
u′′2,mu

′′
2,iu
′′
2,j

〉
2

= − ∂

∂xm

[
α2ρ2K

kin
2,mn

∂

∂xn

〈
u′′2,iu

′′
2,j

〉
2

]
(4.35)

where, Kkin
2,mn, the kinetic stress di�usivity tensor is written

Kkin
2,mn =

[
τ t12

ξt12

Rmn,12 +
τF12

ξF12

〈
u′′2,mu

′′
2,n

〉
2

]
σq = 1 (4.36)

where

ξF12 =
5

9
ξc =

8

25
ξt12 =

3

2

Cµ
Cs

Cs = 0.25

• The second term is the production by the mean particle velocity gra-
dient, and does not need to be modeled.

• The third term is the in�uence of the interfacial mass transfer, and it
is neglected in our present case.

• The last term is the interaction with the �uid turbulent motion, and
leads to production or destruction of the particle velocity variance with
respect to the �uid particle velocity covariance. This term represents
the in�uence of the interfacial momentum transfer which is noted by
M ′k or Fr,m in the previous chapters. The derivation of this term is an
important point and it reads〈
Fr,m
m2

∂u2,iu2,j

∂u2,m

〉
2

=

〈
Fr,m
m2

[
u2,j

∂u2,i

∂u2,m
+ u2,i

∂u2,j

∂u2,m

]〉
2

=

〈
Fr,m
m2

[u2,jδim + u2,iδjm]

〉
2

=

〈
Fr,m
m2

u2,jδim +
Fr,m
m2

u2,iδjm

〉
2

(δim = 1 if i = m)

=

〈
Fr,i
m2

(U2,j + u′′2,j)

〉
2

+

〈
Fr,j
m2

(U2,i + u′′2,i)

〉
2

=

mean part︷ ︸︸ ︷〈
Fr,j
m2

U2,i +
Fr,i
m2

U2,j)

〉
2

+

turbulent part︷ ︸︸ ︷〈
Fr,i
m2

u′′2,j +
Fr,j
m2

u′′2,i

〉
2

(4.37)

In the derivation process of the transport equation of the particles
kinetic stress tensor, we substract the momentum balance equation. It
leads to the disappearance of the mean part of the equation (4.37).
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The transport equation of the particle kinetic stress tensor (equation (4.34)),
takes into account the anisotropy of the particle's turbulence. But this re-
quires the computation of a large number of equations, an equation for each
component of the tensor, this imply high CPU time. Therefore, a simpler
equation for the particle turbulent kinetic energy, based on the eddy-viscosity
assumption, may be derived from the particle kinetic stress equation (equa-
tion (4.34)). Assuming that the tensor anisotropy remains small and locally
in equilibrium. Thus the kinetic stress tensor components are computed with
the help of eddy viscosity as follows:〈

u′′2,iu
′′
2,j

〉
2

= −νkin2

[
∂U2i

∂xj
+
∂U2j

∂xi

]
+

2

3
δij

[
k2 + νkin2

∂U2m

∂xm

]
(4.38)

Where νkin2 is the particle eddy-viscosity, which accounts directly for the
combined e�ects of di�erent mechanisms such as: the transport of particle
momentum by the �uid turbulence and by their own random motion. The
algebraic expression for the eddy-viscosity is obtained from the o�-diagonal
correlations of equation (4.34) written in quasi- equilibrium homogeneous
shear �ow, providing that the di�erence between the �uid and the particle
mean velocity gradients remains negligible:

νkin2 =

[
νT12 +

τF12

2

2

3
k2

]
(4.39)

νT12 is the vapor-droplet turbulent viscosity which is directly referred to the
vapor-droplet velocity covariance.

νT12 =
1

3
k12τ

T
12 (4.40)

Then the transport equation governing the particle kinetic energy equation
is obtained by summation from the separate diagonal kinetic stress tensor
components:

∂

∂t
k2 + u2,j

∂

∂xj
k2 =

∂

∂xj
Kkin

2

∂

∂xj
k2 − u′2,iu′2,j

∂

∂xj
u2,j + Πq2 (4.41)

The �rst term is the transport term by the velocity �uctuations, where the
eddy-di�usivity coe�cient Kkin

2 is

Kkin
2 =

[
νT12

σq
+

5

9
τF12

2

3
k2

]
with σq = 1 (4.42)

The second term accounts for the production by the mean particle velocity.
The third term represents the inter-phase turbulent kinetic energy transfer
rate. For isotropic �ows, the expression in equation (4.37) becomes

Πq2 = −2α2ρ2

[〈
Fr,i
m2

u′′2,i

〉
2

]
(4.43)

A detailed closure of this term is presented in the following sections.
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Modeling of the vapor-droplet velocity correlations: transport

equation of k12 The term of velocity correlation between the vapor and

the droplet, k12 =
〈
ũ′1,iu

′′
2,j

〉
2
, appears during the closure of the turbulent

parts of the interfacial forces and in the closure model of the particle's ki-
netic energy. This term plays a role in the turbulent momentum transfer
rate between the two phase. The closure problem of this term relates to the
condition expectation of the undisturbed �uid velocity �uctuation measured

along the particle paths,
〈
ũ′1,i|cp

〉
2
. The closure of this term, that we de�ned

before as the drift velocity in section 2.4.5, is needed for the closure of the

vapor-droplet velocity correlation
〈
ũ′1,iu

′′
2,j

〉
2
. In section 2.4.5, we proposed a

simple relation for the modeling of the drift velocity. Here in this section we
present a complete closure of this term proposed by Simonin (2000) derived
from the stochastic Lagrangian description of the �uid turbulent velocity
measured along the particle path using a Langevin-type model.
First, to express this conditional expectation of the undisturbed �uid velocity

�uctuation
〈
ũ′1,i|cp

〉
2
, we de�ne the conditional �uid velocity distribution

f1(cf |cp;x, t). Where f1(cf |cp;x, t) is the probability that any given particle
with translation velocity u2 equal to cp views a locally undisturbed �uid ve-
locity ũ1 in [cf , cf + δcf ] who is located in the volume [x, x+ δx] at instant
t. 〈

ũ′1,j |cp
〉

=

∫
[cf,j − U1,j ]f1(cf |cp;x, t)dcf (4.44)

We should note that this conditional �uid distribution is di�erent than the
standard �uid velocity pdf f1(cf ;x, t). Where f1(cf ;x, t) is the probable
number of �uid particles (discrete vapor elements) with translation velocity
u1 equal to cf who are located in the volume [x, x+ δx] at instant t.

f1(cf |cp;x, t) 6= f1(cf ;x, t) (4.45)

Then the �uid-particle velocity moments appearing in the momentum bal-
ance equation can be written as

Vd,i =
1

n2

∫ 〈
ũ′1,i|cp

〉
f2dcp (4.46)

and 〈
ũ′1,iu

′′
2,j

〉
2

=
1

n2

∫ 〈
ũ′1,j |cp

〉
[cp,j − U2,j ] f2dcp (4.47)

To simplify these equations, we de�ne the �uid-particle velocity joint proba-
bility density function f12(cf , cp;x, t) which presents the local instantaneous
probable number of particle centers with a given translation velocity up = cp
and viewing a �uid velocity ũf = cf . By de�nition the standard particle
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velocity pdf f2 can be derived from f12 by simple integration over the �uid
velocity space,

f2(cp;x, t) =

∫
f12(cf , cp;x, t)dcf (4.48)

and the conditional probability distribution f1(cf |cp) can be written as

f1(cf |cp;x, t) = f12(cf , cp;x, t)/f2(cp;x, t) (4.49)

the �uid velocity measured at the particle position and the corresponding
particle velocity are random but correlated variables

f12(cf , cp;x, t) 6= f1(cf ;x, t)f2(cp;x, t) (4.50)

Then we can write

Vd,i =
1

n2

∫
[cf,i − U1,i] f12(cf , cp;x, t)dcfcp (4.51)

and 〈
ũ′1,iu

′′
2,j

〉
2

=
1

n2

∫
[cf,i − U1,i] [cp,j − U2,j ] f12(cf , cp;x, t)dcfcp (4.52)

The evolution equation of f12 can be derived in a general manner as follows

∂f12

∂t
+

∂

∂xj
[cp,jf12] = − ∂

∂cp,j

[
〈du2,j

dt
|cp, cf 〉f12

]
− ∂

∂cf,j

[
〈dũ1,j

dt
|cp, cf 〉f12

]
(4.53)

The closure of the transport equation governing the �uid particle velocity
joint probability density function f12(cf , cp;x, t)dcfcp requires to know the

two increment terms
du2,j
dt and

dũ1,j
dt . The velocity increment

du2,j
dt is already

de�ned in equation (2.69). While the �uid velocity increment measured along

the particle paths,
dũ1,j
dt , can be written according to a Langevin type equa-

tion. Simonin (2000) writes the Langevin equation of the locally undisturbed
�uid velocity increment measured along the particle paths as

ũ1,i(x+ u2δt, t+ δt) = ũ1,i(x, t) + giδt−
1

ρ1

∂P1

∂xi
δt+

∂

∂xj

[
ν1
∂U1,i

∂xj

]
δt

+ [u2,j − ũ1,j ]
∂U1,i

∂xj
δt

+ G12,ij [ũ1,j − U1,j ]δt (4.54)

G12,ij is a tensor of order two which is function of averaged values. It refers to
the anisotropy of the Lagrangian correlation of the �uid along the trajectory
of a particle. So it symbolizes the e�ects of the crossing trajectories on the

71



�uid turbulent velocity �uctuations viewed by the particles. Simonin (2000)
closed G12,ij by the following approximation.

G12,ij =
1

τ t12,⊥
δij −

(
1

τ t12,‖
− 1

τ t12,⊥

)
pipj

(
pi =

Vr,i
|Vr|

)
(4.55)

where τ t12,‖ and τ
t
12,⊥ are respectively the Lagrangian time scale of the �uid

turbulent measured along the particle path in the direction parallel and
orthogonal to the mean relative velocity.
The term accounting for the interaction with the �uid and the e�ect of
external force �elds can be written under the explicit form

∂

∂cp,j

[
〈du2,j

dt
|cp, cf 〉f12

]
=

∂

∂cp,j

[(
gi −

ρ1

ρ2

3

4

CD
dp
|Cr|[cp,j − cf,j ]−

1

ρ2

∂P1

∂xj

)
f12

]
(4.56)

According to Langevin type equation, the term in the joint �uid particle pdf
equation accounting for the �uid velocity rate of change is

∂

∂cf,j

[
〈dũ1,j

dt
|cp, cf 〉f12

]
=

∂

∂cf,j

[(
gi −

1

ρ1

∂P1

∂xj
+

∂

∂xm

[
ν1
∂U1,j

∂xm

])
f12

]
+

∂

∂cf,j

[
([cp,m − cf,m]

∂U1,i

∂xm

+ G12,jm[cf,m − U1,m])f12]

− ∂

∂cf,j

[
∂

∂cf,j

(
1

2
C12f12

)]
(4.57)

From the closed form of the �uid-particle joint pdf equation, we can derive
directly transport equation for the drift velocity Vd,i using equation (4.53)
and equation (4.51)

α2ρ2

[
∂

∂t
+ U2,j

∂

∂xj

]
Vd,i = α2ρ2

∂

∂xj

[〈
ũ′1,iu

′′
2,j

〉
2
−
〈
u′1,iu

′
1,j

〉
1

]
−

〈
ũ′1,iu

′′
2,j

〉
2

∂

∂xj
α2ρ2

− α2ρ2
∂U1,i

∂xj
Vd,j + α2ρ2G12,ijVd,j (4.58)
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The substitution of the �uid-particle velocity covariance in the equation
(4.53) allows to write the following transport equation:

α2ρ2

[
∂

∂t
+ U2,m

∂

∂xm

] 〈
ũ′1,iu

′′
2,j

〉
2

=
∂

∂xm

[
−α2ρ2

〈
ũ′1,iu

′′
2,ju

′′
2,m

〉
2

]
− α2ρ2

[〈
ũ′1,iu

′′
2,m

〉
2

∂U2,j

∂xm

+
〈
u′′2,mũ

′
1,m

〉
2

∂ 〈ũ1,i〉2
∂xm

]
− α2ρ2

1

τF12

[〈
ũ′1,iu

′′
2,j

〉
2
−
〈
ũ′1,iũ

′
1,j

〉
2

]
+ α2ρ2G12,im

〈
ũ′1,mu

′′
2,j

〉
2

(4.59)

• The �rst term on the right hand side of the equation represents the
transport of the velocity covariance by the particle velocity �uctua-
tions, and it is modeled using Boussinesq approximation.

• The second term represents the separate production by the mean par-
ticle and �uid velocity gradients respectively.

• The third term is the production rate due to the particle interaction
with the �uid turbulent motion.

• The fourth term accounts for viscous dissipation and crossing trajec-
tory e�ect.

Assuming that the tensor anisotropy remains small and locally in equilib-
rium, the modeling of the vapor-droplet velocity correlation tensor is also
based on an eddy-viscosity assumption, or Boussinesq approximation:〈
ũ′1,iu

′′
2,j

〉
2

= − νT12

1 + ηr

[
∂u1,i

∂xj
+
∂u2,i

∂xj

]
+

1

3
δij

[
k12 +

νT12

1 + ηr

(
∂u1,m

∂xm
+
∂u2,m

∂xm

)]
+

ηr
1 + ηr

[
R1,ij −

2

3
k1δij

]
(4.60)

where k12 =
〈
ũ′1,iu

′′
2,i

〉
2
, and νT12 is the vapor-droplet turbulent viscosity

accounting for the droplet momentum transport by the vapor turbulence.
The transport equation of k12 is derived from the separate transport
equation governing the vapor-droplet correlation tensor components:

∂k12

∂t
+ u2,j

∂k12

∂xj
=

1

α2ρ2

∂

∂xj

(
α2ρ2

νT12

σq

∂k12

∂xj

)
− Rij,12

∂u2,i

∂xj
−Rij,12

∂u1,i

∂xj
− ε12 + Πq12 (4.61)
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The �rst term on the right hand side represents the closure of the trans-
port of the covariance k12 by the velocity �uctuations, the constant σq = 1.
The vapor-droplet covariance dissipation rate due to viscous dissipation and
crossing-trajectory e�ect is

ε12 =
k12

τT12

(4.62)

and the inter-phase interaction term Πq12 reads

Πq12 = −α2ρ2
1

τF12

[(
1 +

α2ρ2

α1ρ1

)
k12 − 2k1 − 2

α2ρ2

α1ρ1
k2

]
(4.63)

Interests and applications of the models Tchen-Hinze and Q2Q12

The algebraic model of particle dispersion Tchen-Hinze has been restricted to
idealized cases of homogeneous and isotropic turbulence, with small particles
and very diluted �ows. This model was validated by several authors; it
can predict the particle dispersion in simple �ows where the density of the
particles is smaller than the density of the liquid. Simonin (1991b) has
also applied this model to the problem of particle dispersion in turbulent
jets, and has shown that this simpli�ed approach predicts the turbulent
dispersion of the particles accurately far downstream of the nozzle. But
the model cannot accurately predict particle dispersion close to the nozzle
exit where the particle radial �uctuation velocity is signi�cantly a�ected by
the injection method. Moreover this model provides an important starting
(just after the nozzle) for simulation of droplet evaporation in simple burners
typically used in combustion studies, e.g. Masri et al. (1996), which are often
carefully designed to produce very little turbulence at the nozzle exit.
As shown in section 4.3, for the case of heavy particles, k2 is always small with
respect to k1. This conclusion already contradicts with some experimental
results in the literature that noticed that the particles may have a turbulent
energy that can be even bigger than the turbulent kinetic energy of the
�uid.
Owing to their greater inertia, heavy particles retain longer memories of
their velocities. Therefore the local particle velocity �uctuation intensity is
a function of both inertial in�uence response to local turbulent �uctuations
and a particle's velocity history, so that the particle velocity �uctuation
intensity can be larger than the turbulence intensity of the carrier �uid.
Higher order closure models, as Q2Q12, is more �exible than Tchen-Hinze
model in this regard because the particle and the �uid-particle �uctuating
velocity correlations are modeled more rigorously using transport equations
rather than algebraic formulations. Q2Q12 should give better results since
it separates the production e�ect due to the shear of the mean particles'
velocity and to the interaction with the �uid turbulence.
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In our case, droplets are considered as inertial particles, then they may have
�uctuations, uncorrelated to those of the carrier �uid, leading to their own
dispersion. The droplets in our case are originated from a violent evaporation
at the level of the quench front. Therefore, particles may have important
turbulent kinetic energy at the inlet of the �ow and here the model of Tchen
may fail at this level as it was shown for the case of a nozzle. The size of the
droplets and the inlet conditions may play a role in reducing the de�ciencies
of Tchen-Hinze model. Then this simpli�ed modeling stays as a considerable
choice, especially when the additional computational expense of the more
complex models is considered. A numerical test for these two models, is
done in the next chapter to evaluate the advantages and the de�ciencies of
both models in our case.

4.4 Interpretation of the e�ect of the prediction of

the particles' agitation in channel �ow

The turbulence characteristics calculated by the models should be veri�ed
experimentally, but unfortunately, no experimental data is available for
vapor-droplet �ow. Some experimental data exist for the gas-liquid �ow but
usually they treat cases of spray �ow in which special inlet conditions are
imposed and they do not account for wall bounded �ows e.g Sommerfeld
et al. (1993). Experimental data are available for gas-solid �ows, for di�erent
�ow con�gurations (e.g. geometries, particle sizes, and types). Although
gas-particles experiments do not take into account phenomena as droplets
evaporation and mass transfer between the two phases, these experiments
can give the dynamic characteristics of the �ow. Groll et al. (2009) used
the experiment of Kulick et al. (1994) to validate his computational code
in which he used the model k − ε for the turbulence modeling of the
continuous phase and the model Q2Q12 for the model of the turbulence of
the dispersed phase. The experiment of Kulick et al. (1994) is representative
of wall bounded �ows, and the particles �ow is in the same order of scale
of the Stokes number of the droplets in our study case. Therefore this
experimental database is used to validate our computational code and the
turbulence models. But this step is not su�cient, since the experimental
data does not provide the spatial distribution of the particles over the tube
which is a main characteristic in our work. Therefore this experimental
interpretation gives us only a general idea about the numerical code and the
models of turbulence. The e�ects of the turbulence modeling on the droplets
distribution is studied, in details, by analyzing numerical simulations results.
A gas-solid �ow in a fully developed channel is tested by Kulick et al.

(1994). It is a representative con�guration dealing with wall-bounded and
dispersed �ow. The interaction between air, representing the continuous
phase, and copper, taken as the dispersed phase is investigated. This �ow
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Figure 4.1: Schematic of the channel �ow considered

is downward channel �ow as shown in �gure 4.1, Reynolds number based
on the channel height(h = 40mm) and a single phase centerline velocity
(U0 = 10.5m/s), is Re = 27600. The �ow is considered as fully developed
after 150 channel width and at this position it is assumed that the particle
velocity and particle turbulence reached an asymptotic state. The copper
particles have a density of ρC = 8800kg/m3 and the diameter of the particle
is Dp = 70µm. The inlet mass loading of the particles is Z0 = 10% (the
corresponding volume fraction of the copper αC can be obtained directly
from the formulation: αC = ρairZ/(ρC + ρairZ) ). Groll et al. (2009)
used this experiment for the validation of his turbulence modeling with
k − ε for the continuous phase and the model Q2Q12 for the turbulence
of the dispersed phase. We simulated the same experimental con�guration
using di�erent combinations of turbulence models. These simulations are
realized by the code Neptune_CFD, with a mesh representing a thin ranch
of the channel. The discretization of the mesh is regular in the longitudinal
direction with 2450 cells, while in the radial direction the mesh is composed
of 100 cells and the size of the cells increase from y+ = 1 near the wall
to y+ = 25 at the center of the tube. The �rst case is done with the
model k − ε for the continuous phase and the model Tchen-Hinze for the
dispersed phase, while the second case is done with the model Rij − ε for
the continuous phase and the model Q2Q12 for the dispersed phase. In the
following, the di�erent results are compared and evaluated with respect to
the experimental results.
Figure 4.2 and �gure 4.3 show the comparison between the experimental

data and numerical simulations for the streamwise mean velocity and the
streamwise and normal-to-wall turbulence intensities for the continuous
phase. For the gaseous phase both models give a very good agreement
with the experimental results for the streamwise mean velocity component.
The experiment shows an anisotropy in the turbulence components of
the gaseous phase. The isotropic values simulated by k − ε are near to
the streamwise turbulent intensity and overestimate the normal-to-wall
turbulent intensity; this result is similar to the result obtained by Groll
et al. (2009). Rij − ε is more able to produce this anisotropy but the values
are overpredicted especially the normal-to-wall turbulence intensity. The
peak near to the wall is not reached by any model. The modeling of the
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Figure 4.2: Comparison of mean value velocity of air(x/h: normalized dis-
tance from the wall; Uz,air/Uz,air,center: normalized mean air velocity with
respect to the air velocity at the channel center

Figure 4.3: Stream wise and normal to wall turbulence intensities of the
continuous phase

turbulence anisotropy may have an impact on the droplets distribution, but
the experimental database does not provide any data to analyze this impact.
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Figures 4.4 and 4.5 show the comparison between the experimental

Figure 4.4: Comparison of mean value velocity of the dispersed phase

Figure 4.5: Stream wise and normal-to-wall turbulence intensities of the
dispersed phase

and numerical results for the streamwise mean velocity, the stream-wise
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Figure 4.6: Comparison of mean value velocity of the dispersed phase, �gure
taken from Groll et al. (2009) to show the results obtained by the method
Euler/Lagrange

Figure 4.7: Two cases with considering a high value of particles turbulent
kinetic energy at the inlet k2 = 0.5(m/s)2: �rst case using Q2Q12 with
no modi�cation; second case considering that the e�ect of the vapor on the
droplets turbulence is equal to zero Πq2 = 0

and normal-to-wall turbulent intensities for the dispersed phase. In the
two simulated cases, the calculated values of the particle velocity is over
predicted with respect to the experimental values. Experiments show that
the particles are decelerated by the vapor all over the channel radial section.
All the computational approaches show no capability in reproducing this
feature. This e�ect of deceleration of the particles in the experimental
case can not be explained since in used modeling there is no force that
acts against the gravitational force on the heavy particles. Groll et al.
(2009) have simulated this case by using two approaches, Euler/Euler
and Euler/Lagrange as shown in �gure 4.6. In the Euler/Euler approach
the calculated particle's velocity is uniform over the entire channel cross
section, while Euler/Lagrange approach gives the similar pro�le shape of
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the experimental results but also with the overpredicted values. Our results
are more comparable to Euler/Lagrange results, this may be explained due
to model used for calculating the drag coe�cient. In our model the drag
coe�cient is calculated in terms of the particulate Reynolds number which
is, in term, based on the particle diameter and the relative velocity modulus
that takes into account turbulence and �uctuating velocity covariance as
seen in equation (4.11). While for the drag force model in Euler/Euler
approach of Groll's simulation the relative velocity was calculated simply as
the di�erence between the averaged velocities of the two phases.
The analysis of the experimental data for the vapor and the particle
agitations show that the particle turbulence is important and comparable
to the air turbulence. Moreover the experimental results show strong
anisotropy of the particles turbulence, �gure 4.5. The simulated cases
show incapability of both models Tchen-Hinze and Q2Q12 to calculate
these characteristics of the particles �uctuations. For the anisotropy, it is
expected that both models fail since both of them are based on a theory of
isotropy. Moreover while analyzing the model Tchen-Hinze, it is expected
that this model underestimate the turbulent kinetic energy of the droplets.
But Q2Q12 is expected to have a better simulation for the magnitude of
the turbulent kinetic energy of the dispersed phase k2 since it takes into
account the particle's own �uctuations. Therefore the detailed analysis
about this result had been done to verify the reasons behind this failure
of the model Q2Q12. Unlike Tchen-Hinze model, Q2Q12 model permits
us to impose a value for the turbulent kinetic energy and the gas-particle
velocity correlation at the inlet of the channel. Since these values are not
speci�ed from the experimental data, several values of the turbulent kinetic
energy of the particle are imposed as entry boundary conditions. These
cases showed us that, the for established �ows the model estimates a value
of k2 which is independent of the values at the inlet. In �gure 4.7, we
show a test case where we imposed a high turbulent kinetic energy of the
vapor at the inlet k2 = 0.5. We noticed that in the case where we used
the model Q2Q12 without any modi�cation, this value of k2 decays to
the environ of zero and its value becomes similar to the value calculated
by the model of Tchen-Hinze. Therefore more detailed analysis of the
modeling method has been done. The analysis over the several terms of the
transport equation of k2 shows that the term of the inter phase-turbulent
energy transfer is the main term that cause the attenuation of k2. Also
in �gure 4.7 we show another test case where we neglected the interfacial
transfer term of the turbulent kinetic energy. This test case shows that
k2 maintains its high value when Πq2 = 0. Therefore a detailed study
about the closure of this term is presented in the next section of this chapter.
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4.5 Turbulent coupling

The dispersion of the droplets and the turbulence of the ambient vapor
by the dispersed droplets are two coupled phenomena. The e�ect of
the vapor turbulence on the droplets dispersion and agitation as well as
the e�ect of the presence of the droplets on the vapor turbulence are
major phenomena in vapor-droplet �ow. This is known as turbulence
modi�cation or two-way coupling. The e�ect of the droplets on the �uid
turbulence is presented in the model of the term Πq1 while the e�ect of
the vapor turbulence on the droplets dispersion is presented by the term Πq2.

