
UNIVERSITÉ DE PROVENCEU.F.R. de Mathématiques, Informatique et MéaniqueÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUEE.D numéro 184THÈSEpour obtenir le grade deDOCTEUR DE L'UNIVERSITÉ DE PROVENCEDisipline : MATHÉMATIQUESOption : ANALYSEprésentée et soutenue publiquementparWalid KHERIJI2011Titre :MÉTHODES DE CORRECTION DE PRESSIONPOUR LES ÉQUATIONS DE NAVIER-STOKESCOMPRESSIBLES
JURYM. Frédéri COQUEL Direteur de Reherhe CNRS RapporteurM. Hervé GUILLARD Direteur de Reherhe INRIA, Sophia Antipolis RapporteurM. Jean-Mar HERARD Ingénieur Senior, EDF, Chatou ExaminateurMme Florene HUBERT Maître de Conférenes, Université de Provene ExaminateurMme Raphaèle HERBIN Professeur, Université de Provene Direteur de thèseM. Jean-Claude LATCHE Ingénieur de Reherhe, IRSN, Cadarahe Direteur de thèse





UNIVERSITÉ DE PROVENCEU.F.R. de Mathématiques, Informatique et MéaniqueÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUEE.D numéro 184THÈSEpour obtenir le grade deDOCTEUR DE L'UNIVERSITÉ DE PROVENCEDisipline : MATHÉMATIQUESOption : ANALYSEprésentée et soutenue publiquementparWalid KHERIJI2011Titre :MÉTHODES DE CORRECTION DE PRESSIONPOUR LES ÉQUATIONS DE NAVIER-STOKESCOMPRESSIBLES
JURYM. Frédéri COQUEL Direteur de Reherhe CNRS RapporteurM. Hervé GUILLARD Direteur de Reherhe INRIA, Sophia Antipolis RapporteurM. Jean-Mar HERARD Ingénieur Senior, EDF, Chatou ExaminateurMme Florene HUBERT Maître de Conférenes, Université de Provene ExaminateurMme Raphaèle HERBIN Professeur, Université de Provene Direteur de thèseM. Jean-Claude LATCHE Ingénieur de Reherhe, IRSN, Cadarahe Direteur de thèse





Table des matières

General synthesis1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Meshes and unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Compressible barotropi Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . 53.1 An impliit sheme sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73.2 A pressure orretion sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Compressible Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195.1 The disrete kineti energy balane equation and the orretive soure terms . . . 205.2 Passing to the limit in the sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 225.3 Numerial tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Conlusion and perspetives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Chapitre IPressure orretion staggered shemes for barotropi monophasi and two-phase �owsI.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31I.2 The pressure orretion sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33I.2.1 Time semi-disretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33I.2.2 Disrete spaes and unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34I.2.3 Disrete equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36I.3 Numerial experiments : Riemann problems . . . . . . . . . . . . . . . . . . . . . . . . . . 39I.3.1 Sod shok tube problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40v



vi Table des matièresI.3.2 Two-�uid shok tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46I.4 A two-dimensional test ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55I.5 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Chapitre IIConsistent staggered shemes for ompressible �ows � Barotopi equations.II.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63II.2 Meshes and unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64II.3 An impliit sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66II.3.1 The sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66II.3.2 Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69II.3.3 Passing to the limit in the sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 71II.4 Pressure orretion sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78II.4.1 The sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78II.4.2 Stability estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80II.4.3 Passing to the limit in the sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 82Chapitre IIIAn unonditionally stable pressure orretion sheme for Navier-Stokes equationsIII.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91III.2 Meshes and unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92III.3 The time-impliit numerial sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94III.3.1 Semi-disrete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94III.3.2 The fully disrete algorithm and its �rst properties . . . . . . . . . . . . . . . . . . 95III.4 Pressure orretion sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101III.4.1 Semi-disrete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101III.4.2 Disrete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102III.4.3 Properties of the sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103III.5 Appendix : the MAC disretization of the dissipation term . . . . . . . . . . . . . . . . . . 105III.5.1 The two-dimensional ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105III.5.2 Extension to the three-dimensional ase . . . . . . . . . . . . . . . . . . . . . . . . 108Chapitre IVConsistent staggered shemes for ompressible �ows � Euler equations.IV.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113IV.2 Meshes and unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114IV.3 An impliit sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115IV.3.1 The sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115IV.3.2 The disrete kineti energy balane equation and the orretive soure terms . . . 118IV.3.3 Passing to the limit in the sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 121IV.4 A pressure orretion sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127IV.4.1 The sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



viiIV.4.2 The disrete kineti energy balane equation and the orretive soure terms . . . 128IV.4.3 Passing to the limit in the sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 130IV.5 Numerial tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Annexe A Some results assoiated to �nite volume onvetion operatorsAnnexesAnnexe B The Riemann problem for the homegeneous model 141B.1 The system of onservation laws and its mathematial properties . . . . . . . . . . . . . . 141B.2 Solution of the Riemann problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145B.2.1 Sod shok tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147B.2.2 Two-�uid shok tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148Annexe C Staggered disretizations, pressure orretions shemes and all speed baro-tropi �ows 151C.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153C.2 The shemes : general form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153C.2.1 Meshes and unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153C.2.2 The shemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155C.3 The stability issue and onsequenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157C.3.1 A stability result for the onvetion . . . . . . . . . . . . . . . . . . . . . . . . . . 157C.3.2 Disretization of the onvetion term . . . . . . . . . . . . . . . . . . . . . . . . . . 158C.4 Shemes and stability estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161C.5 Euler equations and solutions with shoks . . . . . . . . . . . . . . . . . . . . . . . . . . . 164C.6 Disussion and perspetives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164Annexe D Disretization of the visous dissipation term with the MAC sheme 167D.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169D.2 Disretization of the dissipation term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170D.2.1 The two-dimensional ase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170D.2.2 Extension to the three-dimensional ase . . . . . . . . . . . . . . . . . . . . . . . . 173D.3 A strong onvergene result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174Bibliographie





General synthesis

1 IntrodutionThis work was performed at the Institut de Radioprotetion et de Sûreté Nuléaire (IRSN). The skill�elds of IRSN over all risks related to ionizing radiation, used in industry or mediine, or naturalradiation. Spei�ally, IRSN arries expertises and onduts researh in the domain of nulear safety,protetion against ionizing radiation, ontrol and protetion of nulear materials and protetion againstmaliious ats. An essential part of the safety analysis onsists in studying the di�erent situations thata nulear reator an fae, from normal operation onditions to severe aidents. Many �ows of interestin this ontext are ompressible, either monophasi (hydrogen ombustion, de�agration or detonation inthe reator ontainment in the late phases of severe aident senarii, explosion of gaseous mixtures inindustrial environment,. . .) or multi-phasi (primary aident depressurization, bubbling pools generatedby the interation between the molten strutures of the vessel and the ore and the onrete �oor of theontainment, one again in severe aidents late phases, . . .).Our aim here is to ontribute to the development of a lass of shemes for the omputation of ompres-sible �ows. The onsidered systems of governing equations are oupled and strongly nonlinear, and the(industrial) appliations in view involve omplex geometry and �ows, possibly ombining quasi-steadystates with quik transient phases, with strong physial properties (in partiular, density or ompressi-bility) ontrasts. Aordingly, the algorithms are developed so as to realize a ompromise between twomain requirements : preserve the stability in a wide range of Mah numbers and introdue su�ientdeoupling to failitate the resolution of disrete algebrai systems. Pressure orretion methods seemto be a good hoie to address these requirements. This lass of shemes was �rst introdued in theframework of inompressible �ows a long time ago [8, 67℄, and suh algorithms are now quite widespreadand well understood in this ontext (see, for example, [55℄ for an introdution and [29℄ for a review of1



2 General synthesismost of the variants). Pressure orretion shemes are less popular in the ontext of ompressible �ows,even though their appliation to ompressible Navier-Stokes equations may also be traed bak to thelate sixties, with the seminal work of Harlow and Amsden [35, 36℄, who developped an iterative algo-rithm (the so-alled ICE method) inluding an ellipti orretor step for the pressure. Later on, pressureorretion equations appeared in numerial shemes proposed by several researhers, essentially in the�nite-volume framework, using either a olloated [62, 15, 46, 64, 43, 56℄ or a staggered arrangement[7, 41, 42, 44, 3, 10, 69, 73, 74, 70, 72℄ of unknowns ; in the �rst ase, some orretive ations are to beforeseen to avoid the usual odd-even deoupling of the pressure in the low Mah number regime. Someof these algorithms are essentially impliit, sine the �nal stage of a time step involves the unknown atthe end-of-step time level ; the end-of-step solution is then obtained by SIMPLE-like iterative proesses[71, 44, 15, 46, 64, 43, 56℄. The other shemes [41, 42, 62, 3, 10, 75, 69, 74, 70, 72℄ are preditor-orretormethods, where basially two steps are performed sequentially : �rst a semi-expliit deoupled preditionof the momentum or veloity (and possibly energy, for non-barotropi �ows) and, seond, a orretionstep where the end-of step pressure is evaluated and the momentum and veloity are orreted, as inprojetion methods for inompressible �ows (see [8, 67℄ for the original papers, [55℄ for a omprehensiveintrodution and [29℄ for a review of most variants). The Charateristi-Based Split (CBS) sheme (see[60℄ for a reent review or [77℄ for the seminal paper) was developed in the �nite-element ontext andbelongs to this latter lass of methods.In this work, impliit-in-time disretizations are addressed for their (relative) simpliity in view of thetheoretial studies ; however, non-iterative pressure orretion shemes are our main onern for pratialomputations. We onsider here staggered�in�spae disretizations, with the aim to build shemes whihare stable and aurate at all Mah numbers and, in partiular, boil down to a usual algorithm forinompressible �ows (or, more generally, for the asymptoti model of vanishing Mah number �ows [54℄)when the Mah number tends to zero. This last requirement also implies that, if we implement upwindingtehniques (and we will have to for stability reasons), upwinding may have to be performed for eahequation separately and with respet to the material veloity only. This is in ontradition with the mostommon strategy adopted for hyperboli systems, where upwinding is built from the wave struture ofthe system (see eg. [68, 4℄ for surveys and [34, 33, 14℄ for analysis of these shemes at low Mah number),and yields algorithms whih are used in pratie (see, eg., the so-alled AUSM family of shemes [53, 52℄),but sarely studied from a theoretial point of view. One of our main onerns here will thus be tobring, as far as possible, theoretial arguments supporting our numerial developments. Let us �rst realla (possible) ommon skeleton of onvergene studies in the �nite volume ontext [16℄. The proof mayusually be deomposed into three steps :
(i) The �rst step is to get the existene and some a priori estimates on the approximate solution, or,in other words, to obtain stability results for the sheme.

(ii) Next, up to the extration of a subsequene, ompatness arguments yield the existene of a(possibly weak) limit to a sequene of disrete solutions obtained with a sequene of disretizationsthe spae step and, for unsteady problems, the time step of whih tend to zero. At this point, apriori estimates may imply some regularity of the limit.
(iii) Finally, the fat that the limit is a solution to (a weak form) of the ontinuous problem is provenby passing to the limit in (a weak formulation of) the sheme.