4.5.1 Bibliographical review

In the past, numerous studies have been performed on the e�ect of the dis-
persed particles on the �uid turbulence. These studies show that many
parameters have been involved in the determination of the turbulent modi-
�cation. First Gore and Crowe (1989) summarized the previous works and
concluded that the ratio between the particle diameter and the �uid length
scale could be used to distinguish the regimes of turbulence increase or at-
tenuation. They noted that small particles tends to attenuate the turbulence
while large particles increase the turbulence. But Yarin and Hestroni (1993)
found that small particles could also enhance the turbulence in some cases.
Hestroni (1989) proposed that particles with low particles Reynolds number
Rep tend to suppress the turbulence whereas particles with high Rep would
enhance the turbulence. However, the experimental work of Hardalupas
et al. (1989) showed that particles without wake shedding (small Rep) could
also increase the turbulence. Eaton and Fessler (1994) reviewed previous
experimental and numerical studies and pointed out that dramatic turbu-
lence attenuation took place when the mass loading ratio was greater than
0.1. Sato et al. (2000) claimed that the inter-particle spacing was a more
critical parameter for turbulence modi�cation than the particle diameter.
The experimental results of Kulick et al. (1994) show that particles atten-
uate the turbulence, as the Stokes number, mass loading and the distance
from the wall increases . This agrees with the DNS results of Sundaram and
Collins (1999) which show that when the Stokes number increases, the �uid
turbulence decreases. Lately in a detailed DNS, Lucci et al. (2010) cited the
following: particles with diameter of the order of Taylor's length-scale al-
ways reduce the turbulent kinetic energy of the �uid. If the volume fraction
and diameter of particles are �xed, the turbulence decreases as we increase
the ratio of the particle density over the �uid density. If the inertia and
volume are �xed, smaller particles diameters attenuate the turbulence more
than the larger particles. Among these studies, although some consensus has
been reached, many of the explanations remain not clear and even contra-
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dict with each other. This bibliographical review shows that the e�ect of the
presence of the droplets on the �uid turbulence depends on a large number of
important parameters as particle diameter, particles Stokes number, particle
Reynolds number, particle/�uid density ratio, �ow structure and presence
of the walls.
On the other hand, we have the e�ect of the �uid turbulence on the droplets
dispersion. In turbulent �ows droplets motion is directly connected to the
ability of the droplets to respond to the large turbulent structure. The
response of the particles to the �uctuations in the �uid velocity is also a
challenging phenomena which is di�cult to predict. For several authors,
Stokes number is the main parameter that characterizes how quickly a par-
ticle responds to the turbulent �uctuation of carrier phase. Luo et al. (2006)
have realized a DNS of gas-particle �ow considering particles with di�erent
Stokes numbers (calculated as the ratio of the particle aerodynamic response
time to the time scale associated with the large-scale organized vortex struc-
tures in the free shear �ows) in a turbulent jet �ow. They noted that for
large scale turbulent structures, particles with low Stokes number (st=0.01)
follow the vortex motion, also for (st=0.1) the particles tends to distribute
uniformly, while for (st=1) particles concentrate in the outer layers of the
large turbulent structures and �nally for (st=10) particles move down stream
through the vortex structure with small lateral dispersion. Besides, for small
turbulence structures particles with (st=0.01, 0.1 and 1) tends to distribute
uniformly in the �ow while for (st=10) most particles directly move down
stream with rectilinear paths with very small lateral dispersion.
In our case the volume fraction of the dispersed phase is small enough to
assure that the dispersion is governed by the turbulent �ow (i.e. parti-
cle collisions can be neglected). However, the droplet mass-loading ratio
φ = ṁd/ṁ1 (where ṁd and ṁ1 represents the droplets and the vapor mass
�ow rates respectively) is large enough to introduce signi�cant mean and
turbulent energy exchanges between the two phases. Moreover in the study
of water-vapor �ow, we are interested to a wide spectrum of droplets sizes.
Therefore, some droplets may be small enough to respond to some of the
vapor velocity �uctuations but they remain too massive to act as a vapor el-
ement. More massive particles can be partially responsive or not responsive
to the vapor velocity �uctuation.
In Euler/Euler simulations these two-way coupling phenomena are modeled
via the inter-phase turbulent kinetic energy transfer terms. Turbulent quan-
tities of the continuous phase such as the kinetic energy and dissipation,
are modi�ed directly by the dispersed phase through the interfacial momen-
tum transfer. To take this into account extra source/sink terms are added
to the transport equations of the continuous phase turbulence. Although
large number of experimental and DNS studies had been done to charac-
terize these phenomena, few references study the modeling of these terms
in Euler/Euler modeling. In the previous chapters, two terms of turbulent
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kinetic energy inter-phase transfer appear: First term is Πq1 which appears
in the transport equation of the continuous phase (in both cases k − ε and
Rij − ε). The second term is Πq2 which appears in the transport equation
of the turbulent kinetic energy of the dispersed phase when Q2Q12 model
is used. Our analysis shows that the term Πq1 plays a secondary role in the
turbulent kinetic energy modeling of the continuous phase beside the other
terms. While the term Πq2 plays a major role in the turbulent kinetic energy
of the dispersed phase as shown in �gure 4.6. The analysis of the experimen-
tal case of Kulick et al. (1994) shows that the turbulent kinetic energy of
the droplets is under-estimated, because of an overestimation of Πq2. In the
following, the closure of the two terms is studied and �nally a new closure is
proposed for the modeling of Πq2

4.5.2 Closure Models of Πq1 and Πq2 in Q2Q12

The term Πq2 is de�ned in equation (4.43). By applying the same steps of
derivation presented in equation (4.37) we can write

Πq1 = −2
α2ρ2

α1ρ1

[〈
Fr,i
m2

ũ′1,i

〉
2

]
(4.64)

For modeling this term, Simonin (2000) used the work of Gatignol
(1983) that proposes an approximate form for the �uid forces acting on
a particle in terms of the undisturbed surrounding �uid �ow velocity.
According to Gatignol's analysis, the given approximation is valid for low
particle Reynolds number, if the size of the sphere is of the order of (or
smaller than) the characteristic length scale of the undisturbed �uid �ow.
For heavy particles (with respect to gas density: ρ2 >> ρ1) the volume
force induced by the surrounding �ow reduces to the drag force contribution.

fr,i = −ρ1
3

4

CD
dp
|vr|vr,i (4.65)

where vr = u2 − ũ1 is the local instantaneous relative velocity. It is the
di�erence between the particles with velocity u2 and the surrounding �uid
velocity ũ1, locally undisturbed by the presence of the particle measured at
the particle position. CD, and dp are the respectively the drag coe�cient
and the particle diameter de�ned in previous chapters. By averaging〈

fr,i
m2

〉
2

= − 1

τF12

〈vr,i〉2 (4.66)

where the τF12 is the mean particle relaxation time de�ned before as

τF12 =
ρ2

ρ1

4

3

dp
CD

1

〈|vr,i|〉2
(4.67)
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An important note here, that this complex form of the particle response time
scale can be simpli�ed to the well known form of Stokes number.

st =
ρ2d

2
p

18µ1

If we consider that Rep = 1 for all particles then the product of CD and Rep
is approximately equal to 24 (according to the de�nition of CD in equation

(2.105)). If we replace 〈|vr,i|〉2 by
ν1Rep
dp

in equation (4.67) we can write

τF12 =
ρ2

ρ1

4

3

d2
p

CD

1

ν1Rep
'
ρ2d

2
p

18µ1
(4.68)

τF12 is another form of the Stokes number that can be broadened to larger
values of Rep, because it accounts roughly for the non-linear dependence of
the drag coe�cient on the instantaneous relative velocity.
The closure of the term Πq2 can be derived as follows, starting from

Πq2 = 2α2ρ2

〈
Fr,i
m2

u′′2,i

〉
2

we use the equation (4.66) to write

Πq2 = −2α2ρ2
1

τF12

〈
u′′2,ivr,i

〉
2

by decomposing vr into a mean and a �uctuating part

Πq2 = −2α2ρ2
1

τF12

〈
u′′2,i[Vr,i + v′r,i]

〉
2

= −2α2ρ2
1

τF12

〈
u′′2,iv

′
r,i

〉
2

then we replace v′r,i by u
′′
2,i−̃u′1,i

Πq2 = −2α2ρ2
1

τF12

[
〈
u′′2,iu

′′
2,i

〉
2
−
〈
ũ′′2,iũ

′
1,i

〉
2
]

�nally we use k2 = 1/2
〈
u′′2,iu

′′
2,i

〉
2
and k12 =

〈
ũ′′2,iũ

′
1,i

〉
2
to write

Πq2 = −2α2ρ2
1

τF12

[2k2 − k12] (4.69)

For Πq1, we repeat the same steps. The only di�erence that appears here is

that
〈
ũ′1,i

〉
2

= Vd,i and not equal to zero. Therefore we have an extra term
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in the �nal closure of Πq1

Πq1 = 2
α2ρ2

α1ρ1

〈
ũ′1,i

Fr,i
m2

〉
2

= −2
α2ρ2

α1ρ1

1

τF12

〈
ũ′1,ivr,i

〉
2

= −2
α2ρ2

α1ρ1
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+
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ũ′1,iVr,i
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2
]

= −2
α2ρ2

α1ρ1

1

τF12

[Vr,iVd,i + k12 − 2k1] (4.70)

4.5.3 Models' limitations from bibliography

This closure method has been analyzed and compared to other methods by
several authors. That allows us to make a critical review of this modeling.
First, Ferrand et al. (2003) have realized an experimental study on the gas-
droplets interaction, in an axisymmetric jet laden with partly responsive
droplets. They tested the modeling of the term Πq1 presented above to
droplets �ow with several Stokes number. Their tests start from totally re-
sponsive droplets with very low Stokes number (st�1), which are able to
follow the smallest turbulent scales. Then they noted that all droplets be-
comes at least partially responsive to the gaseous �uctuations. Ferrand et al.
(2003) lighted on the interest of gas-droplet turbulent velocity correlation k12

while working with wide range of partially responsive droplets. These cor-
relations are expected to be negligible for the big droplets (st�1). On the
contrary they are equivalent to the �uid Reynolds stress for the smallest
droplets (st�1). An intermediate behavior depending on the droplet size is
expected for partially responsive droplets. Therefore they evaluated experi-
mentally the weight of the gas-droplets correlations on the direct turbulent
interaction between phases. And �nally concluded that neglecting these
terms leads to overestimate the magnitude of the attenuation term. Besides,
for the droplets turbulence Ferrand et al. (2003) detected a di�erent behav-
ior between the radial and the longitudinal kinetic stresses of the droplets.
The radial stress decreases when the droplet diameter increases, while the
longitudinal stress remains corresponding for the �uid longitudinal Reynolds
stress for droplet diameters smaller than 50 µm and grows up for larger sizes.
This is due to the production of the longitudinal kinetic stress by the mean
particle velocity gradient. This production term is the source of the strong
anisotropy observed for the droplet �uctuating motion.
Other studies were done by Xu and Subramaniam (2006) and Xu and Sub-
ramaniam (2007) who present one of the rare detailed studies on this sub-
ject. Xu and Subramaniam (2006) tested the model of Simonin against the
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DNS results obtained by Sundaram and Collins (1999). These DNS results
simulate the case of spherical solid particles evolving in freely decaying ho-
mogeneous turbulent �ow. The �ow is diluted, with particle density much
larger than �uid density (ρ2/ρ1 ' 1000); and particle size is in the sub-
Kolmogorov range. In this study, the Stokes number St = τp/τf , is de�ned
as the ratio of the characteristic particle momentum response time τp to a
characteristic �ow time scale τf which is chosen to be the Kolmogorov time
scale. These DNS results show that the turbulent energy of both phases
decreases monotonically and that the net e�ect of particles is to reduce �uid
energy. Moreover, the attenuation e�ect of the particles on the �uid turbu-
lence grows with increasing particle Stokes number. The particle turbulent
energy also decays monotonously in time, and the decay rate increases with
increasing particle Stokes number (for �xed mass loading). Xu and Subra-
maniam (2006) found that the prediction from model of Simonin agrees with
the DNS that turbulent kinetic energy of the �uid phase decreases monotoni-
cally, but the net e�ect of particles to reduce �uid energy is found to decrease
with increasing Stokes numbers, which is opposite to the DNS result. The
model predictions for �uid energy evolution also show a much steeper decay
at the beginning than the DNS result. The same steep decay is also observed
in the particle energy evolution. The decay of particle energy is observed
to increase with increasing particle Stokes numbers, which is consistent with
DNS data but there is some crossover at the beginning of evolution. The
physical reason behind the incorrect behavior of k1 evolution with increasing
particle Stokes number in Simonin model, and the anomalous steep decay
of k2 at early time lies in the fact that the particle response time is the
appropriate time scale for only a limited range of particle-eddy interactions.
In reality, particle-turbulence interaction is a complex multi-scale process.
Even for a mono-disperse gas-solid two-phase �ow, particles interact with
a range of eddies with di�erent lengths and time scales. Furthermore, the
particle response time and the Stokes number for each particle are di�er-
ent, since each particle has a di�erent instantaneous velocity. The particle
response time, de�ned here, can only represent the characteristic time scale
of particles interacting with the eddies in the dissipation range. To solve
this problem Xu and Subramaniam (2006) proposed a multi scale interac-
tion model. This model impose a new time scale that is able to estimate
small Stokes number for energetic eddies and large Stokes number for small
�uctuations. When this modeling of the time scale was implemented in the
model of Simonin the steep decay of k1 and k2 was corrected. Moreover it
corrects the prediction of the �uid turbulent kinetic energy evolution with
variation of particles Stokes number.
Xu and Subramaniam (2007) proved a constraint associated with mean mo-
mentum equation for particle-laden �ows. In a limiting study case of turbu-
lent multiphase �ows, the �ow is statistically homogeneous, isothermal and
in zero-gravity environment. If the gravity is considered equal to zero and
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the mean velocity �elds are homogeneous, the mean pressure gradient is zero
and the mean momentum equation system results in the trivial solution of
zero mean velocity in each phase, which implies a zero mean slip velocity.
Also collisions are assumed to be elastic and therefore there is no energy loss
through collisions. If the �ow �eld is initialized with zero mean velocity in
both phases, the mean velocities will remain zero. In this case, the evolution
of second-moments of �uctuating velocity is solely in�uenced by inter-phase
turbulent kinetic energy TKE transfer and viscous dissipation in the �uid
phase(without e�ects of the mean velocity gradients). For this limiting case,
the turbulent �ow equations are written in the following form:

α1ρ1
∂k1

∂t
= Πq1 − α1ρ1ε1

α2ρ2
∂k2

∂t
= Πq2 (4.71)

The constraint of Xu and Subramaniam (2007) is that the mean inter-phase
turbulent momentum transfer is conservative, i.e., equal and with opposite
signs for both phases.

Πq1 = −Πq2 (4.72)

If we de�ne the turbulent kinetic energy of the mixture as

em = α1ρ1k1 + α2ρ2k2

then according to the conservation of the mean inter-phase momentum trans-
fer in the special case we can write

∂em
∂t

= −α1ρ1ε1 (4.73)

This relation should be applied by any model to consider it as a conservative
model. The implication of this constraint on the model of Simonin yields

α1ρ1
∂k1

∂t
= α2ρ2

1

τF12

(k12 − 2k1)− α1ρ1ε1

α2ρ2
∂k2

∂t
= α2ρ2

1

τF12

(2k2 − k12) (4.74)

(4.75)

The resulting evolution equation of the speci�c mixture energy is

∂em
∂t

= 2α2ρ2
1

τF12

(k12 − k1 − k2)− α1ρ1ε1 (4.76)

Then the model of Simonin is not conservative.
In this bibliographical review above, we showed the advantages of the used
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turbulence coupling closure model as found by Ferrand et al. (2003). In their
study, Ferrand et al. (2003) focused on the modeling of the term Πq1 and
the importance of the term k12 while they did not discuss the closure of the
term Πq2. In the previous section, we showed the critical role played by the
term Πq2 and the need to close this term in a di�erent way. The work of
Xu and Subramaniam (2007), Xu and Subramaniam (2006), and Sundaram
and Collins (1999) present a good analysis of the closure of the turbulence
coupling and provided some arguments about the modeling. These references
propose two ways to ameliorate this modeling. The �rst one is by considering
a multi time scale interaction model whereas the second way is to �nd a model
that applies the conservative constraint (Πq1 = −Πq2). According to our
knowledge these studies are from the rare studies that treat this particularity
of the �ow and can provide a good reference for proposing any amelioration
to the model. In the next section, we will propose another modeling for the
term Πq2 based on the hypothesis of separating the turbulence scales.

4.5.4 Turbulence coupling model based on multi turbulent
scales

In this model we propose a correction solution for the term Πq2 by anal-
ogy with the work of the separation of the scale which has been proposed
by several authors for the closure of the term Πq1 (Chahed (1999), "Stan-
dard" model1, etc.). We show that it is possible to de�ne a turbulent scale
separation on the di�erent terms that compose the turbulent kinetic energy
interfacial transfer. This separation is important for our modeling which
aims to ameliorate the prediction of the turbulent energy of the droplets
inside the �ow.
This is based on separating the turbulence interaction between the particle
and its surrounding �uid into two scales. From the �uid point of view, a
particle can enhance the turbulence of the �uid by the �uctuations in the
wake. This is considered as �uid turbulence production, and it is produced
at a scale smaller than the size of the particle (which means small turbulent
scales). On the other hand the particle acts on the destruction of the �uid
turbulence when it traverse the large eddies. Looking from a particle point
of view permits us to assume that the production term for the �uid in the
wake is viewed as destruction term for the particles �uctuation; and on the
other side the destruction of the �uid turbulence, when particle crosses a
large eddy, represents a production term for the particle �uctuation.
This understanding of the turbulence exchange is modeled by decomposing
the term of the turbulent interaction between the two phases into two terms.
One represents the destruction at the level of the wake for small eddies. The
second one represents the production particle velocity �uctuation at the scale

1Turbulent model used in the calculation code ASTRID
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of large eddies.
Starting from the de�nition of the term Πq2

Πq2 = −
〈
u′′2,i

Fr,i
m2

〉
2

(4.77)

Then the �uctuating relative velocity is decomposed as the di�erence be-
tween the �uctuating velocity of the particle and the �uctuating velocity of
the �uid

v′r,i = u′′2,i − ũ′1,i → u′′2,i = v′r,i + ũ′1,i (4.78)

then
〈
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〉
2
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(4.79)

Πw is considered to be the term of destruction of the particle agitation and
it equals the energy of the eddies produced in the wake of the droplet. Π̃q2

is the term of the production of the turbulence agitation when it crosses the
large eddies. This term can be written as

Π̃q2 =

〈
ũ′1,i
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m2

〉
2

(4.80)
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In the same steps we can get

Πw =

〈
v′r,i

Fr,i
m2

〉
2

= − 1

τF12

[2k2 − U2,iVd,i − 2k12 + U1,iVd,i + 2kS1 ] (4.81)

Where kL1 represents the turbulent kinetic energy in the large eddies and kS1
represents the turbulent kinetic energy in the small eddies. We suppose that
the movement of the particle in the �uid is a�ected by the turbulent kinetic
energy of the �uid at two di�erent scales. Therefore the turbulent kinetic
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energy of the �uid used in the closure of the two terms does not refer to the
same turbulent scale. We suppose that turbulent kinetic energy of the �uid
is contained in big turbulent scales and the energy of the small structures is
negligible (the notion of large and small scales are considered with respect
to the size of the droplet). This hypothesis is true when droplets are small
and near the dissipation scale of Kolmogorov. According to this hypothesis
we can consider that the term kS1 in the equation (4.81) is negligible since
the turbulent kinetic energy of the �uid seen in the wake of the droplet is of
small scale. Then we can write

Πw = − 1

τF12

[2k2 − U2,iVd,i − 2k12 + U1,iVd,i] (4.82)

then the �nal form of Πq2 reads

Πq2 = − 1

τF12

[2k2 − k12 − 2k1] (4.83)

For cases with larger sizes of droplets the turbulent kinetic energy in the
small eddies can not be simply neglected. But the estimation of the energy
of these small eddies can not be solved easily. One of the most used methods
is the multi scale turbulent model for the continuous phase in which a system
of four transport equations should be solved. Two transport equations to
calculate the turbulent energy and the turbulent dissipation for large scales
and two other transport equations for turbulent energy and dissipation at
small scales. This model permits to estimate the neglected term in our
approach. In the present work this multi scale model is not considered,
keeping on the hypothesis that the droplet's size is near the length scale of
Kolmogorov.
The correction in the closure of the inter-phase turbulent energy transfer

term had been applied for the gas particle �ow of Kulick et al. (1994) in order
to compare it with the experimental data. In this reference experimental
case, the diameter of the particles is around 70 µm, thus the hypothesis of
neglecting the �uctuation energy of the eddies formed in wake remains valid
in this case. Figure 4.8 presents the experimental values of the vertical and
the radial components of the velocity �uctuation of the droplets with the
estimated isotropic agitation calculated by the models Tchen, Q2Q12 (with
equation (4.69)), and Q2Q12 with modifying the inter-phase transfer term
(equation (4.83)). The correction closure has an important impact over the
results, since it estimates an isotropic agitation of the droplets which lay in
the correct area between the vertical and the radial agitation. While with the
model Q2Q12 without any correction, this value is sharply underestimated.
Moreover several tests done on this closure have shown a total independence
from the initial conditions; but the correction model appears to have some
limitations since it presents a �at pro�le of the turbulent kinetic energy of
the particles overall the radial section of the tube. This may be referred to
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Figure 4.8: Stream wise and normal to wall turbulence intensities of the
dispersed phase

the strong hypothesis of neglecting the vapor turbulent energy in the small
eddies seen by the particle. But this result is satisfactory in our case, since
it corrects the order of magnitude of the agitation of the droplets.

4.6 Numerical simulation in a long vertical tube

The analysis of the experimental case shows the adequacy and the de�cien-
cies of the turbulence models regarding the mean velocity and the turbu-
lence characteristics of the two phases. It shows that the di�erence between
the turbulence models of the continuous phase is limited in detecting the
anisotropy as it is expected. In the other hand, for the particles turbulence
both models underestimate the particle turbulence. The new modeling of
the turbulent interfacial transfer makes the turbulent kinetic energy of the
droplets lie in the same order of magnitude as that of the experimental re-
sults. Unfortunately the experimental results do not give any information
about the impact of the turbulence modeling on the particles distribution.
In order to study the e�ect of these di�erences on the droplets distribution,
simulation cases are realized using the study case de�ned in section 3.4 by
varying the turbulence models of the two phases. First the e�ect of the tur-
bulence model of the continuous phase is studied by analyzing the impact of
the vapor turbulence anisotropy on the results. Then, the impact of the two
models Tchen and Q2Q12 (without any modi�cation) are studied. Finally,
we apply the modi�cation proposed in Q2Q12 and analyze its impact.
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4.6.1 E�ect of the turbulence modeling of the continuous
phase

Figure 4.9: The vapor volume fraction distribution �eld for two simulation
cases one with k − ε&Tchen and the other with Rij − ε&Tchen. Beside,
the radial pro�les of the turbulent kinetic energy of the droplets at three
di�erent heights.

The comparison with the experimental data showed that both k− ε and
Rij−ε are able to predict the mean vapor velocity pro�le. The experimental
results show a remarkable anisotropy for the vapor turbulence in such a
geometry. Evidently Rij − ε is more able to reproduce this anisotropy. In
this section, tests have been done with k − ε and others with Rij − ε. The
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Figure 4.10: The radial pro�les of the droplets' volume fraction for two
simulation cases one with k − ε&Tchen and the other with Rij − ε&Tchen
at the height Z=0.5 m

Figure 4.11: The vertical pro�les of the droplets' volume fraction for two
simulation cases one with k − ε&Tchen and the other with Rij − ε&Tchen
at center of the pipe X=0 m

Figure 4.12: The radial pro�les of the vapor velocity at the peak concen-
tration point, Z=1.9 m for the case k − ε&Tchen and Z=1.5 m for the case
Rij − ε&Tchen at the height Z=0.5 m

e�ect of the vapor turbulence on the droplets distribution has been done via
several terms. First, modeling the vapor turbulence a�ects the vapor �ow
characteristics, mainly the vapor mean and �uctuating velocities. These
vapor characteristics may impact the droplet distribution as follow:

• The mean vapor velocity has a direct e�ect on the modeling of the
interfacial forces acting on the droplets.

93



• The vapor kinetic energy is used in the modeling of the �uctuating
parts of the interfacial forces.

• The vapor kinetic energy impacts mainly the modeling the turbulent
characteristics of the droplets, k2 and k12. Since, as it has been shown
before, there is always a kind of dependency between the turbulence
of the vapor and turbulence of the droplets.

These three impacts are considered as indirect in�uence of the vapor tur-
bulence modeling on the droplets spatial distribution. The impact of the
vapor turbulence on the modeling of k2 and k12 is the main e�ect due to
the important role of the gradient of k2 on the droplet distribution. The
dependency of the droplets turbulence on the vapor turbulence is usually
controlled by the model of turbulence of the dispersed phase. Therefore, the
comparison of the modeling between k− ε and Rij − ε is done �rst by using
Tchen-Hinze model as a model of turbulence for the dispersed phase, then
by using the model Q2Q12. These two cases are analyzed in order to verify
if the impact of the modeling between k− ε and Rij − ε on the droplets dis-
tribution changes if we change the turbulence model of the dispersed phase.
Since the e�ect of the turbulence of the vapor on the droplets is complicated
and indirect, a detailed analysis of the di�erences is done in order to draw
the main lines at the end.
Figure 4.9 shows the vapor volume fraction distribution �elds for two study
cases, done with the model Tchen-Hinze model. The radial pro�les of the
droplets' turbulent kinetic energy at di�erent heights are presented. For the
case of Rij − ε & Tchen shown in �gure 4.9 the turbulence of the droplets is
considered isotropic (review the two di�erent ways of using the model Tchen
in section 4.3). Figure 4.9 shows that, from a general point of view, the
structure of the spatial distribution of the droplets is similar in both cases
(i.e. concentration zones are formed in both cases and they have similar
trajectories). A more detailed analysis of the droplets distribution shows the
following di�erences.

1. The concentration of the droplets in the blue zone is higher in the case
of k − ε. (a uni�ed scale has been chosen for the two cases)

2. In the �rst part of the tube after the inlet, the concentration of the
droplets in the zone around the tube center is higher in the case of
Rij − ε.

3. The inclination of the concentration zone of the droplets (blue zone) is
di�erent in the two cases. The concentration zone at the tube center
is higher in the case of k − ε. Figure 4.11 shows the pro�les of the
droplets concentration at the tube center of the tube. The peak point
in the case k − ε is at 1.9 m while it is at 1.5 m in the case Rij − ε.
Moreover, the peak concentration point in the case of k − ε is more
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important (0.023) than the case of Rij−ε where it stays in the environ
of (0.012).

4. The droplets in the concentrated zones in the center change their ori-
entation and �ow toward the wall after a certain distance in both cases.
It it noticed that the distance necessary for the droplets to change their
orientation is shorter in the case of Rij − ε.

After specifying the general di�erences between the two cases, we propose
an interpretation that explains the indirect impact of the vapor turbulence
modeling on the droplets distribution.

• The model k−ε overestimates the value of the turbulent kinetic energy
of the vapor k1. Therefore the value of the turbulent kinetic energy of
the droplets estimated in the case of k − ε is always higher than that
estimated in the case of Rij − ε as shown in the curves of �gure 4.9.
This di�erence in the value of k2, especially at the tube inlet (z = 0),
causes a larger centrifugal force (or turbulent dispersion force) that
push more droplets from the center toward the wall. This interprets
the �rst two di�erences noted above: More droplet in the concentrated
(blue) zone in the case of k−ε and more droplets stays in the center in
the case of Rij − ε. This is shown clearly in the concentration pro�les
in �gure 4.10.

• The third di�erence is about the inclination of the concentration zone
and the height at which it is located in the center. The inclination of
the concentrated zones is determined via the competition between a
turbulent dispersion force which pushes the droplets toward the wall
and the lift force which pushes the droplets near the wall toward the
center. As the turbulent dispersion force is more important in the
case of k − ε, the concentrated zone is more inclined upward; and this
interprets that the position of the concentrated zone is higher in the
case of k − ε.

• The fourth di�erence can be interpreted as follows: in the case of
Rij − ε more droplets stay in the center and in the lower part of
the tube. Therefore the vapor velocity is more decelerated in the
case of Rij − ε. This is shown in �gure 4.12 which shows the radial
pro�les of the vapor velocity at the height of the peak of each case
(1.9 m for k − ε and 1.5 m for Rij − ε). Then the shear rate of the
mean velocity of the vapor becomes more important in the case of
Rij − ε. Consequently the lift force, acting on the droplets after the
concentration zone, reaches a su�cient value to push the droplets
toward the wall after a shorter distance in the case ofRij−ε (�gure 4.9).

95



Figure 4.13: The vapor volume fraction distribution �eld for the two sim-
ulation cases one with k − ε&Q2Q12 and the other with Rij − ε&Q2Q12.
Besides, the radial pro�les of the turbulent kinetic energy of the droplets at
three di�erent heights.

Another study for the impact of the model of turbulence of the continuous
phase has been done, with Q2Q12 as a model of turbulence of the dispersed
phase. The pro�les of k2 in �gure 4.13 show that the value of the turbulent
kinetic energy of the droplets estimated in the case of k− ε is always higher
than that estimated in the case of Rij − ε. In the case of Q2Q12, this
di�erence can not be explained easily referring to a linear algebraic relation
as done for the case of Tchen. Here we show why k2 increases if we increase
k1 via the model Q2Q12. First we remind the system of equations of the
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model Q2Q12 that can be written as follows

∂k12

∂t
+ u2,j

∂k12

∂xj
=· · ·

Πqvl︷ ︸︸ ︷
− 1

τF12

[
(k12 − 2k1) +

α2ρ2

α1ρ1
(k12 − 2k2)

]

∂

∂t
k2 + u2,j

∂

∂xj
k2 =· · ·

Πq2︷ ︸︸ ︷
− 2

τF12

[2k2 − k12]

Since k1 is very big with respect to k12 then

k1 ↗⇒ [− (k12 − 2k1)]↗⇒ Πqvl ↗⇒ k12 ↗

and k12 is the same order of k2 then

k12 ↗⇒ [− (2k2 − k12)]↘⇒ Πq2 ↘⇒ k2 ↗

Figure 4.13 presents the vapor volume fraction distribution �eld for two

Figure 4.14: The radial pro�les of k2 and k12 at two di�erent heights

simulation cases: one with k − ε and the other with Rij − ε. Here we also
notice the importance of the phenomena of the lower part of the pipe just
after the inlet. The higher value of k2 in the case of k − ε generates a
turbulent dispersion force that pushes more droplets from the center toward
the wall. This leads to form more concentrated accumulation zones and the
consequences will be of the same type seen in the case of Tchen.
The choice of the continuous phase turbulence model has not an important
in�uence on the characteristics of the vapor phase, i.e. both models show
good prediction for the vapor averaged velocity. This is why k − ε is widely
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used in simulation of single-phase �ows or two-phase �ows with particles of
low density as bubbly �ows. The impact of the vapor turbulence modeling
on droplets dispersion is indirect, since this impact is produced by other
models that use k1. Therefore the �nal impact changes by changing other
models, as the model of turbulence of the dispersed phase as shown above.
In this section, the impact of the vapor turbulence modeling is analyzed in
a case study according to a special �ow mechanism occurring here. The
detailed di�erences at each section of the tube can not be generalized; but
major lines can be drawn. The inertia of the droplets is an important
parameter that magni�es the impact of the vapor turbulence. It is clearly
shown that a little di�erence in the direction or the concentration of the
droplets in the entrance zone of the pipe changes the overall distribution
even far away from the entrance. This is related to the inertia of the
droplets and their ability to retain the memory of their velocities for long
distances. This drives us to conclude that the small di�erences in modeling
k1 could not be neglected in case of the droplets, since their impact can be
magni�ed. Therefore, a �rst conclusion can be drawn here, that Rij − ε
model is required for this type of �ow in order to avoid the impact of the
extra hypothesis considered by the model k − ε. Nevertheless, the choice
between the two models does not modify the structure of the phase spatial
distribution.

4.6.2 E�ect of the turbulence modeling for the dispersed
phase

The comparison with the experimental data shows us that both Tchen-
Hinze and Q2Q12 models give similar results when the �ow becomes
fully developed. Even if the two models fail to reproduce the value of
the droplets' turbulent kinetic energy found in the experiment, it is still
important to analyze the impact of the two modeling methods on the
droplets distribution. Four study cases have been formulated to analyze
this impact, two cases with k − ε shown in �gure 4.15 and two others with
Rij − ε shown in �gure 4.16.
Changing the model of turbulence of the vapor does not impact the dif-

ferences between Q2Q12 and Tchen. These numerical tests show two main
di�erences between Tchen-Hinze and Q2Q12 model in our case. The �rst
one is that Tchen-Hinze imposes inlet boundary condition for the droplet's
turbulent energy, since it calculates the inlet value k2 automatically based
on the inlet boundary conditions of the continuous phase. This model
calculates a value of k2 very small with respect to the value k1. On the
other hand, Q2Q12 model allows to take into account an independent inlet
value of k2, which allows to study some cases where k2 is considered to
be important or comparable to k1. This may be required for the targeted
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Figure 4.15: The vapor volume fraction distribution �eld for two simulation
cases one with k − ε&Tchen and the other with k − ε&Q2Q12

study, especially if a violent departure of the droplets at the level of the
quench front should be taken into account. But several tests show that
even if an important value of k2 is imposed at the inlet this energy vanishes
and �nally it reaches a value of the same order of that calculated by Tchen.
Beside the magnitude of the k2, k2 calculated by Tchen-Hinze model takes
a sharp pro�le just after the inlet (center of the �rst cell). The radial
pro�les of k2 at the �rst cell after the inlet, presented in �gures 4.15 and
4.16, show the di�erence in the evolution of the pro�le of k2. The inlet
boundary condition value of k2 used in the case of Q2Q12 is chosen to
be of the same order of that calculated by Tchen-Hinze model. The inlet
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Figure 4.16: The vapor volume fraction distribution �eld for two simulation
cases one with Rij − ε&Tchen and the other with Rij − ε&Q2Q12

pro�le of k2 induces the gradient of the droplets Reynolds tensor which
acts as a momentum source term (the turbulent dispersion force acting on
the droplets). The sharp pro�le of k2 in the case of Tchen-Hinze model
generates an important force in comparison with the case of Q2Q12 where
the pro�le of k2 is almost uniform. The impact on the droplets distribution
is seen in the vapor volume fraction �elds in both �gures 4.15 and 4.16. In
the cases where Tchen is used, the droplets are more accumulated in the
concentration zones just after the inlet. The departure of the droplets at
the inlet, a�ects their distribution all over the tube, because of their high
inertia.
The second di�erence between the two models is noticed in the radial
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pro�les of k2 at high levels in the pipe as shown in �gures 4.15 and 4.16.
The pro�les of the turbulent kinetic energy of the dispersed phase calculated
by Tchen-Hinze follows the shape of the pro�le of the turbulent kinetic
energy of the continuous phase. Besides, the pro�le of k2 calculated by
the model Q2Q12 shows appears to be independent from the shape of the
pro�le of k1. Q2Q12 is able to take into account the turbulent agitation of
the droplets produced by the droplets motion beside the in�uence of the
continuous phase. On the other hand, Tchen-Hinze model calculates only
the agitation of the droplets due to the in�uence of the continuous phase
turbulence.
The two models give similar results when the �ow is fully developed (i.e.
at the outlet of the tube) and independent from inlet conditions. Q2Q12
permits to control the inlet boundary condition of k2 and it shows more
ability to account for the own agitations of the droplets independent of
the vapor. But �nally this model is also incapable to maintain the high
agitation of the droplets when the �ow becomes fully developed, as shown
in the comparison with the experimental results.
Therefore, a new test case is done with modifying the model of Q2Q12 by
implanting the proposed modeling of the turbulent interfacial transfer term
presented in the previous section.
Figure 4.17 presents the vapor volume fraction distribution �eld for a

simulation case using Rij − ε as turbulence model of the continuous phase
and the modi�ed model Q2Q12 for the dispersed phase. This case is done
keeping on all the initial conditions of the previous cases. An important
impact of this modeling is noticed that no concentration zones are viewed
all over the tube section. All the phenomena seen in the previous cases
disappear and the important e�ect of the inlet phenomena disappears. The
�ow is homogeneous and the droplet volume fraction decreases consequently
up in the tube due to the evaporation of the droplets.
This test case shows the important impact of the dispersed phase tur-
bulence on the simulation of our targeted case. The underestimation
of the value of the droplets turbulence causes droplets accumulation in
speci�c trajectories inside the �ow which has no physical interpretation.
Moreover the experimental results show that the turbulence of the par-
ticles may be as important as the vapor turbulence. The modi�cation
of the interfacial turbulent energy transfer in the model Q2Q12 permits
us to estimate a value of k2 which is of the same order of magnitude
found in the experimental results. The good estimation of the droplets tur-
bulence changes the overall structure of the spatial dispersion of the droplets.
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Figure 4.17: The vapor volume fraction distribution �eld for simulation case
one with Rij − ε model and the modi�ed model of Q2Q12

4.7 Conclusion

This chapter discusses the turbulence modeling in a droplets-vapor dispersed
�ow and its e�ect on the droplets volume fraction distribution in a vertical
tube. Turbulence models of the continuous phase and the dispersed phase
are discussed theoretically. Due to the lack of experimental data for this
kind of �ows, an experimental data of air-particles vertical channel �ow is
used to test the turbulence models. The experimental data does not provide
enough information about the droplets' spatial distribution. Therefore the
e�ect of the turbulence modeling on the droplets distribution is studied
numerically by analyzing di�erent simulation cases of vapor-droplet �ow in
a vertical tube employing di�erent turbulence models. The main results are
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as follow:
The turbulence modeling shows a signi�cant impact on the droplets dis-
tribution. The value and the pro�le of the turbulent kinetic energy of the
droplets k2 is the main term that impacts directly the distribution of the
droplets through what we de�ned as a turbulent dispersion force. There are
three models that participate in the prediction of k2: the turbulence model
of the continuous phase, the turbulence model of the dispersed phase and
the model of the turbulent coupling between the two phases.
The turbulence model of the continuous phase predicts the value of Rij,1.
This may impact directly the vapor characteristics as the vapor velocity.
Besides, it has an indirect impact on the droplet distribution. Comparison
with the experimental data shows that both models, k−ε and Rij−ε succeed
in estimating the velocity of the vapor, while the model Rij − ε is evidently
more able to take into account the anisotropy of the vapor turbulence. The
used models for the dispersed phase turbulence are not able to transform
the e�ect of the vapor turbulence anisotropy into the droplets turbulence.
Then the di�erence between the two models is limited. k − ε overestimates
the value of k1 with respect to Rij − ε. Although the di�erence of the
values of k1 calculated by the two models is small; but it is transmitted,
through the turbulence model of the dispersed phase, to make a di�erence
in the value of k2. This di�erence in the estimated value of k2 leads to
change the turbulent dispersion force, which in�uences in turn the radial
distribution of the droplets. Inertial particles as droplets are able to retain
memories of their velocity for long distances. Therefore a small di�erence
in the sense of the velocity or droplets' concentration in the entrance zone
of the tube, is able to change the distribution of the droplets all over the
tube. This inertial criteria of the droplets tends to magnify the e�ect of the
turbulence modeling of the vapor phase. We conclude that the results of
k−ε can be satisfying while the model Rij−ε is requested for more accuracy.

The turbulence model of the dispersed phase is important in determining
the value of k2 and evidently has more impact on the droplet distribution.
This model determines the degree of dependency of the droplets agitation on
the vapor's turbulence. Two models have been studied, an algebraic model
Tchen-Hinze and a higher level model Q2Q12 which calculates a transport
equation for k2. From a theoretical point of view, the droplets agitation es-
timated by Q2Q12 should be more independent from the vapor turbulence,
than that estimated by the model Tchen-Hinze. This refers to the ability of
Q2Q12 to take into account the production terms due to the droplets mo-
tion beside the e�ect of the vapor. This e�ect can be clearly noticed in the
numerical study case, when the pro�les of k2 are more independent from the
pro�les of k1 in the case of Q2Q12. But the experimental case, shows that
heavy particles may have a turbulent agitation comparable to that of the
continuous phase with strong turbulence anisotropy. The comparison of the
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values predicted by the two models with the experimental values shows that
both, Tchen-Hinze and Q2Q12, underestimate the turbulent kinetic energy
of the droplets. The analysis of the di�erent terms of the transport equa-
tion of k2 in the model Q2Q12 indicates that the term of the inter-phase
turbulent energy transfer is behind this underestimation of k2. A detailed
bibliographical study about the modeling of this term is presented . Some
studies clarify the disadvantages of the actual modeling of the inter-phase
transfer and proposed some solutions. In analogy with the work of separat-
ing the turbulence scale, which has been proposed for the closure the reverse
coupling term Πq1, we proposed a new closure method for Πq2. This method
is based on separation of the turbulence interaction between the two phases
into destruction of droplets agitation at small turbulence scales in the wake
of the droplet; and production of droplets agitation at big turbulent scales
when it cross large eddies. A strong hypothesis had been considered to ne-
glect the turbulent energy of the, kS1 , vapor at scales smaller than droplets
diameter. This can be justi�ed for the cases with small droplets near the scale
length of Kolmogorov, but it is not so evident for big droplets. The proposed
closure helps us to estimate a particle's turbulent energy k2 that lays in the
same order of scale measured in the experiment. For this present study this
solution is enough but our analysis enlights the importance of the closure of
this term for future research projects. The application of this closure on the
numerical study case shows a very important impact. This closure enhanced
the e�ect of the turbulence on the droplets distribution. No more concen-
tration zones were seen and the droplets became uniformly distributed all
over the tube section. The model of Tchen-Hinze is not suitable for the case
of droplets and higher level model as Q2Q12 is required to this case study.
More attention should be paid on the modeling of the inter-phase turbulent
transfer. Moreover, all the present study is based on the hypothesis that the
droplets turbulence is isotropic while several experimental references cited a
strong anisotropy of the droplets' turbulence. Therefore a high level model
that is able to take into account the anisotropy of the droplets turbulence
should be analyzed in future studies.
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Chapter 5

Lift force

As we showed in the previous chapters, the spatial distribution of the droplets
in vapor-droplet turbulent �ow in a long vertical tube is controlled mainly
by the interfacial forces and the turbulent dispersion. The main interfacial
forces are the drag force which plays the major role in the vertical propaga-
tion of the droplets and the lift force which impacts the radial distribution of
the droplets. The lift force, although often much smaller in magnitude than
the drag force, can play a central role in the preferential accumulation of the
droplets either close or away from the wall. Due to the important impact of
the radial distribution on the dynamic as well as on the thermal transfer in
the �ow, the lift force modeling becomes of fundamental importance in this
study.
In Stokes �ows1, a moving particle in one-dimensional shear �ow does not
experience a transverse lift force. With the introduction of the inertial ef-
fects there are three primary contributions to lift force: shear-induced lift,
rotation-induced lift, and wall-induced lift. In the present study, the droplet
surface is assumed to be clean so that the outer �ow does not induce any
rotation of the droplet. Note that the deformation of the droplet can induce
a lateral force even in zero Reynolds number �ow (Stokes limit). Here we
restrict our attention to inertial e�ect on non-deformable spherical particles.
Therefore, the problem of the lift force for a particle translating in a shear
�ow near to the wall is characterized by three parameters:

1. The non-dimensional distance from the wall, calculated as the ratio of
the distance between the wall and the droplet center over the droplet's
diameter.

2. The particle Reynolds number, being based on the droplet diameter.

1Stokes �ow is a type of �uid �ow where inertial forces are small compared with viscous

forces. The Reynolds number is low, i.e. Re << 1. This is a typical situation in �ows

where the �uid velocities are very slow, the viscosities are very large.
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3. The non-dimensional shear rate, being the ratio between the velocity
di�erence across the droplet due to the shear and the relative velocity
at the droplet center.

When a particle moves in a shear �ow it experiences a transverse force.
The existence of the lift force for small rigid spheres was demonstrated
experimentally by Segré and Silberberg (1962) who studied the migration of
buoyant spheres in a Poiseuille �ow. Because of its practical applications,
the analytical calculations of the lift force on spherical particles has been
the subject of constant interest since a long time. There are two series
of analytical work that has been carried out on this problem. The �rst
one considers the e�ect of inviscid2 rotational �ow on a sphere. After
several studies by several authors, Auton (1987) succeeded in performing
the complete calculation of the secondary velocity �eld induced by the
vorticity and evaluated the resulting lift force. The range of validity of the
analytical solutions derived by Auton (1987) is unknown. In other words,
according to our knowledge, no reference speci�es the upper limit of the
particle Reynolds number Rep and the shear rate for a valid application of
Auton's solution. The second series of work concerns low Reynolds-numbers
�ow. Combining several techniques, Sa�man (1965) derived the force on
a particle due to the velocity shear by considering the motion far away
from any boundaries and in the limit of small Reynolds number and large
shear. Sa�man (1965) assumed that the particle Reynolds number Rep
and the velocity gradient Reynolds number Res (being based on the shear

rate) are small with respect to unity, and that Rep << Re
1
2
s . McLaughlin

(1991) extended Sa�man's analysis by considering the case of an unbounded
shear �ow, where the inertial e�ects induced by the mean �ow are of the
same order of those induced by the shear. In other words, McLaughlin

(1991) removes the restriction of Sa�man Rep << Re
1
2
s . McLaughlin (1993)

derived an expression of the lift force due to the presence of the wall.
McLaughlin and Cherukat (1994) obtained an expression for the lift force
on a particle which is valid when particle is very close to the wall. The
Lift force modeling changes according to the conditions on Rep, Sr, and
the distance from the wall. Therefore, McLaughlin et al. (1997) proposed
what he called optimum modeling of the lift force. This optimum modeling
is a conditional modeling that uses di�erent models for each special case.
All these models are restricted under the condition that Rep << 1. This
brief summary shows that the analytical modeling of the lift force on a solid
particle is not clear at the present time, except for low Reynolds number
limit for which asymptotic results are available. Compared to the amount
of the analytical work, the number of the computational studies that have

2The �ow of a �uid is called inviscid �ow when it is assumed to have no viscosity. The

�ow of �uids with low values of viscosity agree closely with inviscid �ow everywhere except

close to the �uid boundary where the boundary layer plays a signi�cant role.
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considered the case of spherical particle embedded in shear �ow was very
small. First, Dandy and Dwyer (1990) obtained the numerical estimation
of the lift force on a rigid sphere for particle Reynolds number ranging
between 0.01 and 100. Nevertheless, other authors cited that their results
display some troubling features. Recently, a series of computational studies
clari�ed the e�ect of the lift on a rigid sphere for high Reynolds numbers.
Komori and Kurose (1996) considered the same problem up to particles
Reynolds number of several hundreds. The later found that beyond a certain
Reynolds number the coe�cient becomes negative and depends strongly
of shear rate. Later on, Kurose and Komori (1999) performed a three
dimensional direct numerical simulation for the �ow �eld outside a rigid
sphere in the range of particle Reynolds numbers of Rep = 1 − 500. They
con�rmed the phenomenon of reversal of the sign of the lift. The lift force
on a stationary sphere in a linear shear �ow acts from low-�uid-velocity side
to high-�uid-velocity side for low particle Reynolds numbers of Rep < 60,
whereas it acts from high-velocity side to low-velocity side for high particle
Reynolds numbers of Rep > 60. Sugioka and Komori (2006) investigated
the e�ects of �uid shear on the lift force acting on a spherical water droplet
in a viscous linear shear air �ow for moderate and high Reynolds number.
Their study aims to clarify the di�erence in the mechanism of the lift force
between a water droplet and a rigid sphere. They found that the behavior
of the lift coe�cient on a spherical droplet is similar to that on a stationary
rigid sphere. Moreover the lift force acting on a spherical droplet changes
its sign from a positive to a negative value at a particle Reynolds number of
Rep ' 50 in a linear shear �ow and it acts from the high-speed side to the
low-speed side for Rep ≥ 50.
Beside the shear-induced lift, the presence of the wall tends to increase the
lift force. The e�ect of the wall is strongest when the particle is in close
contact with the wall. This e�ect decays rapidly as the distance between
the particle and the wall increases until it becomes negligible for distance in
the environ of 10 particle diameters.
Lately, Zeng et al. (2009) performed a computational study for a rigid
sphere in a linear wall bounded shear �ow, to understand the e�ect of the
wall on the lift force. In Zeng et al. (2009) computations, the particle
Reynolds number ranges from 2 to 250 at separation distances to the wall
from nearly sitting on the wall to far away from the wall. They showed that
the value of the critical Reynolds number, at which the lift force inverses its
sign, is also dependent on the distance from the wall. For a droplet nearly
sitting on the wall the lift force changes its sign at very high Reynolds
number while for a droplet far from the wall the critical Reynolds number
will be similar to the value calculated by the Sugioka and Komori (2006),
i.e. Rep,cr ' 50.
The main goal of this chapter is to provide a complete description of the lift
force experienced by a droplet over a wide range of the particle Reynolds
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number and shear �ow taking into account the e�ect of the wall.