2. Meshes and unknowns 3For the problems studied here, namely the ompressible Navier-Stokes or Euler equations, the realizationof the omplete program seems out of reah, due to the lak of ontrol (Step (i)) of spae translatesof the unknown ; hene we obtain a onvergene of sequene of disrete solutions (Step (i)) in a sensetoo weak to allow the passage to the limit in the sheme (Step (iii)). There is thus no hope at thepresent stage to prove the onvergene of the shemes in the general ases (i.e. exept for the barotropivisous Navier-Stokes equations, see [51, 19, 61℄ for theoretial analysis of the ontinuous prolem and[21, 18, 17℄ for sheme onvergene analysis in the simpli�ed ase of the steady Stokes problem), and ourtheoretial analyses are then neessarily somewhat inomplete. However, in both the barotropi and thenon-barotropi ases, and at least for most variants of the shemes, we do get the following results :
(i) We show that the disrete solution satis�es disrete analogues of the estimates known in theontinuous ase : positivity of the density and, in the non-barotropi ase, of the internal energy,derease of the total energy, and, for the visous barotropi �ows, ontrol of the veloity in the

L2(H1) norm. These estimates allow to prove the existene of at least one solution to the sheme,by topologial degree arguments.
(ii) Supposing the onvergene of the sheme in strong enough norms, we then show that the limits ofsequenes of solutions are weak solutions to the ontinuous problem, whih may be seen (and isrefered to hereafter) as a onsisteny property of the shemes.Finally, we onfort these theoretial experiments by numerial tests, performed with the open-souresoftware ISIS [40℄, developed at IRSN on the basis of the software omponent library and programmingenvironment PELICANS [63℄.This paper is organized as follows. We �rst introdue the onsidered spae disretizations (Setion 2).Then we turn to the barotropi Navier-Stokes equations (Setion 3), to the "omplete" Navier-Stokesequations (Setion 4), and, �nally, to the Euler equations (Setion 5) ; for eah ase, we present theshemes, summarize the theoretial results and the numerial tests.In several theoretial developments, we are lead to use a derived form of a disrete �nite volume onvetionoperator (for instane, typially, a onvetion operator for the kineti energy, possibly with residual terms,obtained from the �nite volume disretization of the onvetion of the veloity omponents) ; an abstratpresentation of suh omputations is given in the Appendix of this thesis.This organization losely follows the thesis one : barotropi �ows are adressed in the �rst two hapters(numerial tests, foussed on the invisid ase, then theory), then a sheme for Navier-Stokes equations ispresented and its stability is proven ; �nally, we show how to adapt it to ompute disontinuous solutionof Euler equations.2 Meshes and unknownsLet the omputational domain Ω be an open polygonal subset of R

d, d ≤ 3, and M be a partition of Ω,supposed to be regular in the usual sense of the �nite element literature (eg. [9℄). The ells may be :- for a general domain Ω, either onvex quadrilaterals (d = 2) or hexahedra (d = 3) or simplies,both types of meshes being possibly ombined in a same mesh,



4 General synthesis- for a domain the boundaries of whih are hyperplanes normal to a oordinate axis, retangles(d = 2) or retangular parallelepipeds (d = 3) (the faes of whih, of ourse, are then also neessarilynormal to a oordinate axis).By E and E(K) we denote the set of all (d−1)-faes σ of the mesh and of the element K ∈ M respetively.The set of edges inluded in the boundary of Ω is denoted by Eext and the set of internal ones (i.e. E \Eext)is denoted by Eint ; a fae σ ∈ Eint separating the ells K and L is denoted by σ = K|L. The outwardnormal vetor to a fae σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the measureof K and by |σ| the (d− 1)-measure of the fae σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E the subset of thefaes of E whih are perpendiular to the ith unit vetor of the anonial basis of Rd.The spae disretization is staggered, using either the Marker-And Cell (MAC) sheme [37, 36℄, or non-onforming low-order �nite element approximations, namely the Rannaher and Turek element (RT) [65℄for quadrilateral or hexahedri meshes, or the Crouzeix-Raviart (CR) element [11℄ for simpliial meshes.For all these spae disretizations, the degrees of freedom for the pressure, the density and the internalenergy are assoiated to the ells of the mesh M, and are denoted by :
{
pK , ρK , eK , K ∈ M

}
.Let us then turn to the degrees of freedom for the veloity.- Rannaher-Turek or Crouzeix-Raviart disretizations � The degrees of freedom for the velo-ities are loated at the enter of the faes of the mesh, and we hoose the version of the elementwhere they represent the average of the veloity through a fae. The set of degrees of freedomreads :

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.- MAC disretization � The degrees of freedom for the ith omponent of the veloity, de�ned at theentres of the fae σ ∈ E(i), are denoted by :
{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.For the de�nition of the shemes, we need a dual mesh whih is de�ned as follows.- Rannaher-Turek or Crouzeix-Raviart disretizations � For the RT or CR disretization, thedual mesh is the same for all the veloity omponents. When K ∈ M is a simplex, a retanglesor a uboid, for σ ∈ E(K), we de�ne DK,σ as the one with basis σ and with vertex the massenter of K. We thus obtain a partition of K in m sub-volumes, where m is the numbers of faesof the mesh, eah sub-volume having the same measure |DK,σ| = |K|/m. We extend this de�nitionto general quadrangles and hexahedra, by supposing that we have built a partition still of equal-volume sub-ells, and with the same onnetivities ; note that this is of ourse always possible, butthat suh a volume DK,σ may be no longer a one, sine, if K is far from a pallelogram, it may notbe possible to built a one having σ as basis, the opposite vertex lying in K and a volume equalto |K|/m. The volume DK,σ is referred to as the half-diamond ell assoiated to K and σ.For σ ∈ Eint, σ = K|L, we now de�ne the diamond ell Dσ assoiated to σ by Dσ = DK,σ ∪DL,σ ;for an external fae σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.



3. Compressible barotropi Navier-Stokes equations 5- MAC disretization � For the MAC sheme, the dual mesh depends on the omponent of theveloity. For eah of them, its de�nition di�ers from the RT or CR one only by the hoie of thehalf-diamond ell, whih, for K ∈ M and σ ∈ E(K), is now the retangle of basis σ and of measure
|DK,σ| equal to half the measure of K.We denote by |Dσ| the measure of the dual ell |Dσ|, and by ε = Dσ|Dσ′ the fae separating two diamondells Dσ and Dσ′ (see Figure 1).

Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=
K
|L

ε = D
σ |D

σ ′

Fig. 1 � Primal and dual meshes for the Rannaher-Turek and Crouzeix-Raviart elements.
3 Compressible barotropi Navier-Stokes equationsThe addressed problem in this setion reads :

∂tρ+ div(ρu) = 0, (1a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (1b)
ρ = ℘(p), (1)where t stands for the time, ρ, u and p are the density, veloity, and pressure in the �ow, τ (u) standsfor the shear stress tensor, and the funtion ℘ is the equation of state. The problem is supposed to beposed over Ω×(0, T ), where (0, T ) is a �nite time interval. This system must be supplemented by suitableboundary onditions, and initial onditions for ρ and u, the initial ondition for ρ being supposed positive.The losure relation for τ (u) is assumed to be :

τ (u) = µ(∇u + ∇
tu) − 2µ

3
divu I,where µ stands for a non-negative parameter, possibly depending on x. When the visous term τ (u)vanishes, the system (1) beomes hyperboli.



6 General synthesisLet us denote by Ec the kineti energy Ec = 1
2 ρ |u|2. Taking the inner produt of (1b) by u yields, afterformal ompositions of partial derivatives and using (1a) :

∂tEc + div
(
Ec u

)
+ ∇p · u = div

(
τ (u)

)
· u. (2)This relation is refered to as the kineti energy balane.Let us now de�ne the funtion P , from (0,+∞) to R, as a primitive of s 7→ ℘(s)/s2, where ℘ = ℘−1 ;this quantity is often alled the elasti potential. Let H be the funtion de�ned by H(s) = sP(s), ∀s ∈

(0,+∞) ; it may easily be heked that ρH′(ρ)−H(ρ) = ℘(ρ) ; therefore, by a formal omputation detailedin the appendix (see Equation (A.1)), multiplying (1a) by H′(ρ) yields :
∂t
(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (3)Let us denote by S the quantity S = Ec + H(ρ). Summing (2) and (3), we get :

∂tS + div
(
(S + p)u

)
− div

(
τ (u) u

)
= −τ (u) : ∇u. (4)This shows that, in the hyperboli ase, S is an entropy of the system, and an entropy solution to (1) isthus required to satisfy :

∫ T

0

∫

Ω

[
−S∂tϕ− (S + p)u · ∇ϕ

]
dxδt

−
∫

Ω

S(x, 0) ϕ(x, 0) dx ≤ 0, ∀ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0. (5)Then, formally, if we suppose that the veloity is presribed to zero at the boundary (the normal veloity,in the hyperboli ase), integrating (4) yields, sine the visous dissipation term τ (u) : ∇u is non-negative :

d

dt

∫

Ω

[1
2
ρ |u|2 + H(ρ)

]
dx ≤ 0. (6)Sine the funtion P is inreasing, Inequality (6) provides an estimate of the solution.We study two shemes for the numerial solution of System (1) whih di�ers by the time disretization :the �rst one is impliit, and the seond one is a non-iterative pressure-orretion sheme introdued in[20℄. This latter algorithm (and, by an easy extension, also the �rst one) was shown in [20℄ to have at leastone solution, to provide solutions satisfying ρ > 0 (and so p > 0) and to be unonditionally stable, in thesense that its (their) solution(s) satis�es a disrete analogue of Inequality (6). The results presented inthis setion omplement this work in several diretions. For the impliit sheme :- We �rst derive disrete analogues of (2) and (3), the �rst (loal) balane equation, i.e. the disretekineti energy balane, being obtained on dual ells, and the seond one, i.e. the elasti potentialbalane, on primal ells.These equations are used a �rst time to obtain the stability of the sheme by a simple integrationin spae (i.e. summation over the primal and dual ontrol volumes).- Seond, in one spae dimension and for the hyperboli ase, we prove that the limit of anyonvergent sequene of solutions to the sheme is a weak solution to the problem (in fat, sa-tis�es the Rankine-Hugoniot onditions, and thus exhibits "orret" shoks).



3. Compressible barotropi Navier-Stokes equations 7- Finally, passing to the limit on the disrete kineti energy and elasti potential balanes, we showthat suh a limit also satis�es the entropy inequality (5).For the pressure orretion sheme, the results are essentially the same : the sheme is unonditionallystable, and the passage to the limit in the sheme shows that, in ase of onvergene, the predited andend-of-step veloities neessarily tend to the same funtion, and that the limit is still a weak solution tothe problem, satisfying the entropy inequality.Numerial tests, performed with the pressure orretion sheme, onfort these theoretial results.We �rst summarize in this setion the obtained theoretial results (Setions 3.1 and 3.2.). whih aredetailed in Chapter 2 of this doument. Then we show results of a numerial test (Setion 3.2.d), extratedfrom a more omprehensive study also addressing an extension of the sheme to two-phase �ows, presentedin Chapter 1 of this doument.3.1 An impliit sheme sheme3.1.a The shemeLet us onsider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), and let
δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the onstant time step.We begin with the disretization of the mass balane equation (1a). For both the MAC and RT or CRdisretizations, let us denote by un+1

σ · nK,σ the outward normal veloity to the fae σ of K, whih isomputed, for the RT and CR elements, by taking the inner produt of the veloity at the fae with theoutward normal vetor (as implied by the notation) and whih is given, for the MAC sheme, by thevalue of the omponent of the veloity at the enter of the fae (up to a hange of sign). The disreteequations are obtained by an upwind �nite volume disretization and read :
∀K ∈ M,

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

FK,σ = 0, with FK,σ = |σ| un+1
σ · nK,σ ρ̃n+1

σ , (7)and where ρ̃n+1
σ is the upwind approximation of ρn+1 at the fae σ with respet to un+1