5.1 Problem Description

In our study case, we are interested in a �ow of water droplets in vapor wall-
bounded shear �ow. As explained in the introduction, the lift force in this
case should be characterized by the non-dimensional distance from the wall,
the particle Reynolds number Rep, and the non-dimensional shear rate Sr.
Therefore, it is important to place our study according to these parameters.
For this sake, a simulation of vapor droplets �ow in a long vertical pipe is
considered. This study case is de�ned in section 3.4. It is done with basic
turbulent models for both phases (k− ε and Tchen-Hinze), which has not an
important impact on the order of magnitude of the calculated parameters.
So only the e�ect of the lift force modeling on the droplets dispersion, is
analyzed.
Figure 5.1 shows the radial pro�le of particle Reynolds number Rep over

Figure 5.1: The radial pro�le of particle Reynolds number Rep over the tube
section in vapor droplets pipe �ow

the tube section in vapor droplets pipe �ow in the inlet zone (bottom of the
simulated domain). The particle Reynolds number ranges between 5 and 100
at this elevation. Although this range can changes a little as we change the
elevation in the pipe, we can generalize by considering that Rep is greater
than 1 and may reach a value more than 100. Figure 5.2 shows the radial
pro�le of non-dimensional shear rate Sr over the tube section. Sr ranges
between 1 in the near wall zone and zero at the tube center.
Equation (2.120) presents the general model of the lift force acting on a single
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Figure 5.2: The radial pro�le of non-dimensional shear rate Sr over the tube
section in vapor droplets pipe �ow

droplet, it has been averaged to get equation (2.121) which presents volumic
interfacial momentum transfer due to the lift force. In this chapter, the
equation (2.120) will be considered for simplicity reasons while comparing
with other models. Moreover, the radial component (x-axis) of the lift force is
the most important, and the other components can be neglected. Therefore,
we are interested only by the vertical component (z-axis) of the vapor velocity
and its shear rate.
We will state a simple problem of a �xed spherical droplet of radius R

Figure 5.3: A representative scheme of a droplet in a wall-bounded shear
�ow
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located at the origin of a Cartesian frame. The droplet is embedded in a
wall-bounded shear �ow corresponding to the undisturbed vapor velocity
�eld Uz, where l is the distance between the wall and the particle center.
Then under these conditions the main characteristic parameters of the �ow
are de�ned as follows

Rep =
2RUz
ν

, α =
dUz
dx

, Sr =
Rα

Uz
L =

l

2R

The non-dimensional shear rate compares the streamwise vapor velocity Uz
to the velocity di�erence induced by the shear over a distance corresponding
to the one droplet diameter. First, the general equation of the lift (equation
(2.120)) is recalled

fL = ρ1VpCL(vr ∧ rot(u1)) (5.1)

Here Vp is the volume of the spherical droplet, vr is the relative velocity
which corresponds to Uz in the simple case of a reference frame moving with
the droplet and u1 is the velocity of the vapor which also correspond to Uz
here. Then rot(u1) corresponds to

dUz
dx
−→ey = α−→ey

and

vr ∧ rot(u1) = Uz
dUz
dx
−→ex

Finally, the lift force is in the x-axis direction reads

fL = CLρ1VpαUz (5.2)

As noted out in the introduction, two analytical solutions giving the lift
coe�cient on a spherical particle in the simple shear �ow have been derived.
For an inviscid �uid satisfying the condition Sr << 1, Auton (1987) obtained
the result

fL = CL
2

3
πρ1R

3αUz (5.3)

which yields to a lift coe�cient CL,Auton = 0.5. All the simulation cases in
the previous chapters have been done using this lift model. But the vapor is
a viscous �uid, and the �ow is far to be considered inviscid especially close
to the wall where the boundary layer plays a signi�cant role. For viscous
�ows, Sa�man (1965) proposed the following model

fL = 6.46µR2Uz

√
α

ν
(5.4)
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which yields a lift coe�cient

CL,Saff =
1.54

R

√
ν

α

Sa�man (1965) derived this analytical expression of the lift force under the
following assumptions,

Rep << 1

Res

[
=
α(2R)2

ν

]
<< 1

where Res is the shear Reynolds number de�ned in terms of the velocity
shear.
Rep is assumed to be much smaller than Res by de�ning the variable ξ

ξ

=
Re

1
2
s

Rep
=

(
Sr
Rep

) 1
2

 >> 1

Figure 5.1 shows that in the present study Rep is not smaller than unity

Figure 5.4: The radial pro�le of the ratio ξ between the shear Reynolds
number and the particle Reynolds number

and can reach high values more than 100. Besides in �gure 5.4, that shows
the radial pro�le of the variable ξ, ξ is always smaller than one. That makes
the use of Sa�man's expression of the lift coe�cient irrelevant in our case.
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McLaughlin (1991) relaxed the restriction for cases with small ξ, and derived
the following expression for the lift force.

fL =
9

π
µR2Uz

√
α

ν
Ju (5.5)

where the function Ju is dependent upon the dimensionless parameter ξ.
Since the general form of Ju is complicated, McLaughlin (1991) de�ned the
values of Ju as follows

Ju = −32π2ξ5ln(1/ξ2), for ξ << 1

Ju = the values are provided in a special table for 0.025 ≤ ξ ≤ 5

Ju = 2.255− 0.6463/ξ2, for ξ >> 1 (5.6)

Due to these formulation, the solution of Sa�man (1965) in equation (5.4)

Figure 5.5: Comparison between the values from the table and the proposed
expression of Mie (1992) of Ju

is recovered for the case ξ −→ ∞ as Ju −→ 2.255. McLaughlin found that
Ju decreases rapidly as ξ tends to zero which means that Sa�man's model
may overestimate the lift force in our case. From the table of the values of
Ju in McLaughlin (1991), Mie (1992) constructed a curve �t formula. Figure
5.5 con�rms that formula given by Mie (1992) �ts with the values from the
table of McLaughlin (1991). This formula reads

Ju(ξ) = 0.6765{1+tanh[2.5log10(ξ+0.191)]}{0.667+tanh[6(ξ−0.32)]} (5.7)

Mie (1994) obtained an expression on a spherical bubble in a linear shear
�ow. Although McLaughlin (1991) relaxes the condition over ξ, it stays in
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Figure 5.6: Figure from Kurose et al. (2001), comparison of the lift coe�cient
CL in a linear shear �ow for a bubble (open symbols) with that for a solid
particle (closed symbols): (4,N) Sr = 0.1;(5,H)Sr = 0.4, the solid and
the dashed lines show the predictions for Sr = 0.1, 0.4 by Mie (1994) and
McLaughlin (1991), respectively

the limit Rep << 1. According to our knowledge, there is no analytical
model for the lift force on heavy particles (solid particles, or droplets) for
the case of high Reynolds numbers. But recently, several authors approached
this problem by e�ecting DNS for moderate and high Reynolds number.
Therefore new models have been proposed for the closure of the lift force in
this case based on the correlation of the DNS results.
Komori and Kurose (1996) and Kurose and Komori (1999) performed a three
dimensional direct numerical simulation for the �ow �eld outside a rigid
sphere in the range of particle Reynolds numbers of Rep = 1 − 500. They
found that the direction of the lift force action on a stationary rigid sphere at
higher Rep is opposite to that predicted by the inviscid and low-Reynolds-
numbers theories. Kurose and Komori (1999) speci�ed that the lift force
on a stationary rigid sphere in a linear shear �ow acts from the low-�uid-
velocity side to the high-�uid velocity side for low particle Reynolds number
of Rep < 60, where as it acts from the high velocity side to the low-velocity
side for high particle Reynolds numbersRep > 60. Later Sugioka and Komori
(2006) found that the behavior of the lift coe�cient on a spherical droplet
is similar to that on a stationary rigid sphere; and that the lift force acting
on a spherical droplet changes its sign from a positive to a negative value at
a particle Reynolds number of Rep ' 50 in a linear shear �ow. It acts from
the high-speed side to the low-speed side for Rep ≥ 50.
Kurose et al. (2001) studied the lift force acting on a spherical bubble for
high Reynolds number. They noted that the lift force acting on a spherical
solid particle is quite di�erent from that acting on a bubble. The lift force

113



on a solid particle changes its sign, while it keeps the same for a bubble.
They compared the results of this model with the DNS results obtained
by Kurose and Komori (1999). Figure 5.6 shows the di�erence between
the lift force on a bubble and a solid particle. The model of Mie (1994)
is good for the case of bubbles. Kurose et al. (2001) applied the model of
Sa�man with the empirical function from McLaughlin (1991), equation (5.7),
for the case of solid particles at high Reynolds numbers. Figure 5.6 shows
good agreement of the model of McLaughlin with the DNS results up to a
certain limit. Figure 5.6, does not show clearly the limit of validity of this
combination, particularly it does not show at which Reynolds number the
lift force changes its sign according to this formula. In the present study,
we extended the analysis about this point. According to the combination
between the model of Sa�man (1965) with the correlation of McLaughlin
(1991) the critical value of the particle Reynolds number Rep,cr (the value at
which the lift inverses its sense) is not �xed in the environ of 50 as predicted
in Sugioka and Komori (2006) but rather depends on Sr. Table 5.1 shows
how the values of Rep,cr for di�erent values of Sr. Therefore, we propose to

Sr Rep,cr
0.1 5.8
0.2 11.6
0.3 17.4
0.4 23.2
0.5 29
0.6 34.8
0.8 46.4

Table 5.1: The value of Rep,cr at which CL inverses its sign for di�erent
values of shear rate if we apply Sa�man model with the empirical function
of McLaughlin

adjust the empirical function of McLaughlin in equation (5.7) by replacing
the constant 32 by a variable b. b is a function of Sr, which permits the lift
force to inverse its sign around Rep,cr = 50 independently from the value of
Sr. Then the new proposed correlation reads.

Ju(ε) = 0.6765{1+tanh[2.5log10(ε+0.191)]}{0.667+tanh[6(ε−b)]} (5.8)

where

b(Sr) = −0.6916S4
r + 1.4522S3

r + 1.1313S2
r + 0.532Sr + 0.1533 (5.9)

This new empirical function allows to calculate a lift coe�cient in the same
order of magnitude of the results calculated by the empirical function of
McLaughlin. Besides the lift coe�cient changes its sign for Rep ' 50 which
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is consistent with the DNS results. Although this solution allows the lift force
to change its sign, it still presents some de�ciencies when it is compared with
DNS results and it does not take into account the e�ect of the wall.
A particle moving in a shear stress near the wall experiences a transverse
force that is directed away from the wall. The wall-induced lift force arises
as a result of two fundamental mechanisms. Using inviscid arguments, the
�ow relative to the particle can be expected to accelerate more within the
gap between the particle and the wall than above the particle away from the
wall. The resulting di�erence in pressure around the sphere will contribute
to a wall-ward force on the particle. On the other hand, vorticity generated
on the particle surface is not symmetrically distributed in the wake due to
the presence of the nearby wall. The asymmetry in the vorticity distribution
contributes to an asymmetric induced �ow, whose e�ect is to generate a
lift force on the particle directed away from the wall. Zeng et al. (2009)
performed a computational study for a rigid sphere in a linear wall bounded
shear �ow to understand the e�ect of the wall on the lift force. In Zeng et al.
(2009) computations, the particle Reynolds number ranges from 2 to 250 at
separation distances to the wall from nearly sitting on the wall, L = 0.505,
to far away from the wall, L = 4. They noted that for separation distances
larger than L = 0.75, CL changes sign at some Rep and becomes negative.
However, for L < 0.75, the lift coe�cient remains positive over the entire
range of Rep considered. Therefore near the wall, the critical Reynolds Rep,cr
number at which CL = 0, is not constant and it depends on the distance
from the wall. The values of Rep,cr for di�erent L as found by Zeng et al.
(2009) lie in table 5.1. It is seen that at L = 0.75, the critical Reynolds
number is close to 200 and decreases substantially to Rep,cr = 60 at L = 4.
For distances smaller than L = 0.75 Zeng et al. (2009) did not determine
whether the lift coe�cient will become negative at even higher Rep since
their calculations were limited to Rep < 250. Due to these results, Zeng
et al. (2009) noted that for distances far from L = 4 the value of the critical
particle Reynolds number Rep,cr ' 60 can be compared to the value found
by Kurose and Komori (1999). In the present case of the droplets, Sugioka
and Komori (2006) has speci�ed for the case of the droplets in unbounded
shear �ow that the value reads Rep,cr ' 50.
In the pipe �ow concerned and for the typical droplet diameter considered
in the present study case, the non-dimensional distance from the wall ranges
between 0.5 and 20. Therefore, near the wall the wall-induced lift should be
considered, while far away from the wall the conditions of the unbounded
shear �ow can be applied.
Zeng et al. (2009) presented a numerical correlation for the lift coe�cient
based on his DNS results. This correlation is valid over a range 1 < Rep <
200 and L > 0.5. This correlation has a complicated form and it reads:

CL = CL,wexp(−0.5δ(Rep/250)4/3)[exp(αβLL )− λL] (5.10)
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L Rep,cr
0.75 198.19
1 125.5
2 74.70
4 59.11

Table 5.2: The value of Rep,cr at which CL inverses its sign at di�erent
distances from the wall, table provided by Zeng et al. (2009)

where

δ = L− 1/2

CL,w =
3.663

(Re2
p + 0.1173)0.22

αL(Rep) = −exp(−0.3 + 0.025Rep)

βL(Rep) = 0.8 + 0.01Rep

λL(δ,Rep) = (1− exp(−δ))(Rep/250)5/2 (5.11)

The validity of this correlation is presented in �gure 5.7, where the value of
the lift coe�cient from the DNS results and the correlation of Zeng et al.
(2009) are plotted in terms of the Rep at several distances from the wall.
The correlation of Zeng �ts the DNS results for the zone near the wall (L ∈
[0, 505; 2]). For distances far from the wall (L = 4) the correlation gives
values in the same order of magnitude that's calculated by DNS, but this
result presents a de�ciency: the lift coe�cient changes its sign before Rep =
50. Therefore, an extra curve is presented considering that L = 10. In this
case, �gure (5.7,d) shows that if we apply Zeng formula far away from the
wall Rep,cr becomes very small with respect to 50, the value estimated by
Sugioka and Komori (2006) to be the critical Reynolds number in unbounded
shear �ow. Then we can conclude that the correlation of Zeng fails as the
distance between the wall and the particle increases.
It has been shown earlier that in the zone of the tube center, the �ow is

considered to be unbounded shear �ow. Therefore, the correlation of Zeng
et al. (2009) is not valid for all the domain of the �ow of interest in the present
study. According to our knowledge, there is no model for the lift coe�cient
for the case of unbounded shear �ow. In this chapter we propose a correlation
that �ts with the DNS results of Sugioka and Komori (2006) that are valid
for the particle in an unbounded shear �ow for particle Reynolds number
that ranges between 1 and 500. This correlation reads

CL =

(
15.5

Sr
Re2

p

exp−2Re−1.4
p + 0.12

)
+

(
5

Rep
− 0.05Sr − 0.08

)(
tanh(Rep − 55) + 1

2

)
(5.12)
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Figure 5.7: Comparing the DNS values and the correlation of Zeng et al.
(2009) at several distances from the wall

Figure 5.8 presents the comparison of the new correlation with the DNS
results of Sugioka and Komori (2006). Although it is not perfect, the above
correlation shows a favorable agreement with the DNS results and respect
the characteristic of inverting the sign in the limit between 50 and 60.
Moreover this correlations stays valid in the zone far from the wall, which
is better than the values predicted by the correlation of Zeng.

5.2 Impact of the lift force modeling on the study

case

After this detailed study about the di�erent modelings of the lift force, the
impact of these modelings on our study case is analyzed in this section. In
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Figure 5.8: Comparing the DNS values of Sugioka and Komori (2006) and
the new correlation at several distances shear rates for unbounded shear �ow

�gure 5.9, the vapor volume fraction �elds are presented for �ve simulation
cases with di�erent models of the lift. First in case (a) the model of Auton
(1987) is used, this model has been used in all the previous chapters. The
lift force here is overestimated and it pushes the droplets from the wall
to the center. In case (b) the model of Sa�man (1965) is used, here also
all the droplets are pushed away from the wall and concentrated zones are
found in the center. In case (c) the model of Sa�man (1965) is applied with
the empirical function from McLaughlin (1991) and correction of equation
(5.9). Here the e�ect of the wall is taken into account roughly by considering
CL = 0.29 near the wall. Therefore in this case it is shown that the droplets
do not approach the wall because of the strong lift near the wall. But from
the other side a lift force with opposite sign will push the droplets from the
center to the wall, this force is due to the change of the sign of the lift force
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estimated by empirical function from McLaughlin (1991). The same case is
done again in case (d) but this time the correlation of Zeng et al. (2009)
is used near the wall instead of considering roughly that CL = 0.29. The
results are similar to the case (c). Finally, in case (e) the correlation of Zeng
et al. (2009) is used all over the domain and similar results are found.

Figure 5.9: The impact of di�erent lift modeling on the spatial distribution
of the droplets over the pipe section: a) Model of Auton (1987)- b) Model
of Sa�man (1965)- c) Model of Sa�man (1965) + empirical function from
McLaughlin (1991) + Correction of equation (5.9) + CL = 0.29 near the
wall- d) Model of Sa�man (1965) + empirical function from McLaughlin
(1991) + Correction of equation (5.9) + model Zeng et al. (2009) near the
wall- e) Model of Zeng et al. (2009)- f) New correlation proposed in equation
(5.12) + model Zeng et al. (2009) near the wall

5.3 Conclusion

The impact of the di�erent modelings of the lift force on the distribution
of the droplets over the pipe radial section, shows that the modeling of
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this force is of substantial importance in our study. Our case of interest
requires a good modeling for the lift force in a domain where the particle
Reynolds number reaches high values and the shear rate range lies between
0 and 1. Also, the present study can be divided into two main domains,
near-wall shear �ow and unbounded shear �ow. Therefore the wall-induced
shear can not be ignored. The detailed revision of the modeling of this force
shows the following. The lift force action on a droplet is di�erent from that
acting on a bubble and it is very similar to the lift force action on a solid
sphere. The basic analytical models of Auton (1987) and Sa�man (1965)
overestimate the lift force and they do not allow to �t the values found in
DNS calculations. The review of the di�erent DNS results shows us that
two main characteristics should be taken into account. First, the lift force
is always positive and proportionally high near the wall. Second, that far
from the wall the lift force inverses its sign for a critical value of the particle
Reynolds number. Several solutions have been proposed in this chapter in
order to take into account these phenomena. All the proposed solutions gave
similar impact on the droplets distribution. For more accuracy for the value
of the lift force a new correlation is proposed based on the DNS results of
Sugioka and Komori (2006) for the unbounded shear �ow. For an accurate
modeling of the lift, we propose to use the correlation of Zeng et al. (2009)
in the near-wall region and the new correlation proposed in this chapter for
the zone away from the wall.
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Chapter 6

Application on the cooling of a

damaged PWR reactor core

The targeted study that motivates this work is the estimation of the cooling
capacity of the vapor-droplet �ow in a damaged PWR reactor core. It has
been postulated that the spatial distribution of the droplets is a main char-
acteristic of the �ow and that has a direct impact on the cooling capacity
of the �ow. It is the time to state about this hypothesis and to examine
whether the proposed modi�cation on the modeling of the droplet dynamics
actually impacts the rate of heat transfer with the wall.
As it is shown in the previous chapters, the modeling of the turbulence and
the lift force have an important impact on the spatial distribution of the
droplets. Moreover we noted that the existing turbulence models underesti-
mate the turbulence impact on the droplets distribution, while the existing
lift force model overestimates the impact of this force on the droplets. These
wrong estimations impact the simulation of the droplets' distribution. The
numerical results in this case show that droplets tend to concentrate in the
center of the tube where the near-wall zone stays empty from any droplet. In
a try to ameliorate these results, modi�cations were proposed on the model-
ing of these forces, which changed the over all distribution of the droplets. In
this chapter, we analyze the consequences of these modelings on the quantity
of heat that the �ow can absorb from the wall. A new series of test cases has
been done replacing the adiabatic wall considered in all the previous cases
by a hot wall of temperature 573K.
In �gure 1.2, we enumerated the di�erent heat transfer mechanisms those
occur in this type of the �ow, which can be summarized as follows: the con-
vection of the vapor with the wall, the convection between the vapor and
the droplets, the conduction between the droplet and the wall in a case of
direct contact of the droplet on the wall, and the radiation of the wall toward
the vapor and the droplets. The latter two e�ects are not considered in the
present work, but they are treated in parallel projects due to their impor-
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tance and complexity. It is worth noting that the estimation of these e�ects
also depends on the distribution of the droplets. Actually the radiation de-
pends on the distance between the droplet and the wall. Besides the direct
conduction between the droplets and the wall depends on estimating the
quantity of droplets that can be in contact with the wall. Therefore adding
these models in the future will be an additional proof on the importance of
the present study.
Four study cases have been realized to show the role of each modeling change
of the droplet distribution on the heat transfer rate. These �ve cases are done
with the same geometry mesh and initial conditions de�ned in section 3.4
by adding the hot wall condition. Only the models of turbulence and the
model of lift force will be changed from a case to another. Let us de�ne the
�ve cases and the corresponding problematic:

1. The �rst case is a basic case done with the model k−ε for the turbulence
of the vapor, the model Tchen-Hinze for the turbulence of the droplets,
and the model of Auton et al. (1988) for the lift force.

2. The second case is done with the model Rij − ε for the turbulence of
the vapor, the model Q2Q12 for the turbulence of the droplets, and
the model of Auton et al. (1988) for the lift force. This case is already
done for the adiabatic case and it aims here to show importance of the
choice of the turbulence models even without any modi�cation.

3. The third case is done with the Rij−ε for the turbulence of the vapor,
and the model Q2Q12 for the turbulence of the droplets. But in this
case we replaced the model of Auton et al. (1988) of the lift force by
the model proposed in chapter 5. This test aim at showing separately
the impact of the overestimation of the lift force on the heat transfer.

4. The fourth case is done with the model Rij−ε for the turbulence of the
vapor, the modi�ed model of Q2Q12 for the turbulence of the droplets,
and the new proposed model for the lift force. This case aims at the
impact of all the proposed models on the heat transfer.

In the following, for simplicity purpose, these cases will be noted as case 1,
case 2, ... consequently.
First of all, �gure 6.1 shows how the distribution of the droplets changes

with each change in the modeling for the four presented cases. These cases
are already described in the previous chapters in the case of adiabatic walls.
We do not remark any special e�ect of the hot wall on the dynamic structure
of the �ow. The di�erences between the cases stay of the same type described
before in chapters 4 and 5. We will remind rapidly the di�erence between
the cases. In case 1, the droplets are concentrated in the center of the tube
and no droplet approaches the near wall zone. In case 2, when we replace the
turbulent models k−ε by Rj−ε and Tchen−Hinze by Q2Q12, the droplets
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Figure 6.1: The volume fraction distribution of the vapor for the four mod-
eling cases

are more dispersed but they stay in the center of the tube. The �ow has the
same structure as in the case 1, because of the over estimation of the lift force
that pushes all the droplets away from the wall in the two cases. Therefore
in case 3, when the model of the lift force Auton et al. (1988) is replaced
by the new lift force model, the droplets become distributed almost overall
the tube section but they do not reach the wall (see the thin red line near
the wall in case 3 of �gure 6.1). In this case, an important wall-induced lift
force prevents the droplets to approach the wall, besides the underestimated
e�ect of the turbulence dispersion is not enough to make the droplets reach
the wall. In case 4, the lift force and the turbulence models are modi�ed and
the droplets are distributed all over the tube section.
The di�erence in the droplets distribution impacts the evaporation process.
Figure 6.2 shows the interfacial mass transfer rate Γ1 in the four cases.
Evaporation increases in the zones where the droplets concentrate. The
evaporation of the droplets decreases the temperature of the vapor. Then
when the evaporation is concentrated in a speci�c zone the vapor will become
locally cooler in this zone. This decreases its ability to evaporate more
droplets in this zone. Figure 6.3 shows the mean mass transfer rate over
the whole simulated domain in the four cases in the form of a histogram.
The mass transfer rate is minimum in the case 1 where the droplets are
accumulated in the center and the maximum is case 4 where the droplets
are totally dispersed. This histogram shows that the more the droplets are
dispersed all over the tube section the more the mass transfer rate increases.
In �gure 6.4, the vapor temperature �eld of the four cases is presented. The
droplets evaporation directly impacts the vapor temperature �elds. In case 1
and 2 the vapor is locally cooled in the accumulation zones in the tube center
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Figure 6.2: The quantity of vapor that results from the droplet evaporation
for the four modeling cases

Figure 6.3: The quantity rate of vapor that results from the droplet evapo-
ration for the four modeling cases

while the vapor near the wall stays proportionally hot with respect to other
cases. In case 3, the temperature of the vapor is more homogeneous all over
the tube section as in case 4. The heat transfer with the wall depends mainly
on the temperature of the vapor and its gradient in the near-wall zone. The
temperature pro�le of the vapor is an interesting factor in determining the
quantity of heat that is absorbed by the �ow.
Figure 6.5 shows the enthalpy transfer rate with the wall in all the four

cases as a histogram. The �ow extracts the maximum of enthalpy when
the droplets are totally dispersed (case 4). On the other side, the minimum
enthalpy transfer rate is extracted when the droplets are concentrated in the
center of the tube (case 1).
In this analysis, we show consequently the impact of the estimation of the
droplets distribution on the wall cooling process. Each amelioration in the
modeling of the droplets distribution impacts the quantity of heat extracted
from the wall. The heat transfer in case 2 is more important than the heat

124



Figure 6.4: The vapor temperature distribution �eld for the four modeling
cases

transfer in case 1 since the droplets are more dispersed even if they stay in
the center of the tube. In case 3, the quantity of heat absorbed from the
wall increases since we removed the e�ect of the lift force which concentrates
the droplets. Finally in case 4, the results are comparable to that in case 3.
But we should note an important remark here, that in case 3 the droplets
are simulated to never touch the wall but in case 4 droplets can be in direct
contact with the wall. Therefore in a case where we model the direct heat
transfer between the wall and the droplets in contact, the heat transfer in
case 4 will be more important than in case 3. Finally, this study shows
the importance of improving the estimation of the droplets distribution on
the estimation of the wall cooling. The heat transfer rate estimated after
choosing the good turbulence models and integrating the modi�cations on
the models in case 4 is 118% more than the value estimated in the case 1
done with basic models.

Figure 6.5: The quantity of enthalpy transfer rate with the wall for the four
modeling cases
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Chapter 7

General conclusion

Our work aims to improve the understanding of the �uid-gas non isothermal
turbulent wall bounded �ow. In particular, for the vapor droplets �ow there
is still open questions about the heat transfer with the wall. Only CFD
codes can help a better understanding for the wall to �uid heat transfer in a
DFFB1. Speci�cally, in the context of ameliorating the estimation of the heat
transfer during a LOCA accident in the core of a PWR, this study deals with
the adaptation of the code Neptune_CFD to the cases of dispersed droplets
�ow. The �ow is considered diluted and the droplets are considered to be
spherical and not deformable.
First, we introduced the various hypothesis in the methodology Euler-Euler
used by CFD approach and particularly in this computer code. A descrip-
tion of two-phase �ow model is presented, using separate mass, momentum,
and energy equations for the two phases. These separate balance equations
are obtained in an averaging process starting from the local instantaneous
conservation equations of the individual phases. During the averaging pro-
cess, important information on local �ow processes is lost and, consequently,
additional correlations were needed in order to close the system of equa-
tions. The terms that need closure models are identi�ed, such as the terms
of turbulence of the two phases and the terms of the interfacial transfer of
mass, momentum, and energy. The treatment of these models lays on sev-
eral physical aspects starting from the models of the heat transfer to the
dynamics of the two phases, beside the existence of several sizes of droplets
and the evolution of their sizes. The treatment of all these problems is a
very wide physical issue therefore we restricted our study to a main char-
acteristic of the �ow which is the spatial distribution of the droplets, due
to its direct impact on the wall to �ow heat transfer. The modeling of the
droplets distribution is also a composed problem since it depends on several
phenomena. Thanks to a physical and a theoretical analysis in chapter 2,
we identi�ed that the main phenomena that a�ect the droplets distribution

1Dispersed Flow Film Boiling
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are the forces between the vapor and the droplets and the turbulence of the
vapor and the droplets. After a brief presentation of the di�erent forces that
impact the droplets distribution, a simulation test case was done in chapter
3 using basic models to specify the importance of the modeling of each term.
This study case allows us to draw general conclusions concerning the main
mechanism that control the simulated �ow:

• Because of their important inertia, droplets are able to retain memories
of their velocity for long distances. Therefore the phenomena that
occurs at the inlet of the channel in�uences the structure of the �ow
for long distances in the tube.

• The main force that drives the propagation of the droplet in the stream
�ow direction is the drag force. Depending on the DNS results of
Kurose and Komori (1999) and Sugioka and Komori (2006) we deduced
that in our case the model of Wallis (1969) is able to predict the drag
coe�cient with a degree of uncertainty that do not exceed 10% which
is acceptable for our study case.

• The radial motion of the droplets depends mainly on two main forces:
lift force and the force of turbulent dispersion.

• The lift force model Auton et al. (1988), used in the test case, estimates
a very important e�ect of the lift force which leads to push all the
droplets away from the wall and makes the near-wall zone empty from
any droplets. In the other hand, the turbulent dispersion force pushes
the droplets in the inverse sense in the entry zone which leads to form
concentration zones.

• These concentration zones appear to be not realistic, this drives us
to conclude that the lift force and the turbulent dispersion force are
not well estimated. Therefore in the rest of the present document, we
extend the research about the closure of these terms.

The turbulence modeling shows a signi�cant impact on the droplets
distribution. The value and the pro�le of the turbulent kinetic energy of
the droplets k2 is the main term that impacts directly the distribution of
the droplets since the gradient of the kinetic stress tensor of the dispersed
phase is understood as a source term in the droplets momentum averaged
equation. Three models participate in the prediction of k2 with di�erent
degrees of importance: the turbulence modeling of the continuous phase, the
turbulence model of the dispersed phase and the turbulent coupling between
the two phases. These two models of di�erent levels of numerical complexity
and physical accuracy are considered for each phase. For the continuous
phase the choice between an isotropic model k−ε and a non-isotropic model
Rij − ε is studied, to check if the modeling of the anisotropy of the vapor
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turbulence has an important impact on the droplets distribution. For the
droplets turbulence two models are also studied, the simple algebraic model
called Tchen-Hinze (Tchen (1947)) is compared with the model Q2Q12
(Simonin (2000)) based on two transport equations for the turbulent kinetic
energy of the dispersed phase k2 and the �uctuation energy covariance k12.
Then we discussed the modeling of the turbulent energy transfer between
the two phase and new modeling proposed for this issue.
First we discussed these models theoretically. Then two simulation cases
with di�erent combination of the turbulence models (k − ε & Tchen-Hinze
or Rj − ε & Q2Q12) were compared to the experimental data of Kulick
et al. (1994) of air-particles vertical channel �ow. These comparisons aim
to test the ability of these di�erent turbulence models to reproduce the
characteristics of the continuous and the dispersed phase. The comparison
with the experimental data shows that both models k − ε and Rij − ε
are able to predict the streamwise mean velocity of the gaseous phase.
Besides, Rij − ε is evidently more able to produce the anisotropy of the
air turbulence. The experimental data shows that for the case of heavy
particles of Kulick et al. (1994), the velocity �uctuations of the particles
are anisotropic and they are important and comparable to the �uctuations
of the gaseous phase. From theoretical analysis of the two models, it was
expected that the model Tchen-Hinze may underestimate the value of the
turbulent kinetic energy of the dispersed phase. But Q2Q12 is expected to
have a better estimation for the value of k2 since it takes into account the
particle's own agitation beside the e�ect of the gas on the particles. Results
show that both turbulence models sharply underestimate the value of the
turbulent kinetic energy of the dispersed phase. Therefore we decided to
extend our research about the modeling di�erent terms of the model Q2Q12
in order to verify which term causes this attenuation of the value of k2.
We noticed that the term of the interfacial turbulent energy transfer in
the model Q2Q12 causes the destruction of the turbulent kinetic energy of
the particles. A detailed bibliographical study about the modeling of the
turbulent coupling term helps to precise the disadvantages of the actual
modeling and proposed some solutions in the work of Xu and Subramaniam
(2007), Xu and Subramaniam (2006), and Sundaram and Collins (1999). In
the present study, we proposed a new closure method in analogy with the
work of turbulence scale separation that has been proposed for the closure
of the turbulent coupling term in the two-phase model of k − ε (Chahed
(1999), "Standard" model etc.). This method is based on separation of
the turbulence interaction between the two phases into destruction of
droplets agitation at small turbulence scales in the wake of the droplet; and
production of droplets agitation at big turbulent scales when it cross large
eddies. A strong hypothesis had been considered to neglect the turbulent
energy of the vapor at scales smaller than droplets diameter. This can
be justi�ed for cases with small droplets near the scale length scale of
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Kolmogorov like those in the experiment of Kulick et al. (1994), but it is
not so evident for big droplets. The proposed closure helps us to estimate a
particle's turbulent energy k2 that lays in the same order of scale measured
in the experiment. For the present study this solution is enough but our
analysis lights on the importance of the closure of this term for future
research projects, where turbulent energy of the vapor in the wake of the
droplet should be calculated di�erently regarding the scale of the droplet
size.
The experimental data do not provide enough information about the
particles' spatial distribution, therefore the impact of the turbulence
modeling on the droplets distribution is studied numerically by analyzing
di�erent simulation cases of vapor-droplet �ow in a vertical tube using
di�erent turbulence models. The main results can be summarized as follows:

• The two models k − ε and Rij − ε produce the same type of �ow
structures with minor di�erences. The impact of these models on the
droplets distribution is indirect. The di�erences between the two mod-
els had been explained in details to show that the impact of the va-
por turbulence on the droplets distribution depends also on the conse-
quences through other models as the model of the drag force and the
model of the turbulence of the dispersed phase. As a conclusion, the
results of the model k−ε are acceptable although we know that Rij−ε
is better.

• Although we showed that both models Tchen-Hinze and Q2Q12 un-
derestimate the value of the droplets turbulent kinetic energy, we ana-
lyzed the di�erent impact of these models on the droplets distribution.
First, we note that Q2Q12 permits to control the inlet condition of
the channel while Tchen-Hinze impose an estimated value for the en-
try conditions calculated from the agitation of the continuous phase.
Tests show that the entry value of k2 calculated by the model of Tchen
impacts the structure of the �ow. Moreover, the pro�les of k2 shows
that Q2Q12 estimates k2 more independently from k1 in comparison
with Tchen.

• The proposed closure of the interfacial turbulent energy transfer in the
Q2Q12 model permits to have a good estimation of the droplets agi-
tation. The correction of the value of k2 changes the overall structure
of the spatial dispersion of the droplets, where no concentrated zones
were formed and the droplets were dispersed all over the tube section.

The impact of the di�erent modeling of the lift force on the distribution of
the droplets over the pipe radial section, shows that the modeling of this
force is of substantial importance in our study. The lift force plays a central
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role in the preferential accumulation of the droplets either close or away from
the wall. There are three primary contributions to the lift force: the shear
induced lift force, the rotation induced lift force, and the wall induced lift
force. The lift force is characterized by the non-dimensional distance from
the wall, the particle Reynolds number, and the non-dimensional shear rate.
Our case of interest requires a good modeling for the lift force in a domain
where the particle Reynolds number reaches high values and the shear rate
range lies between 0 and 1. Also, the present study can be divided into two
main domains, near-wall shear �ow and unbounded shear �ow. Therefore
the wall-induced shear can not be ignored. The basic analytical models of
Auton (1987) and Sa�man (1965) overestimate the lift force and they do
not allow to �t the values found in DNS calculations. As a conclusion from
several DNS numerical results (e.g. Sugioka and Komori (2006), Zeng et al.
(2009),..) we note that: the lift force acting on a droplet is di�erent from
that acting on a bubble and it is very similar to the lift force action on a
solid sphere. The lift force is always positive and proportionally high near
the wall (droplet almost in touch with the wall). For a small distance far
from the wall the lift force inverses its sign for a critical value of the particle
Reynolds number. This critical value decreases as the distance from the wall
increases until it reaches the value Rep ' 50 for unbounded �ows. In order
to �t with these numerical facts we proposed two solutions

• Kurose et al. (2001) noticed that the combination of the model of
Sa�man (1965) and the correlation of McLaughlin (1991) shows a good
agreement with the experimental results proportionally to other ana-
lytical models. This combination presents a disadvantage that the
critical Rep is smaller than 50. Therefore we proposed an extension of
the correlation of McLaughlin (1991) to correct this. This solution al-
lows to calculate a lift coe�cient in the same order of magnitude of the
results of McLaughlin and to change the sign at Rep ' 50. This result
can be accepted but it does not �ts exactly the DNS results therefore
we continued our research.

• Based on his DNS values Zeng et al. (2009) proposed a correlation to
calculate the lift coe�cient that takes into account the e�ect of the
wall-induced lift. This correlation failed in the zone far from the wall
and do not �ts the DNS results of Sugioka and Komori (2006). There-
fore, we proposed a numerical correlation based on the DNS results of
Sugioka and Komori (2006) for the case of unbounded shear �ow. Then
for an accurate modeling of the lift, we proposed to use the correlation
of Zeng et al. (2009) in the near-wall region and the new correlation
proposed in this document for the zone away from the wall.

Finally we studied the impact of all these modeling methods on the heat
transfer with the wall in a simulation test case with hot walls. This test

130



takes into account only the e�ect of the convection of the vapor with the
wall and the droplets. Our results show that the more the droplets are dis-
persed, more the extracted heat by the vapor from the wall increases. The
heat transfer rate estimated after choosing the good turbulence models and
integrating the modi�cations on the models Q2Q12 and the lift is 118% more
than the value estimated in the basic study case done with models k − ε,
Tchen-Hinze for the turbulence and the model of Auton et al. (1988) for the
lift force. This shows the importance of our study for the context case.
Starting from a very general problem which is the modeling of a turbulent
vapor droplets dispersed �ow, we could precise that the droplets distribution
is the main characteristic that should be studied. Then by analyzing all the
models those impacts the droplets distribution, we concluded that the lift
force model is overestimated while the turbulent dispersion e�ect is underes-
timated. Extended research was done to ameliorate the estimation of these
phenomena and satisfying solutions had been proposed.
This study can be extended and several perspectives can be proposed as
follows:

1. A major problem in the treatment of this subject is the lack in the ex-
perimental data. An experimental research counting for the conditions
at the entry or at the level of the quench front and providing a clear
view about the preferential zone of concentration of the droplets can
provide a big help in conforming most of the modeling doubts.

2. The size of the droplet is a main factor that can impact most of the
dynamic and the thermal models of the �ow. Therefore modeling the
change of size of the droplets is an essential issue in these type of �ows.

3. The modeling of the turbulence of the droplets in the present study is
done by isotropic models. Tests show that the dispersed phase turbu-
lence may present an important anisotropy that should be taken into
account.

4. The modeling of the term of the turbulent energy transfer between the
two phases is treated in this study based on hypothesis that can not
be applied for all types of �ow. This study precises that the modeling
of this term is of high importance. Therefore we propose that future
studies should be done on the modeling of this term.
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Chapter 8

Résumé en français
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Chapter I

Introduction générale

Les écoulements diphasiques, gaz-gouttes, sont des phénomènes qui se
produisent dans des situations naturelles et industrielles. Ces écoulements
sont l'objet de recherche dans de nombreux secteurs industriels comme
la production d'énergie électrique (générateurs de vapeur des centrales
électriques, les condensateurs, échangeurs thermiques), l'industrie pétrolière
(extraction et transport de produits pétroliers), la combustion de l'essence
et de l'air dans un moteur d'automobile etc. Le développement d'outils
de calcul numérique pour simuler ce type d'écoulement est utile. Puisque
les méthodes de simulation numérique directe sont trop coûteuses pour
les applications industrielles, la simulation de valeurs moyennes apparaît
comme la solution optimale. D'autre part, la simulation de valeurs moyennes
nécessite un e�ort de modélisation élevé pour reproduire la physique locale,
avec une précision satisfaisante. Dans la présente étude, nous traitons ce
problème dans le contexte de la sûreté nucléaire.

I.1. Contexte de l'étude

Un des accidents de référence pouvant se produire dans un REP (Réacteur
à Eau Pressurisée) est l'APRP (Accident de Perte de Réfrigérant Primaire).
Cet accident est associé à une perte de pression qui conduit à la vaporisation
de l'eau dans le c�ur du réacteur, et à l'augmentation de la température
des assemblages. Dans la suite, de l'eau est injectée et une évaporation vio-
lente de l'eau se produit au niveau de l'interface entre l'eau et de vapeur, qui
est appelée le front de trempe. L'évaporation violente au front de trempe
provoque l'arrachement de gouttes d'eau et l'écoulement de vapeur-gouttes
domine dans la partie supérieure du c�ur de réacteur. L'e�cacité du re-
froidissement de ce mélange est importante pour évaluer la suite de l'accident.
Les gouttelettes agissent comme des puits de chaleur pour la vapeur. Elles
contrôlent ainsi le pro�l de température de vapeur qui, à son tour, détermine
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le transfert de chaleur avec la paroi.
Figure I.1 montre un schema représentatif de l'écoulement de vapeur-

Figure I.1: Figure qui représente l'écoulement de vapeur-gouttelettes turbu-
lente entre deux crayons de combustible chaud dans un coeur de réacteur
PWR

gouttelettes turbulente, au dessus du front de trempe, entre deux barres
de combustible chaud dans un coeur de réacteur REP accidenté. Les mé-
canismes de transfert de chaleur dans cet écoulement dispersé sont illustrés
dans la �gure I.2. Ces e�ets sont distingués par Andreani and Yadigaroglu
(1997) comme suit:

• Le transfert de chaleur par convection entre la paroi, la vapeur, et les
gouttelettes.
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Figure I.2: Figure qui représente les mécanismes de transfert de chaleur entre
une paroi chaude et un écoulement vapeur-gouttelettes

• Le transfert de chaleur radiatif entre la paroi, la vapeur, et les gout-
telettes.

• Le transfert de chaleur par contact direct entre les gouttes et la paroi.

• Transfert par l'évaporation des gouttelettes ou condensation de vapeur

La répartition spatiale des gouttelettes est un facteur important qui
in�ue la modélisation de la plupart de ces mécanismes. Par conséquence,
l'estimation de la concentration des gouttelettes est nécessaire pour estimer
le taux de transfert de chaleur dans le coeur du réacteur. La modélisation
de la distribution des gouttelettes est un problème composé car il dépend de
plusieurs phénomènes comme les forces entre la vapeur et les gouttelettes
et la turbulence. Notre objectif général est d'améliorer la modélisation de
la distribution spatiale des gouttelettes au sein d'un outil de simulation à
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l'échelle de la CFD.
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Chapter II

Modélisation des écoulements

diphasiques

Le code NEPTUNE-CFD est basé sur une approche de type Euler/Euler
pour laquelle chaque phase de l'écoulement est décrite à l'aide des variables
continues. L'évolution des grandeurs locales de l'écoulement est régie par
les équations de conservation locales moyennées :

• l'équation de bilan moyennée de masse,

• l'équation de bilan moyennée de Quantité De Mouvement (QDM),

• l'équation de bilan moyennée d'enthalpie totale.

Ces équations sont obtenues à partir des équations locales instantanées.
Chaque phase de l'écoulement étant considérée comme continue, le milieu
dans son ensemble possède des discontinuités, rendant les grandeurs locales
de l'écoulement non dérivables au sens des fonctions. Le passage des équa-
tions locales instantanées aux équations locales moyennées nécessite alors
:

• de se placer dans l'espace des distributions a�n de rendre l'ensemble
du milieu dérivable, les équations de conservation locales instantanées
sont alors multipliées par la fonction caractéristique de phase χk(M, t):

χk(M, t) = 1 Si le point M est situé dans la phase k à l'instant t

(II.1)

sinon:

χk(M, t) = 0 (II.2)

Par convention on note que k = 1 pour la phase vapeur et k = 2 pour
la phase de gouttes.
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• puis, de moyenner ces équations à l'aide d'un opérateur de moyenne
statistique pondérée par la masse volumique. La moyenne statistique
phasique d'une fonction φk de la phase k est dé�nie par :

φ =
φχk
αk

(II.3)

ou αk = χk est la fraction volumique de la phase k. Ensuite la densité
moyenne de la phase k est dé�nie par:

ρk =
ρkχk
αk

(II.4)

Pour les équations d'équilibre local, il est plus pratique, pour les cas
avec une densité variable de dé�nir une moyenne pondérée par la den-
sité de type Favre, qui s'écrit

θ ≡ ρkθχk
ρkχk

=
ρkθχk
αkρ̃k

(II.5)

Ensuite une variable locale instantanée se décompose en une partie moyenne
et une partie �uctuante comme suit:

φ = φ+ φ′ φ′ = 0 (II.6)

On applique par la suite ce moyen pour écrire le système d'équations moyen-
nées à résoudre.

II.1. Les équations de conservation locales moyen-

nées

II.1.1. Equation de bilan locale moyennée de masse

∂(αkρk)

∂t
+
∂(αkρkuki)

∂xi
= Γk k = 1, 2 (II.7)

avec :

• αk le taux de présence de la phase k,

• ρk la masse volumique de la phase k,

• uki les composantes de la vitesse locale moyenne de la phase k,

• Γk le transfert interfacial de masse à la phase k

Γk = ρk(ωi − uki)nkiδ (II.8)

et :
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• ωi les composantes de la vitesse locale de l'interface,

• uki les composantes de la vitesse locale instantanée de la phase k,

• nki les composantes du vecteur unitaire normal à l'interface,

• δ la distribution de Dirac associée à l'interface

La relation locale moyennée de saut à l'interface s'écrit :∑
k=1,2

Γk = 0 (II.9)

II.1.2. Equation de conservation locale moyennée de Quan-
tité De Mouvement

∂(αkρkuki)

∂t
+
∂(αkρkuki ukj)

∂xj
= αkρkgi −

∂αkpk
∂xj

+
∂

∂xj
[αk(τij,k − ρkRij,k)] + [(−pkδij + τij,k)− ρkuki(ukj − ωj)]nkjδ

(II.10)

• gi la résultante des forces volumiques,

• τij,k le tenseur des contraintes visqueuses de la phase k,

• Rij,k le tenseur des contraintes turbulentes de la phase k,

αkρkRij,k = ρku
′
kiu
′
kjχk

• u′ki les composantes de la �uctuation de la vitesse de la phase k,

• le transfert interfacial de QDM à la phase k.

[(−pkδij + τij,k)− ρkuki(ukj − ωj)]nkjδ

La relation locale moyennées de saut à l'interface s'ecrit:∑
k=1,2

[(−pkδij + τij,k)− ρkuki(ukj − ωj)]nkjδ = fs,iδ (II.11)

avec, fs,i la composante de la force de tension de surface par unité d'aire
interfaciale.
La fermeture du transfert interfaciale de QDM n'est pas possible à partir
d'un point de vue purement Eulérien du fait de la perte d'information de la
localisation de l'interface. Dans notre cas, la phase dispersée est constituée
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de particules isolées et l'interaction entre les particules reste négligeable.
Le problème peut alors être traité par un autre point de vue. L'approche
lagrangienne permet d'étudier la dynamique des particules séparées et de
leur transfert avec le �uide environnant.
Cette méthode peut être résumée par les étapes suivantes : On introduit une
fonction de densité de probabilité des gouttelettes. L'équation d'évolution
de la pdf, puis appliquer une moyenne statistique. Le couplage entre les
approches lagrangienne et eulérienne permet d'écrire

∂(αkρkuji)

∂t
+
∂(αkρkuki ukj)

∂xj
= αkρkgi − αk

∂Pk
∂xj

+
∂

∂xj
[αk(τij,k − ρkRij,k)] +M ′k,i + Γku

Im
ki (II.12)

Le transfert interfacial de QDM, comporte deux composantes :

• Γku
Im
ki liée à l'échange de QDM provoqué par le transfert de masse

• M ′k,i liée à l'action des contraintes sur l'interface (pression + contrainte
visqueuse sur l'interface),

A partir de la fermeture lagrangienne du mouvement de la goutte, M ′k,i est
fermé comme la somme de la force de traînée, la force de masse virtuelle, et
la force de portance. Chacune de ces forces est décrit par un modèle distinct.

Force de traînée

La force de traînée est une force de surface due au mouvement relatif entre
la goutte et la vapeur. Il prend en compte la traînée due au frottement de
surface. La forme générale de la force de traînée agissant sur une goutte
sphérique est

fDi = −3

4
ρ1
CD
dp
Vp|vr|vr,i (II.13)

vr,i est la vitesse relative entre les deux phases. Cette vitesse est exprimée
en termes de vitesse de la gouttelette u2,i et la vitesse de la vapeur non
perturbée par la présence de cette goutte ũ1,i

vr,i = u2,i − ũ1,i (II.14)

Vp est le volume de la goutte, dp est le diamètre de la goutte, et CD est le
coe�cient de traînée.
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La moyenne de la force de traînée sur la population de gouttes, s'écrit comme
la somme d'une contribution laminaire et d'une contribution turbulente

FDi =

laminaire︷ ︸︸ ︷
−α2ρ1

3

4

CD
d
〈|vr|〉2 (U2,i − U1,i) +

turbulent︷ ︸︸ ︷
α2ρ1

3

4

CD
d
| 〈|vr|〉2 Vd,i (II.15)

avec :

• Uk,i les composantes de la vitesse locale moyenne de la phase k,

• 〈|vr|〉2 est la moyenne de la vitesse relative,

〈|vr|〉2 = ((U2,i − U1,i − Vd,i)2 + (2k2 − 2k12 + 2k1))
1
2 (II.16)

Ou :
k1 est l'énergie cinétique turbulente de la vapeur

k1 =
1

2
u′1,iu

′
1,i

k2 est l'énergie cinétique turbulente de la phase dispersée,

k2 =
1

2
u′2,iu

′
2,i

k12 est la covariance des �uctuations des vitesse vapeur-gouttes,

k12 = u′1,iu
′
2,i

• ρk la masse volumique de la phase k,

• Vd,i est dé�ni comme la vitesse de drift, et elle traduit la corrélation
entre la distribution instantanée des particules et les grands tourbillons
turbulents de �uide. La vitesse de drift peut être modélisée par

Vd,i = −Dt
12,ij

[
1

α2

∂α2

∂xj
− 1

α1

∂α1

∂xj

]
(II.17)

où Dt
12,ij , le tenseur de dispersion turbulente vapeur-gouttes, est ex-

primé en termes du tenseur de covariance entre les �uctuations de
vitesse turbulente des deux phases et le temps caractéristique de la
turbulence de la vapeur vu par les gouttelettes τ t12 (chapitre IV)

Dt
12,ij = −τ t12

〈
u′2,j ũ

′
1,i

〉
2

(II.18)
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Dans la présente étude, nous utilisons le coe�cient de traînée CD développé
par Wallis (1969) pour l'écoulement dilué de particules isolées :

CD =

{
24
Rep

[1 + 0.15Re0.687
p ]α−1.7

1 for Rep < 1000

0.44α−1.7
1 for Rep ≥ 1000

(II.19)

Le nombre de Reynolds particuliare Rep est calculé en fonction du diamètre
de la gouttelette dp, de le moyenne de la vitesse relative 〈|vr|〉2, de la viscosité
dynamique de la vapeur µ1, et de la densité de la vapeur ρ1:

Rep = ρ1
〈|vr|〉2 d
µ1

(II.20)

Force de mass ajoutée

Quand une particule est accélérée par un �uide, le �uide environnant dans
le voisinage immédiat de la particule sera également accéléré. La particule
se comporte apparemment comme si elle a une masse plus importante que la
masse réelle, donc la force nette agissant sur la particule due à cet e�et a été
appelée force de masse ajoutée. Cette force agissant sur une seule particule
sphérique est s'écrit comme

fMa
i = −ρ1VpCMa

(
Dũ1,i

Dt
− du2,i

dt

)
(II.21)

La moyenne de la force de mass ajoutée s'écrit comme la somme d'une con-
tribution laminaire et d'une contribution turbulente.