σ · nK,σ. Thisapproximation ensures that ρn+1 > 0 if ρn > 0 and if the density is presribed to a positive value atin�ow boundaries.For both MAC and RT or CR disretizations, for 1 ≤ i ≤ d and σ ∈ E(i), we denote by (divτ(un+1))σ,ian approximation of the i-th omponent of the visous term assoiated to σ, and we denote by (∇pn)σ,ithe i-th omponent of the disrete pressure gradient at the fae σ. With these notations, we are able towrite the following general form of the approximation of the momentum balane equation :
|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσ unσ,i) +
∑

ε∈E(Dσ)

Fn+1
σ,ε un+1

ε,i

+|Dσ|(∇pn+1)σ,i − |Dσ|(divτ(un+1))σ,i = 0,

(8)for 1 ≤ i ≤ d, and for σ ∈ E \ED in the ase of the RT or CR disretizations, and σ ∈ E(i) \ED in the aseof the MAC sheme. In this relation, ρn+1
σ and ρnσ stand for an approximation of the density on the fae
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σ at time tn+1 and tn respetively (whih must not be onfused with the upstream density ρ̃σ used inthe mass balane), Fn+1

σ,ε is the disrete mass �ux through the dual fae ε outward Dσ, and un+1
ε,i standsfor an approximation of un+1

i on ε whih may be hosen either entred or upwind.The �nite element disretization of the i-th omponent of the pressure gradient term reads :
|Dσ|(∇pn+1)σ,i = −

∑

M∈M

∫

M

pn+1 divϕ(i)
σ dx,with ϕ

(i)
σ reads ϕ

(i)
σ = ϕσe

(i), where ϕσ is the �nite element shape funtion assoiated to σ and e(i)stands for the ith vetor of the anonial basis of Rd. Sine the pressure is pieewise onstant, using thede�nition of the RT or CR shape funtions, an easy omputation yields for an internal fae σ = K|L :
|Dσ|(∇pn+1)σ,i = |σ| (pn+1

L − pn+1
K ) nK,σ · e(i),and, for an external fae σ ∈ E(K) ∩ Eext \ ED :

|Dσ|(∇pn+1)σ,i = −|σ| pnK nK,σ · e(i).These expressions oinide whih the disrete gradient in the MAC disretization.The �nite element disretization of the visous term (divτ(un+1))σ,i, assoiated to σ and to the omponent
i, reads :

|Dσ|(divτ(un+1))σ,i = −µ
∑

K∈M

∫

K

∇un+1 · ∇ϕ(i)
σ − µ

3

∑

K∈M

∫

K

div un+1 div ϕ(i)
σ .The MAC disretization of this same visous term is detailed in [2℄.The main motivation to implement a �nite volume approximation for the �rst two terms in (8) is toobtain a disrete equivalent of the kineti energy balane (see next setion). For this result to be valid,the neessary ondition is that the onvetion operator vanishes for a onstant veloity, i.e. that thefollowing disrete mass balane over the diamond ells is satis�ed [1, 20℄ :

∀σ ∈ Eint,
|Dσ|
δt

(ρn+1
σ − ρnσ) +

∑

ε∈E(Dσ)

Fn+1
σ,ε = 0. (9)This governs the hoie for the de�nition of the density approximation ρσ and the mass �uxes Fσ,ε. Thedensity ρσ is de�ned by a weighted average : ∀σ ∈ Eint, σ = K|L, |Dσ| ρσ = |DK,σ| ρK + |DL,σ| ρL and

∀σ ∈ Eext \ ED, σ ∈ E(K), ρσ = ρK . For a dual edge ε inluded in the primal ell K, the �ux Fσ,ε isomputed as a linear ombination (with onstant oe�ients, i.e. independent of the edge and the ell) ofthe mass �uxes through the faes of K, i.e. the quantities (Fn+1
K,σ )σ∈E(K) appearing in the disrete massbalane (7). We do not give here this set of oe�ients, and refer to [1, 38, 25℄ for a detailed onstrutionof this approximation.3.1.b Kineti energy balane, elasti potential identity and stabilityWe begin by deriving a disrete kineti energy balane equation. Let δup be a oe�ient de�ned by

δup = 1 if an upwind disretization is used for the onvetion term in the momentum balane equation



3. Compressible barotropi Navier-Stokes equations 9(8) and δup = 0 in the entered ase. With this notation, the momentum balane equation reads :
|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

+ δup
∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i ) + |Dσ| (∇pn+1)σ,i − |Dσ|(divτ(un+1))σ,i = 0.Taking the inner produt of this equation with the orresponding veloity unknown, i.e. un+1

σ,i , yields
T conv
σ,i + T up

σ,i + T p,τσ,i = 0, with :
T conv
σ,i =

[ |Dσ|
δt

(
ρn+1
σ un+1

σ,i − ρnσu
n
σ,i

)
+

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

]
un+1
σ,i ,

T up
σ,i = δup

[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i ,

T p,τσ,i = |Dσ| (∇pn+1)σ,i un+1
σ,i − |Dσ|(divτ(un+1))σ,i un+1

σ,i .Lemma A.0.2, applied on the dual mesh, yields :
T conv
σ,i =

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+
|Dσ|
2 δt

ρnσ
(
un+1
σ,i − unσ,i

)2
.Let us de�ne Rn+1

σ,i by the sum of T up
σ,i and the last term of T conv

σ,i :
Rn+1
σ,i =

1

2

|Dσ|
δt

ρnσ
(
un+1
σ,i − unσ,i

)2
+ δup

[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i . (10)With this notation, we thus obtain the following relation :

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+ |Dσ| (∇pn+1)σ,i un+1
σ,i − |Dσ|(divτ(un+1))σ,i un+1

σ,i = −Rn+1
σ,i . (11)We reognize at the left-hand side a disrete kineti energy balane, i.e. a reasonable disretization ofEquation (2), with a onservative �nite volume disretization of the kineti energy onvetion terms. Theright-hand side onsists in a numerial residual, the sign of whih will be studied later.We now turn to the elasti potential balane. Multiplying the disrete mass balane equation (7) by