FMa
i =

Laminar part︷ ︸︸ ︷
−ρ1α2CMa

[
d
−→
Vr

dt

]
−

Turbulent part︷ ︸︸ ︷
ρ1CMa

∂

∂xi

(
(
2

3
k2 −

1

3
k12)α2

)
(II.22)

Pour le cas d'un écoulement dilué de inclusions sphériques isolée, le coe�cient
de masse ajoutée CMa s'écrit

CMa =
1

2
(II.23)

Dans notre cas particulier, la force de masse ajoutée est négligeable par
rapport à la force de traînée.

Force de la portance

Quand une goutte se déplace dans un écoulement cisaillée, elle est soumise à
une force transversale. Cette force est appelée force de portance. La forme

142



moyenne de la force de portance s'écrit sous la forme

FLi = −α2ρ1CL (Vr ∧ rot(U1))i (II.24)

Cette force est importante dans notre étude car elle a�ecte la distribution
radiale des gouttelettes. Selon Auton et al. (1988) le coe�cient de portance
est égal à 0,5. Le modèle analytique d'Auton est valable pour le cas d'une
particule sphérique placée dans un écoulement à faible cisaillement. Ceci ne
corresponde pas à notre cas d'étude.

II.1.3. Equation de bilan locale moyennée de l'énergie

L'équation de l'énergie totale moyenne est écrite en termes de l'enthalpie
totale:

hk = ek +
pk
ρk

; Hk = hk +
uki

2

2
(II.25)

où Hk est l'enthalpie totale, hk est l'enthalpie massique, et EK est l'énergie
totale de la phase k.
L'équation moyennée de l'enthalpie totale s'écrite comme suit:

∂

∂t
(αkρkHk) +

∂

∂xi
(αkρkHkuki) = αk

∂pk
∂t
− ∂

∂xi
[αk(qki + qki

T )]

+
∂(αkτij,kukj)

∂xi
+ αkρkgiuki + αkQk

k

+ Wk + Π′k + Γk(
1

2
(uImki )2 + hImk )

(II.26)

Le �ux de chaleur turbulente qq
T est dé�ni par:

−αkqkT = −αkρkH ′ku′ki + χkτij,ku
′
kj (II.27)

Pour le transfert d'énergie interfaciale on présente les termes suivants:

• Puissance des contraintes interfaciales:

Wk = σkijukjnkiδ (II.28)

• Transfert de chaleur interfaciale par conductivité thermique :

Π′k = −qkinkiδ (II.29)
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• Transfert d'énergie cinétique due au transfert de masse:

1

2
(uImki )2Γk = −1

2
ρku

2
k(uki − ωi)nkiδ (II.30)

• Transfert d'enthalpie due au transfert de masse:

hImk Γk = −ρkhk(uki − ωi)nkiδ (II.31)

L'écoulement de gouttelettes d'eau dans la vapeur chaude, implique un trans-
fert de chaleur et de masse entre les deux phases. Les échanges thermiques
entre les deux phases, sont considérés comme des termes source dans les
équations de bilans d'énergie et de masse des deux phases. Pour modéliser
ces termes, nous utilisons la condition de saut de l'énergie à l'interface∑

k=1,2

[
Wk + Π′k + Γk(

1

2
(uImki )2 + hImk )

]
= 0 (II.32)

où Wk est négligé. Nous considérons ainsi que l'interface ne stocke pas
l'énergie thermique, l'énergie nette transférée à l'interface par la vapeur et
de gouttelettes correspond au changement de phase par vaporisation (ou
condensation). Ainsi, le taux de transfert de masse Γk est donnée par

Γ2 = −Γ1 =
Π′2 + Π′1
Hσ2 − Hσ1

(II.33)

L'interface des gouttelettes est supposé aux conditions de saturation
(Tsat, Psat). Ainsi Π′K est le taux de transfert de chaleur à l'interface, due
à la di�érence entre la température de la phase de k et la température de
l'interface de Tsat. Tsat. H

σ
2 −Hσ1 est la di�érence d'enthalpie qui correspond

à la chaleur latente de vaporisation à Tsat.
Les expressions des transferts de chaleur interfaciaux sont obtenus en sup-
posant que chaque phase a une température moyenne notée par Tk.

Π′k = Coef(Tk − Tsat) (II.34)

où la constante Coef est le coe�cient de transfert thermique entre la phase
et l'interface. Ce coe�cient est calculé par les lois de fermeture appropriées,
par exemple le modèle Marchall Ranz pour le transfert de chaleur dans la
phase vapeur et le modèle Hendou (1992) pour le transfert de chaleur dans
la phase liquide.
Puisque notre intérêt est limité à la dynamique de l'écoulement, aucune autre
étude sur la modélisation de ces termes ne sera présentée.
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II.2. Modélisation de la turbulence

La prise de moyenne d'équations provoque l'apparition de quantités turbu-
lentes correspondant à la moyenne des vitesses �uctuantes u′kiu

′
kj . Ce terme

est le tenseur de Reynolds de la phase de k noté Rij,k.
Dans l'équation de QDM de la phase dispersée, les gradients du tenseur Rij,2
agit comme un terme source. Ainsi, ces gradients peuvent modi�er la répar-
tition des gouttelettes. L'interaction entre les turbulences des deux phases
est modélisée via des relations algébriques ou via les termes de transfert in-
terfaciaux de turbulence. La présentation plus détaillée de ces modèles fait
l'objet chapitre IV.

II.3. Conclusion

Ce chapitre présente les équations RANS utilisées dans le modèle Eu-
ler/Euler pour l'écoulement diphasique. Le procédé de moyenne fait
apparaître des termes inconnus, qui nécessitent des modèles supplémentaires
pour leur fermeture. Nous limitons notre intérêt aux termes qui ont un
impact sur la répartition spatiale des gouttelettes. Ces termes sont les
tenseurs de Reynolds des deux phases et le terme de transfert interfacial
de QDM. La forme générale de chaque force interfaciale a été présentée
dans ce chapitre sans préciser les modèles de fermeture pour les coe�cients
de ces forces. Dans le prochain chapitre, nous allons quanti�er l'e�et de
ces forces sur la répartition spatiale des gouttes en analysant les données
expérimentales et numériques. Cette analyse permettra d'analyser la
compatibilité des modèles utilisés avec notre cas d'intérêt.

145



Chapter III

Simulation

Une étude paramétrique est proposée pour montrer l'e�et de la modélisation
des di�érents termes spéci�és dans le chapitre théorique. Un cas test
de simulation avec des modèles de base est résolu et les résultats sont
présentés. Ce test nous permet d'établir une description générale de la
distribution de gouttelettes. Cette description, nous permet de préciser le
rôle de chaque terme dans le mécanisme de répartition des gouttelettes.
Par la suite, on examine brièvement la modélisation de chacun et la
compatibilité des modèles de base utilisés dans le cas de test. A la �n de ce
chapitre, nous précisons les modèles qui feront l'objet du reste de notre étude.

Dans le but de présenter l'écoulement entre quatre barres de combustible
celui de REP, nous considérons un tube cylindrique d'un diamètre d = 20
mm et de 3 m de longueur. Les conditions d'entrée de ce cas d'étude sont
choisies dans la même gamme de données d'un accident APRP. Les fractions
volumiques d'entrée sont de 99, 5 % de vapeur et de 0, 5 % de gouttelettes
d'eau. Les gouttelettes et la vapeur ont une distribution radiale uniforme
à l'entrée. Le diamètre des gouttelettes est constant et égal à 0,5 mm. La
paroi est considéré adiabatique. La vapeur entre avec une vitesse égale à
10 m/s dans le bas du tube tandis que la vitesse des gouttelettes y est de 2
m/s.

Tout d'abord une description générale de l'écoulement est établie con-
cernant le mécanisme dynamique de la dispersion des gouttelettes. Un cas
général de la simulation a été e�ectuée en utilisant le modèle k − ε pour
la turbulence en phase vapeur, le modèle Tchen-Hinze de la turbulence des
gouttelettes, le modèle d'Auton de la force de portance.

Dans la �gure III.1, nous représentons la répartition de la fraction de
volumique de vapeur sur la section du tube. Après une analyse détaillée,
nous pouvons expliquer le mécanisme de l'écoulement comme suit: la
force de portance pousse les gouttelettes vers la centre et le turbulence
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Figure III.1: La répartition de la fraction de volumique de vapeur sur la
section de tube pour un cas général

les pousse vers la paroi pour former une zone de concentration. Cette
zone de concentration monte dans le tube jusqu'à ce qu'il atteigne le
centre. Dans la partie supérieure du tube, après une certaine hauteur, les
gouttelettes concentrées s'éloignent du centre vers le paroi. Ceci est du au
fait parce que la concentration importante des gouttelettes au centre cause
une décélération verticale de la vapeur dans cette zone (e�et de la force
de trainée). Cette décélération de la vapeur inverse le gradient de vitesse
moyenne de la vapeur. Puisque la direction de la force de portance dépend
de l'orientation du cisaillement, elle tend alors à pousser les gouttelettes de
centre vers la mur dans la partie haute du tube.

De cette analyse, nous concluons que les modèles principaux qui im-
pactent la répartition des gouttelettes sont la force de traînée, la force de
portance et les modèles de turbulence. Une brève étude bibliographique
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a été menée pour con�rmer l'utilisation du modèle de Wallis (1969) pour
la prédiction du coe�cient de force de traînée. La distribution radiale des
gouttelettes sur la section de tube est principalement contrôlée par la force
de portance, le modèle de turbulence de la phase continue, et le modèle de
turbulence de la phase dispersée. Le modèle d'Auton utilisé pour la prédic-
tion de la force de portance, apparemment surestime l'e�et de cette force.
Selon nos connaissances, il n'existe pas un modèle adapté au cas des gout-
telettes. Par ailleurs, le choix des modèles de turbulence n'est pas évident.
Par conséquent, la modélisation de la force de portance et la modélisation
de la turbulence seront présentés dans des chapitres séparés.
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Chapter IV

Turbulence

IV.1. Introduction

Dans l'approche Euler/Euler, les quantités turbulentes sont estimées en util-
isant des modèles de turbulence. Il y a une grande variété de modèles de
turbulence proposée, et le choix du modèle approprié présente une question
essentielle. Le modèle doit introduire le montant minimum de complexité
numérique (temps CPU), et devrait être capable de reproduire les princi-
paux phénomènes physiques. Pour l'écoulement diphasique, il faut choisir
le modèle approprié pour calculer la turbulence de la phase continue et un
autre modèle pour calculer l'agitation de la phase dispersée.

IV.2. Modèle de turbulence de la phase continue

Les modèles de turbulence de la phase continue dans un écoulement
diphasique, sont di�èrent des modèles d'écoulement monophasique par des
termes supplémentaires de production et destruction de turbulence résul-
tant de l'interaction avec la phase dispersée. La majorité des applica-
tions CFD industriels sont e�ectuées avec un modèle à deux-équations pour
l'estimation de la viscosité turbulente, en particulier le modèle k − ε, tan-
dis que l'utilisation du modèle Rij − ε, reste exceptionnelle. Rij − ε et
plus coûteux (temps de calcul et stockage numérique, cependant, k − ε a
certaines défauts car elle ne prend pas en compte l'anisotropie de la turbu-
lence. Ces deux méthodes seront étudiées en détail par rapport à notre cas
d'application.

Modèle k − ε

Ce modèle est basé sur l'analogie de Boussinesq introduisant un terme de
viscosité turbulente. Dans cette approche deux quantités sont dé�nies:
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l'énergie cinétique turbulente de la vapeur k1

k1 =
1

2
u′1iu

′
1i (IV.1)

et le taux de dissipation turbulente de la vapeur ε1

ε1 = ν1
∂u′1i
∂xk

∂u′1i
∂xk

(IV.2)

où ν1 est la viscosité cinétique moléculaire de la vapeur. L'approximation
de Boussinesq permet d'écrire le tenseur des contraintes de Reynolds de la
vapeur Rij,1 comme:

−Rij,1 +
2

3
k1δij = νT1 (

∂u1i

∂xj
+
∂u1j

∂xi
− 2

3

∂u1m

∂xm
δij) (IV.3)

et

νT1 = Cµ
k2

1

ε1
(IV.4)

ou Cµ = 0.09.

Les équations de transport des k1 et ε1 sont écrites sous la forme
approchée suivante:

α1ρ1

[
∂k1

∂t
+ u1,j

∂k1

∂xj

]
=

∂

∂xj
[α1ρ1

νT1
σk

∂k1

∂xj
]+α1ρ1(Prod1+G1−ε1)+Πq1

(IV.5)

avec le constant σk = 1.

α1ρ1

[
∂ε1

∂t
+ u1,j

∂ε1

∂xj

]
=

∂

∂xj
[α1ρ1

νT1
σε

∂ε1

∂xj
]

+ α1ρ1
ε1

k1
[Cε1Prod1 + Cε1max(G1, 0)− Cε2ε1]

+ Cε4
ε1

k1
Πq1 (IV.6)

avec Cε1 = 1.44, Cε2 = 1.92, Cε4 = 1.2 et σε = 1.3.

ou Prod1 est le terme de production

Prod1 = −Rij,1
∂u1i

∂xj
(IV.7)
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G1 est le terme de l'atténuation de strati�cation

G1 = − νT1
PrT

1

ρ1

∂ρ1

∂xi
gi (IV.8)

ou PrT est le nombre de Prandtl turbulent number et il est égal à 0.9.
Πq1 représente l'in�uence (la destruction ou la production) de la phase dis-
persée sur la phase continue. Il se modélise

Πq1 = α2F
12
D

ρ2

ρ2 + ρ1Cma
(k12 − 2k1) + α2F

12
D Vdi(u2i − u1i − Vdi)(IV.9)

IV.2.1. Rij − ε modele

Le modèle Rij − ε est un modèle ou l'approche de viscosité turbulente
n'est pas utilisé et les contraintes de Reynolds sont directement calculées.
L'équation de transport exacte du tenseur de Reynolds R1,ij , prend en
compte les e�ets directionnels et s'écrit de la façon suivante:

∂R1,ij

∂t
+ u1,j

∂R1,ij

∂xj
=

Pij︷ ︸︸ ︷
−
(
u′1,iu

′
1,m

∂u1,j

∂xm
+ u′1,ju

′
1,m

∂u1,i

∂xm

)
+

Gij︷ ︸︸ ︷(
fiu′1,j + fju′1,i

)

+

Φij︷ ︸︸ ︷
p′

ρ

(
∂u′1,i
∂xj

+
∂u′1,j
∂xi

)
−

εij︷ ︸︸ ︷
2ν

(
∂u′1,i
∂xm

∂u′1,i
∂xm

)
+Πq1

+
∂

∂xm

Dij︷ ︸︸ ︷ν
∂u′1,iu

′
1,j

∂xm︸ ︷︷ ︸
Dν
ij

−u′1,iu′1,ju′1,m︸ ︷︷ ︸
Dt
ij

− p
′

ρ

(
u′1,jδjm + u′1,iδim

)
︸ ︷︷ ︸

Dp
ij


(IV.10)

Le partie droite de l'équation de transport est décomposée en les ter-
mes suivants: Pij est la contribution de la production due aux gradients
de vitesse, Gij est la production due aux forces extérieurs, φij est le terme
de redistribution en raison des �uctuations de pression, εij est le terme de
destruction visqueux, Dij = Dν

ij +Dt
ij +Dp

ij sont les termes de di�usion en
raison de la viscosité, de la turbulence et de la pression, respectivement, et
Πq1 est l'in�uence (la destruction ou la production) de la phase dispersée
sur la phase continue.
L'équation de ε s'écrit sous la forme:
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∂ε

∂t
+u1,j

∂ε

∂xj
=

∂

∂xi

(
Cε
k

ε
u′1,iu

′
1,j

∂ε

∂xj

)
+(Cε1P +Cε3G+Cε4k

∂u1,j

∂xj
−Cε2ε)

ε

k

Les coe�cients du modèle Rij − ε sont donnés dans (Table IV.1).

Cs C1 C2 Cω1 Cω2 Cε Cε1 Cε2 Cε3 Cε4
0.2 1.8 0.6 0.5 0.3 0.18 1.44 1.92 1.44 0.33

Table IV.1: Constantes du modèle Rij − ε

IV.2.2. Compatibilité des modèles k− ε et Rij − ε dans le cas
étudié

Dans notre cas, d'écoulement de vapeur-gouttes ascendant dans un tube
vertical, les contraintes turbulentes verticales sont censées à être plus impor-
tantes que les contraintes turbulentes radiales, ce qui induit de l'anisotropie
de turbulence. Par ailleurs, l'existence de gouttelettes dans certaines zones
décélère le vapeur, ce qui induit des contraintes de cisaillement locales loin
de la paroi. Ces prévisions nous conduisent à tester les deux modèles a�n
de véri�er si Rij − ε est capable de capturer des phénomènes physiques qui
sont ignorés par k − ε.

IV.3. Turbulence des phases dispersées

L'importance de la turbulence de la phase dispersée vient de son e�et direct
sur la distribution spatiale des gouttelettes. L'agitation des gouttelettes est
présentée par deux termes qui ont besoin de fermetures

• Le tenseur de contraintes cinétiques de particules u′2iu
′
2j , ce tenseur est

considéré égal à l'énergie cinétique turbulente des gouttelettes K2:

k2 =
1

2
u′2iu

′
2i (IV.11)

• Le tenseur de covariance entre les �uctuations de vitesse des deux
phases u′1,iu

′
2j , est également considéré comme isotrope

k12 = u′1,iu
′
2i (IV.12)

Ces deux termes turbulents apparaissent dans l'équation de bilan de QDM.
L'analyse menée a déterminer que la valeur et l'évolution de ces termes, et
plus particulièrement de l'énergie cinétique turbulente k2 est importante.
Le gradient de k2 agit comme une force radiale et in�uence directement
la distribution spatiale des gouttelettes. Deux modèles de turbulence sont
considérés: Tchen-Hinze et Q2Q12.
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IV.3.1. Tchen-Hinze

Tchen-Hinze modèle est un modèle algébrique qui évalue l'énergie cinétique
turbulente k2 de la phase dispersée et la covariance k12 à partir de l'énergie
cinétique turbulente k1. Tchen (1947) été le premier qui a développé cette
méthode sous l'hypothèse restrictive. D'autres travaux ont été e�ectués sur
le même sujet, comme le travail de Hinze (1975) et Deutch (1992) qui visent
à limiter ces hypothèses très restrictives originelle. Les équations �nales du
modèle Tchen-Hinze sont

k2 = k1

[
b2 + ηr
1 + ηr

]
k12 = 2k1

[
b+ ηr
1 + ηr

]
(IV.13)

b et ηr sont fonction du coe�cient de traînée F 12
D et du coe�cient de masse

ajoutée Cma, et de deux échelles de temps spéci�ques:

b =
ρ1 + α1Cma
ρ2 + α1Cma

ηr =
τT12

τF12

(IV.14)

τF12 est l'échelle de temps caractéristique du transfert du QDM entre les deux
phases, et τT12 représente l'échelle de temps de la turbulence de la phase
continue, vue par la phase dispersée.

τF12 =
α1Cma + ρ2

α1F 12
D

τT12 =
τT1
σα

(
1 + Cβξ

2
r

)−0.5
(IV.15)

ou σα égal au nombre de Prandtl turbulent, Cβ est égal à 1.8 et ξr = 〈|
−→
Vr|〉2√
2
3
k1
.

IV.3.2. Q2-Q12

Ce modèle suppose que le tenseur des contraintes cinétiques des gouttelettes
Rij,2 est isotrope. Ce tenseur des contraintes est calculé en utilisant l'analogie
de Boussinesq et le terme de viscosité turbulente. Les équations de transport
de l'énergie cinétique turbulente des gouttelettes k2, et la covariance des
vitesses vapeur-gouttelettes k12, sont dérivés dans le cadre de la méthode
lagrangienne en utilisant la fonction de distribution de probabilité (pdf). Le
transfert d'énergie cinétique turbulente entre les deux phase est obtenu en
fonction de k12. Ceci nécessite une équation de transport supplémentaire
dérivée de d'une description stochastique lagrangienne de la �uctuation de
la vitesse du �uide suivant le chemin de particule basé sur un modèle de type
Langevin.
En supposant que l'anisotropie reste faible et localement en équilibre, les
composantes du tenseur des contraintes cinétiques sont calculées à l'aide de
la viscosité turbulente comme suit:〈

u′′2,iu
′′
2,j

〉
2

= −νkin2

[
∂U2i

∂xj
+
∂U2j

∂xi

]
+

2

3
δij

[
k2 + νkin2

∂U2m

∂xm

]
(IV.16)
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ou νkin2 est la viscosité turbulente des particules,

νkin2 =

[
νT12 +

τF12

2

2

3
k2

]
(IV.17)

νT12 est la viscosité turbulente de qui est liée à la covariance vitesse de la
vapeur-gouttelettes.

νT12 =
1

3
k12τ

T
12 (IV.18)

Puis l'équation de transport de l'énergie cinétique turbulente des particules
est obtenue par sommation des composantes diagonales du tenseur :

∂

∂t
k2 + u2,j

∂

∂xj
k2 =

∂

∂xj
Kkin

2

∂

∂xj
k2 − u′2,iu′2,j

∂

∂xj
u2,j + Πq2 (IV.19)

Le premier terme du membre de droite de cette équation est le terme
de transport par les �uctuations de vitesse, où Kkin

2 est le coe�cient de
di�usivité turbulente

Kkin
2 =

[
νT12

σq
+

5

9
τF12

2

3
k2

]
with σq = 1 (IV.20)

Le second terme est la production par la vitesse moyenne des particules. Le
troisième terme présente le transfert interfacial d'énergie cinétique turbu-
lente.

Πq2 = −2α2ρ2

[〈
Fr,i
m2

u′′2,i

〉
2

]
(IV.21)

En supposant que l'anisotropie du tenseur k12 reste faible on applique égale-
ment une hypothèse de viscosité turbulente, ou approximation de Boussinesq:〈
ũ′1,iu

′′
2,j

〉
2

= − νT12

1 + ηr

[
∂u1,i

∂xj
+
∂u2,i

∂xj

]
+

1

3
δij

[
k12 +

νT12

1 + ηr

(
∂u1,m

∂xm
+
∂u2,m

∂xm

)]
+

ηr
1 + ηr

[
R1,ij −

2

3
k1δij

]
(IV.22)

ou k12 =
〈
ũ′1,iu

′′
2,i

〉
2
, et νT12 est la viscosité turbulente vapeur-gouttes

L'equation de transport de k12 est:

∂k12

∂t
+ u2,j

∂k12

∂xj
=

1

α2ρ2

∂

∂xj

(
α2ρ2

νT12

σq

∂k12

∂xj

)
− Rij,12

∂u2,i

∂xj
−Rij,12

∂u1,i

∂xj
− ε12 + Πq12(IV.23)
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Le premier terme du côté droit représente la fermeture du transport de la
covariance k12 par les �uctuations de vitesse, la constante σq = 1. Le taux
de dissipation visqueuse s'écrit

ε12 =
k12

τT12

(IV.24)

et le terme de interaction entre les phases Πq12 est

Πq12 = −α2ρ2
1

τF12

[(
1 +

α2ρ2

α1ρ1

)
k12 − 2k1 − 2

α2ρ2

α1ρ1
k2

]
(IV.25)

IV.4. Comparaison avec les données expérimen-

tales dans un écoulement canal

Figure IV.1: Schéma de l'écoulement en conduite considéré

Les caractéristiques de la turbulence calculées par les modèles doivent
être véri�ées expérimentalement, mais aucune donnée expérimentale n'est
disponible pour des écoulements vapeur-gouttelettes. L'expérience de Kulick
et al. (1994) est représentative d'un écoulement gaz-solide en conduite et le
nombre de Stokes des particules est du même ordre de grandeur que celui
des gouttelettes dans notre cas. L'interaction entre l'air, qui représente la
phase continue, et le cuivre la phase dispersée est étudié. Cet écoulement
est dans une canal descendent comme le montre la �gure IV.1, le nombre de
Reynolds est basé sur la hauteur de canal (h = 40mm) et une vitesse de l'air
à l'entrée (u0 = 10, 5m/s) , est Re = 27600. Les particules de cuivre ont
une densité ρC = 8800kg/m3 et le diamètre de la particule est Dp = 70µm.
Nous simulons la même con�guration expérimentale en utilisant di�érentes
combinaisons de modèles de turbulence. Le premier cas est réalisé avec le
modèle k − ε pour la phase continue et le modèle de Tchen-Hinze pour la
phase dispersée, tandis que le second cas est faite avec le modèle Rij − ε
pour la phase continue et le modèle Q2Q12 pour la phase dispersée. Dans
la suite, les di�érents résultats sont comparés et évalués par rapport aux
résultats expérimentaux.

Figuree IV.2 et IV.3 montrent la comparaison entre les données expéri-
mentales et des simulations numériques, pour la vitesse moyenne dans la
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Figure IV.2: Comparaison de la vitesse moyenne de l'air (x/h: La distance
adimensionnelle de la paroi; Uz,air/Uz,air,center: la vitesse moyenne normalisé
de l'air par rapport à la vitesse de l'air à la center de canal)

Figure IV.3: Fluctuation longitudinale et transversal de la phase continue

direction d'écoulement et les intensités de turbulence longitudinale et radiale
pour la phase continue. Pour la phase gazeuse, les deux modèles donnent
un bon accord avec les résultats expérimentaux pour la composante longi-
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tudinale de la vitesse moyenne. L'expérience montre une anisotropie de la
turbulence de la phase gazeuse, et seul Rij−ε est plus capable de reproduire
cette anisotropie. Les �gures IV.4 et IV.5 montrent la comparaison entre

Figure IV.4: Comparaison de la vitesse moyenne de la phase dispersée

Figure IV.5: Fluctuation longitudinale et transversal de la phase dispersée
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Figure IV.6: Comparaison de la vitesse moyenne de la phase dispersée, �gure
de Groll et al. (2009) pour montrer les résultats obtenus par la méthode
Euler/Lagrange

Figure IV.7: Deux cas avec une valeur élevée d'énergie cinétique turbulente
de particules à l'entrée du canal k2 = 0, 5(m/s)2: premier cas en utilisant
Q2Q12; deuxième cas on considère que l'e�et de la vapeur sur la turbulence
gouttelettes est nul Πq2 = 0

les résultats expérimentaux et numériques pour la vitesse longitudinale
moyenne, et les intensités longitudinale et radiale de turbulence de la phase
dispersée. Dans les deux cas simulés, la valeur calculée de la vitesse des
particules est surestimé par rapport aux valeurs expérimentales. L'analyse
des données expérimentales montre que la turbulence des particules est
importante et comparable à la turbulence de l'air. Par ailleurs les résultats
expérimentaux montrent une forte anisotropie de la turbulence des partic-
ules. Les cas simulés montrent que les deux modèles Tchen-Hinze et Q2Q12
ne sont pas capables de reproduire ces caractéristiques. On s'entendait à ce
que le modèle Q2Q12 donne de meilleurs résultats pour la valeur de l'énergie
cinétique turbulente de la phase dispersée k2. Par conséquent, une analyse
détaillée de ce résultat a été réalisée. Dans la �gure IV.7, nous montrons
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un cas de test, où nous avons imposé une forte énergie cinétique turbulente
des particules à l'entrée du canal k2 = 0, 5. Nous avons remarqué que dans
le cas où nous avons utilisé le modèle de Q2Q12 sans aucune modi�cation,
cette valeur de k2 décroît et sa valeur devient semblable à la valeur calculée
par le modèle de Tchen-Hinze. L'analyse des di�érents termes de l'équation
de transport de k2 montre que le terme de transfert d'interfacial d'énergie
cinétique turbulente est le terme principal qui causent l'atténuation de k2.
Aussi dans la �gure IV.7, nous montrons un autre cas test où nous avons
négligé le terme de transfert interfacial de l'énergie cinétique turbulente. Ce
test montre que k2 maintient une valeur très élevée lorsque Πq2 = 0. Par
conséquent, une étude détaillée au sujet de la fermeture de ce terme est
présentée dans la prochaine section de ce chapitre.

IV.4.1. Modèle d'échange interfacial de turbulence basé sur
l'hypothèse de une turbulence multi échelle

Dans ce modèle, nous proposons une solution de correction pour le terme
Πq2 par analogie avec les travaux de séparation de l'échelle qui ont été
proposé par plusieurs auteurs pour la fermeture du terme Πq1 (Chahed
(1999), modèle "standard" 1, etc.) Nous montrons qu'il est possible de
dé�nir une séparation de l'échelle turbulente sur les di�érents termes qui
composent le transfert interfacial d'énergie cinétique turbulente.
On distingue deux échelles de turbulence. Une particule peut augmenter
la turbulence du �uide par les �uctuations dans le sillage. Il s'agit d'une
production de turbulence, et elle est produite à une échelle plus petite que
la taille de la particule (ce qui veut dire de petites échelles turbulentes).
D'autre part la particule agit sur la destruction de la turbulence des �uides
quand elle traverse des grands tourbillons. Regardant d'un point de vue
des particules, nous supposons que le terme de production de �uide dans
le sillage est considéré comme un terme de destruction de la �uctuation
des particules. Par ailleurs de la destruction de la turbulence du �uide,
quand des particules traversent un grand tourbillon, représente un terme de
production de la �uctuation du particules.
Cette compréhension est modélisée en décomposant le terme de l'interaction
turbulente entre les deux phases en deux termes. Le premier représente
la destruction au niveau des petits tourbillons dans le sillage. Le second
représente la production de turbulence des particules à l'échelle des grands
tourbillons.

Πq2 = Π̃q2 + Πw (IV.26)

1modèle de turbulence utilisé dans le code calcul ASTRID
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Πw est considéré comme le terme de destruction de l'agitation des particules
et il est égal à l'énergie des tourbillons produits dans le sillage de la gout-
telette. Π̃q2 est le terme de la production de l'agitation turbulences quand il
traverse des grands tourbillons. Ces termes peuvent s'écrire

Π̃q2 = − 1

τF12

[U2,iVd,i + k12 − U1,iVd,i − 2kL1 ]

Πw = − 1

τF12

[2k2 − U2,iVd,i − 2k12 + U1,iVd,i + 2ks1] (IV.27)

Où kL1 représente l'énergie cinétique turbulente dans les grands tourbillons et
kS1 représente l'énergie cinétique turbulente dans les petits tourbillons. Nous
supposons que le mouvement de la particule dans le �uide est a�ecté par
l'énergie cinétique turbulente du �uide à deux échelles di�érentes. Par con-
séquent, l'énergie cinétique turbulente du �uide utilisée dans la fermeture des
deux termes ne se réfère pas à la même échelle turbulente. Nous supposons
que l'énergie cinétique turbulente du �uide est contenue dans les grandes
échelles turbulentes et que l'énergie des petites structures est négligeable (la
notion de grande et petite échelle sont considérés par rapport à la taille de
la goutte). Cette hypothèse est vraie lorsque les gouttelettes sont petites et
proches de l'échelle de dissipation de Kolmogorov. Selon cette hypothèse,
nous pouvons considérer que le terme kS1 est négligeable, car l'énergie ciné-
tique turbulente du �uide vue dans le sillage de la goutte est de petite échelle.
Ensuite, nous pouvons écrire

Πw = − 1

τF12

[2k2 − U2,iVd,i − 2k12 + U1,iVd,i] (IV.28)

la forme �nale de Πq2 s'écrit

Πq2 = − 1

τF12

[2k2 − k12 − 2k1] (IV.29)

La correction de la fermeture de terme de transfert d'énergie turbulente à
l'interface a été utilisésur Kulick et al. (1994), a�n de le comparer avec les
données expérimentales. Dans ce cas de référence expérimental, le diamètre
des particules est d'environ 70 µm, donc l'hypothèse de négliger l'énergie
turbulente de la vapeur dans le sillage reste valable dans ce cas. La �gure IV.8
représente les valeurs expérimentales des composantes verticale et radiale de
la �uctuation de vitesse des gouttelettes et l'agitation isotrope estimée en
modi�ant le terme de transfert interfacial. La correction proposée a un
impact important sur les résultats, et l'estimation donne le bon ordre de
grandeur (entre la valeur des �uctuations verticale et radiale). Mais le modèle
de correction semble avoir quelques limites car il présente un pro�l plat de
l'énergie cinétique turbulente des particules sur toute la section radiale du
tube. Cela peut être lié à l'hypothèse forte de négliger l'énergie vapeur
turbulente dans les petites tourbillons. Mais ce résultat est satisfaisant dans
notre cas, car il corrige l'ordre de grandeur de l'agitation des gouttelettes.
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Figure IV.8: Stream wise and normal to wall turbulence intensities of the
dispersed phase

IV.4.2. L'impact de la modélisation de la turbulence sur la
distribution des gouttelettes

L'analyse de précédente montre les avantages et les lacunes des modèles
de turbulence. Malheureusement, les résultats expérimentaux ne donnent
aucune information sur l'impact de la modélisation de la turbulence sur
la distribution des particules. A�n d'étudier cet e�et des simulations sont
réalisées en variant les modèles de turbulence des deux phases. La �gure IV.9
montre les champs de fraction volumique de vapeur pour deux cas d'étude,
l'un fait avec le modèle k−ε et l'autre fait avec le modèle Rij−ε. D'un point
de vue général, la structure de la distribution spatiale des gouttelettes est
similaire dans les deux cas. Une analyse plus détaillée de la répartition des
gouttelettes montre de petites di�érences, (ex: les zones de concentration
ne sont pas situées au même endroit). On verra que ces di�érences peuvent
être considérées comme un impact mineur en comparaison avec l'impact des
autres modèles. Dans ce cas, k−ε peut être su�sant tandis que Rij-e devient
nécessaire quand les di�érences seront augmentées avec la complexité du cas
par exemple la géométrie. La �gure IV.10 montre les champs de distribution
de fraction volumique de vapeur pour deux cas d'étude, l'un réalisé avec le
modèle Tchen-Hinze et l'autre réalisé avec le modèle Q2Q12. D'un point de
vue général, Q2Q12 et Tchen-Hinze donnent le même type de distribution
spatiale des gouttelettes car comme on l'a vu ils prédisent une faible agitation
des gouttelettes. Par conséquent, un nouveau calcul a été fait en intégrant
la modélisation proposée de l'interaction turbulente entre les deux phases.
La �gure IV.11 présente le champ de distribution de fraction volumique
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Figure IV.9: Impact du modèle de turbulence de la phase continue sur la
distribution des gouttelettes

de vapeur pour un cas de simulation utilisant le modèle modi�é Q2Q12
pour la phase dispersée. Un impact important de cette modélisation est la
disparition des zones de concentration. Tous les phénomènes observés dans
les cas précédents disparaissent. L'écoulement est homogène et la fraction
volumique des gouttelettes diminue par conséquent dans le tube du fait de
leur évaporation et de leur accélération. Ce test montre l'impact important
de la turbulence de la phase dispersée sur la simulation de notre cas. La sous-
estimation de la valeur de la turbulence des gouttelettes cause l'accumulation
de gouttelettes. La modi�cation du transfert d'énergie turbulente interfaciale
dans le modèle Q2Q12 nous permet d'estimer une valeur de k2 qui est du
même ordre de grandeur que dans les résultats expérimentaux. La bonne
estimation de la turbulence des gouttelettes change la structure globale de
la dispersion spatiale des gouttelettes.
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Figure IV.10: Impact du modèle de turbulence de la phase dispersée sur la
distribution des gouttelettes

IV.5. Conclusion

Nous avons montré que la modélisation de la turbulence d'une phase dis-
persée à grand nombre de Stokes nécessite l'utilisation d'une équation de
transport pour l'énergie cinétique turbulente et pour la covariance en vitesse.
Néanmoins le modèle Q2Q12 classique ne permet pas de retrouver de manière
satisfaisante des niveaux élèves d'agitation comme attesté par les résultats
expérimentaux de Kulick et al. (1994). Nous avons montré que l'origine de
cette mauvaise prédiction était la surestimation du terme de destruction de
l'agitation des particules par création d'un sillage turbulent. Nous avons
proposé une modélisation di�érente de ce terme en nous basant sur une
séparation de la turbulence de la phase porteuse en deux échelles. Cette
modi�cation permet de retrouver les niveaux d'agitation expérimentaux. En
appliquant le nouveau model à notre cas d'intérêt nous avons observe une
modi�cation radical de la structure de l'écoulement les gouttelettes se répar-
tissant de manière homogène dans le tube.
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Figure IV.11: Le champ de distribution de fraction volumique de vapeur
dans un cas avec Q2Q12 modifé
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Chapter V

Force de Portance

La force de portance est une force transversale exercée sur une particule dans
un écoulement cisaillée. Du fait de à son impact important sur la distribu-
tion radiale des gouttelettes, la modélisation de la force de portance devient
fondamentale dans cette étude. Il existe trois principales contributions de la
force de portance: la portance induite par le cisaillement, la portance induite
par la rotation induite, et la portance induite par la paroi. Dans la présente
étude, la surface des gouttelettes est supposée être lisse ce qui entraine que
l'écoulement externe n'induit pas de rotation de la gouttelette.
On va considerer un simple problème d'une gouttelette sphérique de rayon

Figure V.1: Un schéma représentant d'une goutte dans un écoulement cisail-
lée en proche paroi

R situé à l'origine d'un repère cartésien. La goutte est dans un écoulement
de cisaillée en proche paroi caractérisé par le vitesse de vapeur Uz, où l est
la distance entre le mur et le centre de la particule. Dans ces conditions,
les principaux paramètres caractéristiques principaux de l'écoulement sont
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la distance adimensionnelle de la paroi L, le nombre de Reynolds particulaire
Rep, et le taux de cisaillement non-dimensionnel Sr dé�nis comme suit

Rep =
2RUz
ν

, α =
dUz
dx

, Sr =
Rα

Uz
L =

l

2R

Une analyse rapide de notre cas d'étude montre que Rep est toujours
supérieur à 1 et atteint des valeurs supérieures à 100. Sr varie entre zéro et
un, tandis que L varie entre 0, 5 et 20.

Tout d'abord, l'équation générale de la portance est rappelée

fL = ρ1VpCL(vr ∧ rot(u1)) (V.1)

Ici Vp est le volume de la goutte sphérique, vr est la vitesse relative qui
correspond à Uz et u1 est la vitesse de la vapeur qui corresponde aussi à Uz.
Ainsi la rot(u1) s'écrit

dUz
dx
−→ey = α−→ey

et

vr ∧ rot(u1) = Uz
dUz
dx
−→ex

Ainsi, la force de portance est dans la direction de l'axe x s'écrit

fL = CLρ1VpαUz (V.2)

Deux solutions analytiques permettent d'exprimer le coe�cient de portance
sur une particule sphérique dans l'écoulement cisaillé simple ont été obtenues.
Pour un �uide non visqueux remplissant la condition Sr << 1, Auton et al.
(1988) a obtenu le résultat

fL =
2

3
πρ1R

3αUz (V.3)

Ce qui donne à un coe�cient de portance CL,Auton = 0, 5. Tous les cas de
simulation dans les chapitres précédents ont été faites en utilisant ce modèle.
Mais la vapeur est un �uide visqueux et l'écoulement est loin d'être considéré
comme non visqueux en particulier à proximité de la paroi où la couche limite
joue un rôle important.
Pour les écoulements visqueux, Sa�man (1965) a proposé le modèle suivant

fL = 6.46µR2Uz

√
α

ν
(V.4)

ce qui donne un coe�cient de portance

CL,Saff =
1.54

R

√
ν

α
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Sa�man (1965) a déduit cette expression analytique de la force de portance
dans les hypothèses suivantes,

Rep << 1

Res

[
=
α(2R)2

ν

]
<< 1

où Res est le nombre de Reynolds de cisaillement dé�ni en termes de vitesse
de cisaillement.
Rep est supposé beaucoup plus petit que Res en dé�nissant la variable ξ

ξ

=
Re

1
2
s

Rep
=

(
Sr
Rep

) 1
2

 >> 1

Dans notre cas d'interet, Rep n'est pas plus petit que l'unité et peut atteindre
des valeurs élevées de l'ordre 100, et ξ est toujours plus petit que un. Ceci
rend l'expression de Sa�man pour le coe�cient de portance incompatible.
Selon nos connaissances, il n'existe pas un modèle analytique pour la force de
portance pour des particules lourdes (particules solides ou gouttelettes) dans
le cas de nombres de Reynolds élevés. Mais récemment, plusieurs auteurs
ont abordé ce problème en e�ectuant des DNS pour nombre de Reynolds
modérés et élevés. Ainsi les nouveaux modèles proposés pour la fermeture
de la force de portance dans ce cas, sont basés sur la corrélation des résultats
DNS.
Komori and Kurose (1996) et Kurose and Komori (1999) ont e�ectué une
simulation numérique directe 3D pour le champ d'écoulement autour d'une
sphère rigide pour une gamme de nombres de Reynolds particulaire 1 <
Rep < 500. Ils ont constaté que la direction de la force de portance sur
une sphère rigide stationnaires à Rep élevé est opposée à celle prédite par les
théories des écoulements non-visqueux à faible Reynolds. Kurose and Komori
(1999) a précisé que la force de portance sur une sphère rigide stationnaire,
dans un écoulement cisaillé linéaire, agit en poussant la particule de la zone
des faibles vitesses vers celles des vitesses élevées Rep < 60, alors que il
agit dans le sens opposé pour Rep > 60. Plus tard, Sugioka and Komori
(2006) a constaté que le comportement du coe�cient de portance sur une
goutte sphérique est similaire à celle sur une sphère rigide, et que la force de
portance agissant sur une goutte sphérique change sa direction à un nombre
de Reynolds Rep ' 50 dans un écoulement de cisaillement linéaire.
Zeng et al. (2009) a e�ectué des calculs DNS pour une sphère rigide dans
un écoulement de cisaillement linéaire proche d'une paroi pour comprendre
l'e�et de la paroi sur la force de portance. Dans les calculs de Zeng et al.
(2009), le gamme de nombres de Reynolds est de 2 à 250 à distances de
la paroi de L = 0, 505 à L = 4. Ils ont noté que pour les distances de
séparation plus grande que L = 0, 75 CL change son signe et devient négatif
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pour certains Rep . Cependant, pour L < 0, 75, le coe�cient de portance
reste positif sur toute la gamme de Rep considérée. Par conséquent, dans le
zone proche de la paroi, le nombre de Reynolds critique REp,cr pour laquelle
CL = 0, n'est pas constant et il dépend de la distance à la paroi. Les valeurs
de REp,cr pour di�érents L d'aprés Zeng et al. (2009) se trouvent dans la
table V. On voit que pour L = 0, 75, le nombre de Reynolds critique est
proche de 200 et diminue à REp,cr = 60 à L = 4. Zeng et al. (2009) a aussi
remarqué, que pour des distances plus grandes que L = 4, la valeur critique
du nombre de Reynolds particulaire REp,cr ' 60 est comparable à la valeur
trouvée par Kurose and Komori (1999). Dans le cas présent des gouttelettes,
Sugioka and Komori (2006) a spéci�é que REp,cr ' 50 pour les écoulements
de cisaillement loin de la paroi.

L Rep,cr
0.75 198.19
1 125.5
2 74.70
4 59.11

Table V.1: La valeur de Rep,cr à laquelle CL inverse son signe pour di�érentes
distances à la paroi, une table fournie par Zeng et al. (2009)

Dans l'écoulement en tube considéré ici et pour le diamètre des gout-
telettes considéré dans l'étude, la distance adimensionnelle de la paroi est
comprise entre 0,5 et 20. Par conséquent, dans la zone proche de la paroi on
doit prendre en compte la portance induite par la paroi.
Zeng et al. (2009) a présenté une corrélation numériques pour le coe�cient
de portance basée sur ses résultat de DNS. Cette corrélation est valable sur
une gamme 1 < Rep < 200 et L > 0, 5. Cette corrélation a la forme suivante:

CL = CL,wexp(−0.5δ(Rep/250)4/3)[exp(αβLL )− λL] (V.5)

ou

δ = L− 1/2

CL,w =
3.663

(Re2
p + 0.1173)0.22

αL(Rep) = −exp(−0.3 + 0.025Rep)

βL(Rep) = 0.8 + 0.01Rep

λL(δ,Rep) = (1− exp(−δ))(Rep/250)5/2 (V.6)

La validité de cette corrélation est présentée sur la �gure V.2, où la valeur
du coe�cient de portance à partir des résultats DNS et la corrélation de Zeng
et al. (2009) sont tracées en termes de Rep à plusieurs distances de la paroi.
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La corrélation de Zeng reproduit les résultats de DNS pour la zone proche de
la paroi (L ∈ [0505; 2]). Pour les distances loin de la paroi (L = 4) la corréla-
tion donne des valeurs dans le même ordre de grandeur que celles obtenues
par le DNS, mais ce résultat présente un défaut : le coe�cient de portance
change de signe avant Rep = 50. Par conséquent, une courbe supplémentaire
est présentée en considérant que L = 10. Dans ce cas, la �gure (V.2,d)
montre que si nous appliquons la formule de Zeng loin de la paroi REp,cr
devient très faible par rapport à 50. Ainsi, nous pouvons conclure que la
corrélation de Zeng n'est pas valable quand la distance de la paroi augmente.

Figure V.2: Comparaison des valeurs DNS et la corrélation des Zeng et al.
(2009) à plusieurs distances de la paroi

Par conséquent, la corrélation de Zeng et al. (2009) n'est pas valable pour
tous les domaines de l'écoulement de notre étude. Selon nos connaissances,
il n'existe pas de modèle pour le coe�cient de portance pour le cas d'un
écoulement de cisaillement loin de paroi. Dans ce chapitre, nous proposons
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une corrélation qui correspond aux résultats de la DNS Sugioka and Ko-
mori (2006) qui sont valables pour les écoulements loin de la paroi. Cette
corrélation s'écrit

CL =

(
15.5

Sr
Re2

p

exp−2Re−1.4
p + 0.12

)
+

(
5

Rep
− 0.05Sr − 0.08

)(
tanh(Rep − 55) + 1

2

)
(V.7)

La �gure V.3 présente la comparaison de la nouvelle corrélation avec les

Figure V.3: Comparaison des valeurs DNS de Sugioka and Komori (2006) et
la nouvelle corrélation des Zeng et al. (2009) à plusieurs taux de cisaillement

résultats de la DNS Sugioka and Komori (2006). Cette corrélation montre
un accord favorable avec les résultats DNS et le respect de la caractéristique
d'inverser le signe pour Rep entre 50 et 60. Cette corrélation reste valide

170



dans la zone éloignée de la paroi. Pour une modélisation précise de la por-
tance, nous proposons d'utiliser la corrélation de Zeng et al. (2009) dans la
région proche-paroi et notre nouvelle corrélation pour la zone loin de la paroi.

V.1. Impact de la modélisation de la force de por-

tance sur la distribution des gouttelettes

Après cette étude détaillée sur les di�érentes modélisations de la force de
portance, l'impact de ces modélisations sur notre cas de étude est analysé
dans cette section. Dans la �gure V.4, les champs de la fraction volumique
de vapeur sont présentés pour quatre cas de simulation avec des modèles
di�érents de la portance. D'abord dans le cas (a) le modèle de Auton et al.
(1988) est utilisé, ce modèle a été utilisé dans tous les chapitres précédents.
La force de portance est ici surestimée ce qui pousse les gouttelettes de la
paroi vers le centre. Dans le cas (b) le modèle de Sa�man (1965) est utilisée,
ici aussi tous les gouttelettes sont repoussées loin de la paroi et des zones de
concentration se trouvent au centre. Dans le cas (c) le modèle de Zeng et al.
(2009) est utilisé sur tout le domaine. Les gouttelettes n'approchent pas de
la paroi du fait de la forte portance proche de la paroi. Mais les gouttelettes
sont distribuées dans le reste du domaine et de manière homogène. En�n,
dans le cas (d) la nouvelle corrélation proposées dans l'équation (V.7)) et le
modèle Zeng et al. (2009) proche de la paroi et des résultats similaires sont
trouvés.