H′(ρK) and invoking Lemma A.0.1 yields, ∀K ∈ M :
|K|
δt

(H(ρn+1
K ) −H(ρnK)) +

∑

σ∈E(K)

|σ|
[
H(ρn+1

σ ) + pK
]

un+1
σ · nK,σ = −Rn+1

K , (12)with :
Rn+1
K =

1

2

|K|
δt

H′′(ρn,n+1
K )(ρn+1

K − ρnK)2 − 1

2

∑

σ∈E(K)

|σ| un+1
σ · nK,σ H′′(ρn+1

σ )(ρn+1
σ − ρn+1

K )2,



10 General synthesiswhere the quantity ρn,n+1
K ∈ [min(ρn+1

K , ρnK),max(ρn+1
K , ρnK)] and, for any fae σ ∈ E(K), ρn+1

σ ∈
[min(ρn+1

σ , ρn+1
K ),max(ρn+1

σ , ρn+1
K )].Equation (12) is a �nite volume disretization of the (non onservative) elasti potential balane (3),with a non positive residual term, thanks to the fat that the funtion H is onvex and that an upwindapproximation of the density is used in the mass balane.The stability of the sheme is then obtained by summing :

(i) Equation (11) over the omponents i and the faes σ ∈ E for the RT or CR disretizations, andover i and σ ∈ E(i) for the MAC sheme,
(ii) Equation (12) over K ∈ M,

(iii) and, �nally, the two obtained relations.Let us suppose that the veloity vanishes at the boundary, and let us then invoke three arguments. First,the disrete gradient and divergene operators are dual with respet to the L2 inner produt, in the sensethat : ∑

i,E

|Dσ| (∇pn+1)σ,i un+1
σ,i +

∑

K∈M

pK
∑

σ∈E(K)

|σ| un+1
σ · nK,σ = 0,where the notation ∑i,E means that we sum over the omponent index i and on σ ∈ E for the RT andCR disretizations, and on i and σ ∈ E(i) for the MAC sheme. Seond, we suppose that (see Setion 4) :

∑

i,E

|Dσ| (divτ(un+1))σ,i un+1
σ,i ≥ 0.Third, reordering the summations yields, for the part of the remainder of the momentum balane equationassoiated to the upwinding :

∑

i,E

T up
σ,i = δup

∑

i,Ē (ε=Dσ |Dσ′ )

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )2 ≥ 0,where the notation∑i,Ē (ε=Dσ |Dσ′ ) means that we perform the sum over i and the faes of the dual meshassoiated to the omponent i of the veloity, and that, for a fae ε in the sum, the two adjaent dualells are denoted by Dσ and D′

σ. Finally, sine the onservative �uxes vanish in the summation, we thusget :
1

2

∑

i,E

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
∑

K∈M

|K|
δt

(H(ρn+1
K ) −H(ρnK)) ≤ 0, (13)whih is a disrete analogue to (6).3.1. Passing to the limit in the sheme (1D ase)We fous in this setion on the invisid 1D form of Problem (1), and show that, if a sequene of solutionsis ontrolled in suitable norms and onverges to a limit, this latter neessarily satis�es a (part of the)weak formulation of the ontinuous problem.Let (M(m), δt(m))m∈N be a sequene of meshes and time steps, suh that the time step δt(m) and the size

h(m) of the mesh M(m), de�ned by :
h(m) = sup

K∈M(m)

diam(K),



3. Compressible barotropi Navier-Stokes equations 11tend to zero as m→ ∞.Let ρ(m), p(m) and u(m) be the solution given by the sheme with the mesh M(m) and the time step
δt(m), or, more preisely speaking, a 1D version of the sheme whih may be obtained by taking theMAC variant, only one horizontal stripe of meshes, supposing that the vertial omponent of the veloity(the degree of freedom of whih are loated on the top and bottom boundaries) vanishes, and that themeasure of the faes is equal to 1. To the disrete unknowns, we assoiate pieewise onstant funtionson time intervals and on primal or dual meshes, so the density ρ(m), the pressure p(m) and the veloity
u(m) are de�ned almost everywhere on Ω × (0, T ) by :

ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK X(n,n+1),

u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
X(n,n+1),where XK , XDσ

and X(n,n+1) stand for the harateristi funtion of K, Dσ and the interval (tn, tn+1)respetively.We suppose a uniform ontrol on the translates in spae and time of the sequene of solutions, whih wenow state. For disrete funtion q and v de�ned on the primal and dual mesh, respetively, we de�ne adisrete L1
(
(0, T ); BV(Ω)

) norm by :
‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ∈E, σ=K|L

|qnL − qnK |, ‖v‖T ,x,BV =

N∑

n=0

δt
∑

ε∈Ē, σ=Dσ |D′
σ

|vnσ′ − vnσ |,and a disrete L1
(
Ω; BV((0, T ))

) norm by :
‖q‖T ,t,BV =

∑

K∈M

hK

N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

hσ

N−1∑

n=0

|vn+1
σ − vnσ |,where, for σ = K|L, hσ = (hK + hL)/2. We suppose the following uniform bounds of the sequene ofsolutions with respet to these two norms :

‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N, (14)and :
‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (15)A weak solution to the ontinuous problem satis�es, for any ϕ ∈ C∞

c

(
[0, T )× Ω

) :
−
∫

Ω×(0,T )

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (16a)
−
∫

Ω×(0,T )

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (16b)
ρ = ℘(p). (16)Note that these relations are not su�ient to de�ne a weak solution to the problem, sine they do notimply anything about the boundary onditions. However, they allow to derive the Rankine-Hugoniot



12 General synthesisonditions ; so, if we show that they are satis�ed by the limit of a sequene of solutions to the disreteproblem, this implies, loosely speaking, that the sheme omputes the right shoks, whih is the result weare seeking. It is stated in the following theorem.Theorem .3.1Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequene of meshes and timesteps, suh that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), u(m)
)
m∈N

be theorresponding sequene of solutions. We suppose that this sequene satis�es (15) and (14) and onvergesin Lr
(
(0, T )× Ω

)3, for 1 ≤ r <∞, to (ρ̄, p̄, ū) ∈ L∞
(
(0, T ) × Ω

)3.Then the limit (ρ̄, p̄, ū) satis�es the system (16) and the entropy ondition (5).Proof The passage to the limit in the equations of the sheme is tehnial, but invokes rather standardarguments.Obtaining the entropy ondition is more intriate. We need to pass to the limit in the kineti energybalane (11) and in the elasti potential balane (12) simultaneously. To this purpose, for ϕ ∈ C∞
c

(
[0, T )×

Ω
), we de�ne two interpolates : one is de�ned over the dual ells and is used as a test funtion for (11)and the seond one is de�ned over the primal ells, and is used as a test funtion for (12). We then pass tothe limit in the "di�erential terms" of these disrete equations, and disregard the non-negative residuals(at the left-hand side). A problem is posed by the residual assoiated to the upwinding, whih reads :

Rσ =
[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i ,and the sign of whih is unknown. To get an intuition of how to deal with this term, let us remark thatit may be seen as a disrete analogue to a di�usion term −µ∆u u with a numerial visosity µ tendingto zero as the spae step. Let us now ompare this term to µ|∇u|2, in the sense of distributions. For ψ aregular funtion with a ompat support, remarking that −µu∆u− µ|∇u|2 = −div(µu∇u), we get :

∫ T

0

∫

Ω

[
−µu∆u− µ|∇u|2

]
ψ dxδt =

∫ T

0

∫

Ω

µu∇u · ∇ψ dxδt ≤ Cψ ‖u‖L∞ ‖u‖W 1,1µ,and therefore, if ‖u‖L∞ and ‖u‖W 1,1 are bounded, the di�erene between −µu∆u and µ|∇u|2 behaves like
µ. Returning at the disrete level, this omputation suggests that Rσ behaves at the limit as a dissipationterm (i.e. a disrete equivalent of µ|∇u|2), the sign of whih is guaranteed. The same argument is used ina di�erent way in the non-barotropi ase : the "visous term" Rσ is ompensated in the internal energybalane by a "dissipation term" (see Setion 5.1). �Remark 1 (Control of the translates)In the assumptions of the theorem .3.1, we an sharpen (14) and (15). Indeed, to prove that the limit isa weak solution, it is su�ient to have :

lim
m→+∞

h(m)
[
‖ρ(m)‖T ,x,BV + ‖p(m)‖T ,x,BV + ‖u(m)‖T ,x,BV

]
= 0.In addition, this estimate may be proven (and not supposed) by adding to the sheme a numerial di�usionsaled by (h(m))β , with 0 < β < 2. To obtain that the limit is the entropy weak solution, the followingassumption is su�ient :

lim
m→+∞

δt
[
‖u(m)‖T ,t,BV

]
= 0.



3. Compressible barotropi Navier-Stokes equations 133.2 A pressure orretion sheme3.2.a The shemeIn this setion, we derive the pressure orretion sheme from the impliit sheme. The �rst step, as usual,is to ompute a tentative veloity by solving the momentum balane equation with the begining-of-steppressure. Then, the veloity is orreted and the other variables are advaned in time, in the so-alledorretion step. For stability reasons, or, in other words, to be able to derive a kineti energy balane, weneed that the mass balane over the dual ells (9) holds ; sine the mass balane is not yet solved whenperforming the predition step, this leads us to do a time shift of the density at this step.In the time semi-disrete setting, the proposed algorithm reads :1 - Pressure renormalization step � Solve the following ellipti problem for p̃n+1 :
div
[ 1

ρn
∇p̃n+1

]
= div

[ 1

(ρn ρn)1/2
∇pn

] (17)2 - Predition step � Solve the following semi-disrete linearized momentum balane equation for ũn+1 :
ρn ũn+1 − ρn−1 un

δt
+ div(ρn ũn+1 ⊗ un) + ∇p̃n+1 − div(τ (ũn+1)) = 0. (18)3 - Corretion step � Solve (simultanuously) the following non linear equations for pn+1, un+1 and

ρn+1 :
ρn

un+1 − ũn+1

δt
+ ∇(pn+1 − p̃n+1) = 0, (19a)

ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0, (19b)

ρn+1 = ℘(pn+1). (19)The solution of Step 3 is performed by ombining equations (19a) and (19b), therefore obtaining a non-linear ellipti problem for the pressure, whih reads in the time semi-disrete setting :
℘(pn+1) − ρn

δt2
− div

[ ρn+1

ρn
∇(pn+1 − p̃n+1)

]
= − 1

δt
div(ρn+1ũn+1).The fully disrete equations are obtained from the impliit sheme by a mere hange in time levels, exeptfor Equations (17) and (19a), whih are new. The �rst one is obtained by using the disrete gradient anddivergene operators already introdued, and reads :

∀K ∈ M,
∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1√
ρnσ ρ

n−1
σ

|σ|2
|Dσ|

(pnK − pnL) .Relation (19a) is disretized similarly to the momentum balane (8), i.e. a �nite volume tehnique isused for the unsteady term in both the MAC, RT and CR disretizations :
|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇pn+1)σ,i − (∇p̃n+1)σ,i

]
= 0,for 1 ≤ i ≤ d, and for σ ∈ E \ ED in the ase of the RT or CR disretizations, and σ ∈ E(i) \ ED in thease of the MAC sheme.



14 General synthesis3.2.b Stability and kineti energy balane equationWe repeat the proess that we followed for the impliit sheme, to prove the stability of the sheme andderive a disrete kineti energy balane equation. To this purpose, we multiply the veloity preditionequation by the orresponding degree of freedom of the predited veloity ũn+1
σ,i , to obtain :

|Dσ|
δt

(
ρnσũ

n+1
σ,i − ρn−1

σ unσ,i
)

ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i

+ |Dσ| (∇p̃n+1)σ,i ũn+1
σ,i − |Dσ|(divτ(un+1))σ,i ũn+1

σ,i = 0. (20)We then write the veloity orretion equation as :
[ |Dσ|
δt

ρnσ

]1/2
un+1
σ,i +

[
|Dσ| δt

]1/2

(ρnσ)1/2
(∇pn+1)σ,i =

[ |Dσ|
δt

(ρnσ

]1/2
ũn+1
σ,i +

[
|Dσ| δt

]1/2

(ρnσ)1/2
(∇p̃n+1)σ,i,and square this relation, sum with (20) and get, applying Lemma A.0.2 (again on the dual mesh) to the�rst two terms of (20) :

1

2

|Dσ|
δt

[
ρnσ(un+1

σ,i )2 − ρn−1
σ (unσ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũn+1
σ,i ũn+1

σ′,i + |Dσ| (∇pn+1)σ,i un+1
σ,i

− |Dσ|(divτ(un+1))σ,i ũn+1
σ,i +

|Dσ| δt
ρnσ

[
|(∇pn+1)σ,i|2 − |(∇p̃n+1)σ,i|2

]
= Rn+1

σ,i , (21)where Rn+1
σ,i takes the same expression as in the impliit ase (i.e. is given by Equation (10)), replaing

un+1 by ũn+1. Summing Relation (21) over the omponents and edges, Relation (12) over the ells and�nally the two resulting equations together yields :
1

2

∑

i,E

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(unσ,i)
2
]

+
∑

K∈M

|K|
δt

(H(ρn+1
K ) −H(ρnK))

+
∑

i,E

|Dσ| δt
ρnσ

[
|(∇pn+1)σ,i|2 − |(∇p̃n+1)σ,i|2

]
≤ 0,whih would be a disrete analogue to (6), up to a detail : to obtain a di�erene of the same quantitytaken at two onseutive time steps, we need to hange ρnσ |(∇p̃n+1)σ,i|2 to ρn−1

σ |(∇pn)σ,i|2. This is thepurpose of the pressure renormalization step, whih was already introdued in [28℄ ; we �nally get :
1

2

∑

i,E

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(unσ,i)
2
]

+
∑

K∈M

|K|
δt

(H(ρn+1
K ) −H(ρnK))

+
∑

i,E

|Dσ| δt
[ 1

ρnσ
|(∇pn+1)σ,i|2 −

1

ρn−1
σ

|(∇pn)σ,i|2
]
≤ 0.Note that this inequality yields a ontrol on (δt times) a H1 disrete semi-norm of the pressure, onfortingthe robustness of the sheme, but also inreasing its dissipation. In our numerial experiments, thepressure renormalization step did not appear to have a signi�ant in�uene on the results, and was thensystematially omitted.



3. Compressible barotropi Navier-Stokes equations 153.2. Passing to the limit in the sheme (1D ase)We obtain for the pressure orretion sheme results whih are similar to the impliit sheme ones. Theyare stated in the following theorem.Theorem .3.2Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequene of meshes and time steps,suh that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), u(m), ũ(m)
)
m∈N

be theorresponding sequene of solutions. We suppose that this sequene satis�es the ontrol over the timeand spae estimates given by (14), (15) and :
‖ũ(m)‖T ,x,BV ≤ C, ∀m ∈ N.We assume in addition that it onverges in Lr

(
(0, T )×Ω

)4, for 1 ≤ r <∞, to (ρ̄, p̄, ū, ¯̃u) ∈ L∞
(
(0, T )×

Ω
)4.Then we have ¯̃u = ū, and the triplet (ρ̄, p̄, ū) satis�es the system (16) and the entropy ondition (5).3.2.d Numerial experimentsWe now desribe the behaviour of the pressure orretion sheme for a Riemann problem, i.e. an invisidmonodimensional problem, the initial ondition of whih onsists in two uniform left (L) and right (R)states, separated by a disontinuity, loated by onvention at the origin x = 0. The two initial onstantstates are given by :

(
ρ

u

)

L

=

(
1

0

)
,

(
ρ

u

)

R

=

(
0.125

0

)
,and the equation of state is given by p = ρ. The problem is posed over the interval (−2, 3). The solutionof this problem onsists in a rarefation wave travelling to the left and a shok travelling to the right.The problem is solved with a one dimensional sheme, whih may be obtained from the previous expositionby taking one horizontal stripe of meshes (of onstant size) with the MAC disretization, and applyingperfet slip boundary onditions at the top and bottom boundary.On Figure 2, we show the solution at t = 1 obtained with various meshes and time steps. These latterparameters are adjusted to have CFL = 1, taking as referene veloity the sum of the maximum veloity

v = 1 and the speed of sound a = 1. In these omputations, we use a entred disretization of the onve-tion term in the momentum balane equation, surprinsingly without observing any spurious osillations.However, note that results obtained with the CR and RT disretizations (not shown here) di�er in thisrespet : the introdution of a residual visosity (either physial or by upwinding) is neessary to avoidthe odd-even deoupling phenomenon, as usually observed with entred approximations of the onvetionoperator.We then report, on Figure 3, the obtained numerial error as a funtion of the time and spae step. Theobserved order of onvergene is lose to 0.9, for both the veloity and the pressure.
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Fig. 2 � Sod shok tube problem � Centred sheme � Exat solution and numerial solution of theproblem at t = 1 with CFL=1. Veloity (left) and pressure (right).
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Fig. 3 � Sod shok tube problem � Centred sheme � L1 norm of the error between the numerial solutionand the exat solution at t = 1, as a funtion of the mesh (or time) step, for CFL=1. Veloity (left) andpressure (right).4 Compressible Navier-Stokes equationsWe now address the ompressible Navier-Stokes equations (22).
∂tρ+ div(ρu) = 0, (22a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (22b)
∂t(ρE) + div(ρE u) + div(pu) + div(q) = div(τ (u) · u), (22)
ρ = ℘(p, e), E =

1

2
|u|2 + e, (22d)



4. Compressible