V.2. Conclusion

L'impact de la modélisation de la force de la portance sur la distribution
des gouttelettes sur la section radiale de tube, montre que la modélisation
de cette force est tres importante dans notre étude. Notre cas d'intérêt né-
cessite une bonne modélisation de la force de portance dans un domaine où
le nombre de particules de Reynolds atteint des valeurs élevées et la gamme
de vitesse de cisaillement adimensionnelle est comprise entre 0 et 1. La
présente étude peut être divisée en deux domaines principaux, l'écoulement
de cisaillement proche de paroi et loin de paroi. Les modèles analytiques de
Auton et al. (1988) et Sa�man (1965) surestiment la force de portance et ils
ne correspondent pas aux valeurs des calculs DNS. L'analyse des di�érents
résultats DNS nous montre que le coe�cient de la force de portance est tou-
jours positif et proportionnellement élevé en proche paroi. Loin de la paroi la
force de portance inverse sa direction pour une valeur critique du nombre de
Reynolds particulaire. Plusieurs solutions ont été proposées dans ce chapitre
a�n de tenir compte de ces phénomènes. Toutes les solutions proposées ont
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Figure V.4: L'impact des di�érentes modélisations de la portance sur la
distribution spatiale des gouttelettes sur la section de tube: a) Modèle de
Auton et al. (1988)- b) Modèle de Sa�man (1965)- c) Modèle de Zeng et al.
(2009)- d) La nouvelle corrélation proposées et le modèle Zeng et al. (2009)

donné un impact similaire sur la distribution des gouttelettes. Pour une
modélisation précise de la force de portance, nous proposons d'utiliser la
corrélation de Zeng et al. (2009) dans la région proche-paroi et la nouvelle
corrélation proposée dans ce chapitre pour la zone loin de la paroi.
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Chapter VI

Application sur le

refroidissement du coeur

accidenté d'un réacteur PWR

L'étude qui motive ce travail est l'estimation de la capacité de refroidissement
de l'écoulement vapeur-gouttelettes dans un coeur accidenté d'un réacteur
PWR. On a supposé que la distribution spatiale des gouttelettes est une
caractéristique principale de l'écoulement et qui a un impact direct sur la
capacité de refroidissement de l'écoulement. Il est temps de con�rmer cette
hypothèse et de véri�er si les modi�cations proposées sur la modélisation de
la dynamique des gouttelettes modi�ent le taux de transfert de chaleur avec
la paroi.
Comme on a montré dans les chapitres précédents, la modélisation de la
turbulence et la force de portance ont un impact important sur la distribu-
tion spatiale des gouttelettes. Par ailleurs on a montré que les modèles de
turbulence existants sous-estiment l'impact de la turbulence sur la distribu-
tion des gouttelettes, tandis que le modèle de la force de portance surestime
l'impact de cette force sur les gouttelettes. Les résultats numériques dans ce
cas montrent que les gouttelettes ont tendance à se concentrer dans le centre
du tube, et que la zone proche paroi reste vide des gouttelette. Dans une
tentative d'améliorer ces résultats, des modi�cations ont été proposées pour
la modélisation de ces forces, ce qui a changé la distribution des gouttelettes.
Dans ce chapitre, on va analyser les conséquences de ces modélisations sur la
quantité de chaleur que l'écoulement absorbe de la paroi. Une nouvelle série
de test a été e�ectuée en remplaçant la paroi adiabatique considérée dans
tous les cas précédents par une paroi chaude à la température de 573K.
Sur la �gure I.2, nous avons précisé les di�érents mécanismes de transfert
de chaleur se produisent ces dans ce type des écoulements, qui peuvent être
résumés comme suit: la convection entre la vapeur et la paroi, la convection
entre la vapeur et les gouttelettes, la conduction entre la gouttelette et la
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paroi en cas de contact direct de la gouttelette sur la paroi, et le rayonnement
de la paroi vers la vapeur et les gouttelettes. Ces deux derniers e�ets ne sont
pas considérés dans le présent travail, mais ces e�ets dépendent aussi de la
distribution spatiale des gouttelettes.
Quatre cas ont été réalisés pour montrer le rôle de chaque changement de
la modélisation de la répartition des gouttelettes sur le taux de transfert de
chaleur. Ces quatre cas sont faits avec le même maillage et conditions aux
limites. Seuls les modèles de turbulence et le modèle de la force de por-
tance seront modi�és d'un cas à l'autre. Nous allons dé�nir les cinq cas et
la problématique correspondante:

1. Le premier cas est un cas de base fait avec le modèle k − ε pour la
turbulence de la vapeur, le modèle Tchen-Hinze de la turbulence des
gouttelettes, et le modèle de Auton et al. (1988) pour la force de por-
tance.

2. Le deuxième cas est fait avec le modèle Rij − ε pour la turbulence de
la vapeur, le modèle Q2Q12 pour la turbulence des gouttelettes, et le
modèle de Auton et al. (1988) la force de portance. Ce cas est déjà fait
pour le cas adiabatique et il vise ici à montrer l'importance du choix
des modèles de turbulence, même sans aucune modi�cation.

3. Le troisième cas est fait avec Rij−ε pour la turbulence de la vapeur, et
le modèle Q2Q12 pour la turbulence des gouttelettes. Mais dans ce cas,
nous avons remplacé le modèle de Auton et al. (1988) de la force de la
portance par le modèle proposé. Ce test montre séparément l'impact
de la surestimation de la force de portance sur le transfert de chaleur.

4. Le quatrième cas est fait avec le modèle Rij − ε pour la turbulence de
la vapeur, le modèle modi�é de Q2Q12 pour la turbulence des gout-
telettes, et le nouveau modèle proposé pour la force de portance. Ce
cas montre l'impact de tous les modèles proposés sur le transfert de
chaleur.

Dans la suite, à des �ns de simplicité, ces cas seront notés qcas 1, cas 2,.. .
Tout d'abord, la �gure VI.1 montre les modi�cations dans la distribution

des gouttelettes pour chaque cas. Ces cas sont déjà décrits dans les chapitres
précédents dans le cas des parois adiabatique. Nous ne remarquons aucun ef-
fet particulier de la paroi chaude sur la structure dynamique de l'écoulement.
Nous rappelons rapidement les di�érences entre les cas. Dans le cas 1, les
gouttelettes sont concentrés au centre du tube et ne s'approche de la zone
proche-paroi. Dans le cas 2, quand on remplace les modèles turbulents les
gouttelettes sont un peu plus dispersées, mais elles restent au centre du tube.
L'écoulement a la même structure que dans le cas 1, en raison de la sures-
timation de la force de portance qui repousse toutes les gouttelettes loin du
mur dans les deux cas. C'est pourquoi en cas 3, quand le modèle de la force
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Figure VI.1: La répartition de la fraction du volume de la vapeur pour les
quatre cas de modélisation

de portance Auton et al. (1988) est remplacé par le nouveau modèle de la
force de portance, les gouttelettes deviennent distribuées presque sur toute
la section du tube, mais elles n'approchent pas de la paroi (voir la ligne rouge
près de la paroi). Dans le cas 4, quand la force portance et les modèles de
turbulence sont modi�ées, les gouttelettes sont réparties toute la section du
tube.
La �gure VI.2 montre le taux de transfert d'enthalpie de la paroi dans les
quatre cas sous forme d'histogramme. L'écoulement extrait le maximum
d'enthalpie quand les gouttelettes sont totalement dispersée (cas 4). De
l'autre côté, le taux de transfert d'enthalpie extrait est minimum quand les
gouttelettes sont concentrées dans le centre du tube (cas 1).
Dans cette analyse, on montre que chaque amélioration de la modélisation de
la distribution des gouttelettes modi�ée la quantité de chaleur extraite à la
paroi. Le transfert de chaleur dans le cas 2 est plus important que le transfert
de chaleur dans le cas 1 puisque les gouttelettes sont plus dispersées, même
si elles restent dans le centre du tube. Dans le cas 3, la quantité de chaleur
absorbée par la paroi augmente car on a retiré l'e�et de la force de portance
qui concentre les gouttelettes. En�n dans le cas 4, les résultats sont compa-
rables à ceux du cas 3. Mais il faut noter une remarque importante ici, que
dans le cas 3 les gouttelettes ne touchent jamais la paroi, mais dans le cas 4
les gouttelettes peuvent être en contact direct avec la paroi. Par conséquent,
dans le cas où on considère le modèle du transfert de chaleur entre la paroi
et les gouttelettes en contact direct, le transfert de chaleur dans le cas 4 sera
plus important que dans le cas de 3. En�n, cette étude montre l'importance
d'améliorer l'estimation de la distribution des gouttelettes sur l'estimation
du refroidissement. Le taux de transfert de chaleur estimé avec les modèles
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de turbulence et l'intégration des modi�cations dans le cas de 4 est de 118
% de plus que la valeur estimée dans le cas 1 fait avec les modèles de base.

Figure VI.2: La quantité de chaleur absorbée par la paroi pour les quatre
cas
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Chapter VII

Conclusion

Notre travail vise à améliorer la compréhension des écoulements vapeur-
gouttelettes turbulent non-isotherme en conduite. Plus précisément, dans
le contexte de l'estimation du transfert de chaleur lors d'un accident
APRP dans le coeur d'un REP, cette étude concerne l'adaptation du
code Neptune-CFD pour les cas d'écoulement des gouttelettes dispersées.
L'écoulement est considéré dilué et les gouttelettes sont considérées comme
sphériques et non déformables. On introduit la méthodologie d'Euler-Euler
utilisés par l'approche CFD. Ensuite, nous limitons notre étude à une
caractéristique principale de l'écoulement qui est la distribution spatiale des
gouttelettes en raison de son impact direct sur le transfert de chaleur entre
la paroi et l'écoulement. Grace à une analyse physique et théorique, nous
avons déterminé que les phénomènes principaux qui a�ectent la distribution
des gouttelettes sont les forces entre les vapeurs et les gouttelettes et les
turbulences des deux phases. L'analyse de cas test numérique à l'aide d'une
étude bibliographique nous a aidé à préciser que les modèles principaux qui
ont besoin de recherches supplémentaires pour être compatibles avec notre
cas d'un écoulement des gouttelettes sont les modèles de la turbulence et le
modèle de la force de portance.

Pour le modèle de la turbulence de la phase continue, nous avons montré
que les deux modèles k− ε et Rij − ε produisent le même type de structures
d'écoulement avec quelques di�érences mineures. Pour un cas de géométrie
simple comme le cas testé le modèle k − ε peut être su�sant. Grâce à
sa capacité à prendre en compte l'anisotropie de la vapeur l'utilisation du
modèle Rij − ε devient nécessaire si des e�ets supplémentaires comme des
géométries complexes sont ajoutées.

Pour le modèle de la turbulence de la phase dispersée, les deux modèles
Tchen-Hinze et Q2Q12 sous-estiment la valeur de l'énergie cinétique tur-
bulente des gouttelettes. Cela nous pousse à prolonger la recherche sur les
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modèles de fermeture des di�érents termes en Q2Q12. De cette analyse,
nous pouvons conclure que le terme du transfert interfacial de l'énergie
turbulente est à l'origine de la sous-estimation faite par Q2Q12. Nous
avons proposé une nouvelle fermeture de ce terme qui permet de prédire
l'énergie cinétique turbulente dans le bon ordre de grandeur. En�n, nous
considérons que le modèle de Q2Q12 avec la fermeture proposée pour le
transfert interfacial est la meilleure solution pour le moment reconnaissant
que plus de recherches doivent être faites sur la fermeture du transfert
interfacial turbulent en fonction notamment du ratio entre la taille de la
particule et les échelles caractéristiques de la turbulence de la phase porteuse.

Pour la modélisation de la force de portance, nous avons montré que
les modèles analytiques existants comme le modèle de Auton ou Sa�man
surestiment cette force dans le cas de l'écoulement de cisaillement des
gouttelettes à haute nombre de Reynolds particulaire. L'analyse des
résultats de DNS nous aide à comprendre le comportement de la force
de portance dans ce type d'écoulement. Zeng a proposé une corrélation
pour la force de portance valable pour la zone proche de la paroi. Selon
notre connaissance, il y a aucun modèle de la force de portance pour des
hautes valeurs du nombre de Reynolds particulaire dans la zone loin de
la paroi. Donc nous avons proposé une corrélation basée sur les résultats
DNS qui est valable pour la zone loin de la paroi. En�n nous avons proposé
la solution optimale est une combinaison entre le modèle de Zeng dans la
zone proche-paroi et le nouveau modèle proposé pour la zone loin de la paroi.

En�n nous avons étudié l'impact de toutes ces modélisations sur le
transfert de chaleur avec la paroi. Nos résultats montrent que le taux de
transfert de chaleur estimé après avoir choisi le bon modèle de turbulence
et d'intégrer les modi�cations sur les modèles Q2Q12 et de la portance est
de 118 % de plus que la valeur estimée dans le cas d'étude de base. Cela
montre l'importance de notre étude pour le cas d'intérêt.

178



Bibliography

M Andreani and G Yadigaroglu. A 3-d eulerian-lagrangian model of dis-
persed �ow �lm boiling including a mechanistic description of the droplet
spectrum evolution i. the thermal-hydraulic model. International Journal
of Heat and Mass Transfer, 1997.

T R Auton. The lift force on a spherical body in a rotational �ow. Journal
of Fluid Mechanics, 183:199�218, 1987.

T R Auton, J C R Hunts, and M Prud'Homme. The force exerted on a
body in inviscid unsteady non-uniform rotational �ow. Journal of Fluid
Mechanics, 197:241�257, 1988.

J Chahed. Forces interfaciales et turbulence dans les écoulements a bulles:
modélisation et étude de cas de référence. PhD thesis, Université des Sci-
ences et Techniques de Tunis, 1999.

P Chassaing. Turbulence en mécanique de �uides, volume 40. Cépaduès,
1996.

C P Chen and P E Wood. A turbulence closure model for dilute gas particle
�ows. The Canadian Journal of Chemical Engineering, 63:349�360, 1985.

G Csanady. Turbulent di�usion of heavy particles in the atmosphere. Journal
of Atmospheric Sciences, 20:201�208, 1963.

D S Dandy and H A Dwyer. A sphere in a shear �ow at �nite reynolds
number: e�ect of shear on particle lift, drag, and heat transfer. Journal
of Fluid Mechanics, 216:381�410, 1990.

J Delhaye, M Giot, and M Riethmuller. Thermal-Hydraulics of Two-Phase
Systems for Industrial Design and Nuclear Engineering. Hemisphere Pub-
lishing Corp, New York, 1981.

J M Delhaye. Jump conditions and entropy sources in two-phase systems
local instant formulations. International Journal of Multiphase Flow, 1:
395�409, 1974.

179



P Desjonqueres, G Gouesbe, A Berlemon, and A Picart. Dispersion of dis-
crete particles by continuous turbulent motions - new results and discus-
sions. Physics of Fluids, 29:2147�2151, 1986.

E Deutch. Dispersion de particules dans une turbulence homogène isotrope
stationnaire calculée par simulation numérique directe des grandes échelles.
PhD thesis, IMFT, 1992.

D A Drew. Analytical modeling of multiphase �ows. In R.T.LAHEY, editor,
Boiling heat transfer. Elsevier Science Publishers, 1992.

J K Eaton. Turbulence modi�cation by particle in shear �ows. ASME FED
Gas-Particle Flows, ASME FED-228 Gas-Particle Flows, 1995.

J K Eaton and F R Fessler. Preferential concentration of particle by turbu-
lence. International Journal of Multiphase Flow, 20:169?209, 1994.

S Elghobashi, T W Abou-arab, M Risk, and M Mostafa. Prediction of
the particle-laden jet with two-equation turbulence model. International
Journal Multiphase Flow, 10:697�710, 1984.

V Ferrand, R Bazile, J Borée, and G Charnay. Gas-droplets turbulent veloc-
ity correlations and two-phase interaction in axisymmetric jet laden with
partly responsive droplets. International Journal of Multiphase Flow, 29:
195�217, 2003.

R Gatignol. The faxén formulae for a rigid particle in an unsteady non-
uniform stokes �ow. Journal de Mécanique Théorie et Application, 9(2):
143�160, 1983.

R A Gore and C T Crowe. E�ect of particle size on modulating turbulent
intensity. Internation Journal of Multiphase Flow, 15(2):279�285, 1989.

R. Groll, S Jakirlic, and C Tropea. Comparative study of euler/euler and
euler/lagrange approaches simulating in a turbulent gas-liquid �ow. In-
ternational journal for numerical methods in �uids, 59:873�906, 2009.

K Hanjalic and D Laurence. Introduction to turbulence modeling. Lecture
series, 02, 2002.

Y Hardalupas, A M Taylor, and J H Whitelaw. Velocity and particle-�ux
characteristics of turbulent particle-laden jets. Proceedings of the Royal
Society of London, A426:31�78, 1989.

M Hendou. Contribution à la modélisation des transferts simultanés lors de
l'absorption de gaz traces par une pulvérisation. PhD thesis, ENSIGC,
1992.

180



G Hestroni. Particle-turbulence interaction. International Journal of Multi-
phase Flow, 15:735�746, 1989.

G F Hewitt, J M Delhaye, N zuber Multiphase Sciences, and Technology,
editors. Two-�uid model for two-phase �ow. Hemisphere Publishing Cor-
poration, 1990.

J Hinze. Introduction to turbulence modeling. Mc Graw-Hill, 2, 1975.

K Ikeda, Y Makino, and M Hoshi. Single-phase cfd applicability for estimat-
ing �uid hot-spot locations in a 55 fuel rod bundle. Nuclear Engineering
and Design, 236:1149�1154, 2006.

M Ishii. Thermo-�uid dynamic theory of two-phase �ow. Collection de la
Direction des études et recherches d'Electricité de France. Eyrolles, Paris,
1975.

M Ishii and K Mishima. Two-�uid and hydrodynamic constitutive relations.
Nuclear Engineering and Design, 82:107�126, 1984.

W P Jones and B E Launder. The prediction of laminarization with a two-
equation model of turbulence. International Journal of Heat and Mass
Transfer, 15:301�314, 1972.

P L Kirillov, V M Kashcheyev, and S Yuriev. A two dimensional mathe-
matical model of the annular-dispersed and dispersed �ows. International
Journal of Heat and Mass Transfer, 30:791�800, 1987.

S Komori and R Kurose. The e�ects of shear and spin on particle lift and
drag in shear �ow at high reynolds numbers. Advances in turbulence, 4:
551�554, 1996.

J D Kulick, J R Fesseler, and J K Eaton. Particle response and turbulence
modi�cation in fully developed channel �ow. Journal of Fluid Mechanics,
277:109�134, 1994.

R Kurose and S Komori. Drag and lift forces on a rotating sphere in a linear
shear �ow. Fluid Mechanics, 384:183�206, 1999.

R Kurose, R Misumi, and S Komori. Drag and lift forces acting on a spherical
water bubble in a linear shear �ow. International Journal of Multiphase
Flow, 27:1247�1258, 2001.

C M Lee and Y D Choi. Comparison of thermo-hydraulic performances of
large scale vortex �ow (lsvf) and small scale vortex �ow (ssvf) mixing
vanes in 1717 nuclear rod bundle. Nuclear Engineering and Design, 237:
2322�2331, 2007.

181



D Lhuillier. Dynamics of interfaces and rheology of immiscible liquid-liquid
mixture. Comptes-Rendu de l'Académie des Sciences-Mécanique, 331(2):
113�118, 2003.

D Lhuillier, C Morel, and J M Delhaye. Bilan d'aire interfaciale dans un
melange diphasique: approche locale vs approche particulaire. Comptes-
Rendu de l'Académie des Sciences-Mécanique, t.328 Série II b:143�149,
2000.

F Lucci, A Ferrante, and S Elghobashi. Modulation of isotropic turbulence
particles of taylor length-scale. Journal of Fluid Mechanics, 650:5�55,
2010.

K Luo, M Klein, J Fan, and K Cen. E�ects on particle dispersion by turbu-
lent transition in a jet. Physics Letters A, 357:345�350, 2006.

A R Masri, R W Dibble, and R S Barlow. The structure of turbulent non-
premixed �ames revealed by raman-rayleigh-lif measurements. Progress in
Energy and Combustion Science, 22:307�362, 1996.

M R Maxey and J J Riley. Equation of motion for a small rigid sphere in a
nonuniform �ow. From the Transactions of the Cambridge Philosophical
Society, 26:883�889, 1983.

J P McLaughlin. Inertial migration of a small sphere in linear shear �ows.
Journal of Fluid Mechanics, 224:261�274, 1991.

J P McLaughlin. Inertial migration of a small sphere in a wall-bounded
linear shear �ows. Journal of Fluid Mechanics, 246:249�265, 1993.

J P McLaughlin and P Cherukat. The inertial lift on a rigid sphere in a
linear shear �ow feild near a �at wall. Journal of Fluid Mechanics, 263:1,
1994.

J P McLaughlin, Q Wang, K D Squires, and M Chen. On the role of the
lift force in turbulence simulations of particle deposition. International
Journal of Multiphase Flow, 23:749�763, 1997.

W K Melville and K N C Bray. A model of the two phase turbulent jet.
International Journal Heat and Mass Transfer, 22:647�656, 1979.

R Mie. An approximate expression for the shear lift force on a spherical
particle at �nite reynolds number. International Journal of Multiphase
Flow, 18:145�147, 1992.

R Mie. Shear lift force on a spherical bubbles at �nite reynolds number.
International Journal of Heat �uid Flow, 15:62�65, 1994.

182



S Mimouni, F Archambeau, M Boucker, J Laviéville, and C Morel. A second-
order turbulence model based on a reynolds stress approach for two-phase
�ow-part i: adiabatic cases, , hindawi publishing corporation, 2008. Sci-
ence and Technology of Nuclear Installations, article ID 792395, 2009.

A Mostafa and H Mongia. On the interaction of particles and turbulent �ow.
International journal Heat and Mass Transfer, 31:2063�2075, 1988.

M Rivero, J Magnaudet, and J Fabre. Quelques résultats nouveaux con-
cernant les forces exercées sur une inclusion sphérique par un écoulement
accéléré. Comptes Rendus de l'Académie des Sciences. Série 2, Mécanique,
Physique, Chimie, Sciences de l'univers, Sciences de la Terre ISSN 0764-
4450 CODEN CRAMED, 312:1499�1506, 1991.

P G Sa�man. The lift on a small sphere in a slow shear �ow. Journal of
Fluid Mechanics, 224:385�400, 1965.

Y Sato, U Fukuichi, and K Hishida. E�ect of inter-particle spacing on turbu-
lence modulation by lagrangian piv. International Journal of Multiphase
Flow, 21:554�561, 2000.

G Segré and A Silberberg. The lift force on a small sphere in a slow shear
�ow. Journal of Fluid Mechanics, 14:115�157, 1962.

O Simonin. Modélisation numérique des écoulements turbulents diphasique
à inclusions disperées. École de Printemps de Mécanique des �uides
Numériques; Aussois, 1991a.

O Simonin. Prediction of the dispersed phase turbulence in particle-laden
jets. American Society of Mechanical Engineers, 121:197�206, 1991b.

O Simonin. Combustion and turbulence in two-phase �ows. von Karman
Institute for Fluid Dynamis, Lecture Series,1996-02, 1996.

O Simonin. Statistical and continuum modeling of turbulent reactive par-
ticulate �ows. part 1: theoretical derivation of dispersed eulerian mod-
eling from probability density function kinetic equation. theoretical and
experimental modeling of particulate �ows. Theoretical and Experimental
Modeling of Particulate Flows, Lecture Series 2000-06, 2000.

O Simonin, E Deutsch, and J P Minier. Eulerian prediction of the
�uid/particle correlated motion in turbulent two-phase �ows. Applied Sci-
enti�c Research, 51:275�283, 1993a.

O Simonin, E Deutsch, and J P Minier. Eulerian prediction of the
�uid/particle correlated motion in turbulent two-phase �ows. Applied Sci-
enti�c Research, 51:275�283, 1993b.

183



M Sommerfeld, G Kohnen, and H Qui. Spray evaporation in turbulent
�ow: Numerical calculations and detailed experiments by phase-doppler
anemometry. Revues de l'Institut Francais de Petrole, 48:677�695, 1993.

G G Stokes. On the e�ect of the internal friction on the motion of pendulums.
From the Transactions of the Cambridge Philosophical Society, 9:8, 1850.

K Sugioka and S Komori. Drag and lift forces acting on a spherical water
droplet in a homogeneous linear shear air �ow. Fluid Mechanics, 570:
155�175, 2006.

S Sundaram and L R Collins. A numerical study of modulation of isotropic
turbulence by suspended particles. Journal of Fluid Mechanics, 379:105�
143, 1999.

C Tchen. value and correlation problems connected with the motion of small
particles suspended in turbulent �uid. PhD thesis, Technische Hogeschool
Delft, 1947.

A A Vinberg, L I Zaichick, and V A Pershukov. Computational model for
turbulent gas-particle jet streams. Journal of Engineering and Physics,
61:554?563, 1991.

G Wallis. One Dimensional Two-Phase Flow. Mcgraw-Hill (Tx), 1969.

S W Webb and J C Chen. A numerical model for turbulent non-equilibrium
dispersed �ow heat transfer. International Journal of Heat and Mass
Transfer, 25:325�335, 1982.

Y Wu, H Wang, Z Lui, and J Li. Experimental investigation on turbulence
modi�cation in a horizontal channel �ow at relatively low mass loading.
Acta Mech Sinicia, 22:99�108, 2006.

Y Xu and S Subramaniam. A multi scale model for dilute turbulent gas-
particle �ows based on the equilibration of energy concept. Physics of
Fluids, 18:033301, 2006.

Y Xu and S Subramaniam. Consistent modeling of inter phase turbulent
kinetic energy transfer in particle-laden turbulent �ows. Physics of Fluids,
19:085101, 2007.

L P Yarin and G Hestroni. Turbulence intensity in dilute two phase �ow.
International Journal of Multiphase Flow, 20:27�44, 1993.

L Zeng, F Najjar, S Balchandar, and P Fischer. Forces on a �nite-sized
particle located close to a wall in a linear shear �ow. Physics of �uids, 21:
033302, 2009.

184



L X Zhou. Advances in studies on two-phase turbulence in dispersed multi-
phase �ows. International Journal of Multiphase Flow, 36:100�108, 2010.

L X Zhou and X Q Huang. Prediction of con�ned gas-particle jets by an
energy equation model of particle turbulence. Science in China English
Addition, 33:53�59, 1990.

185


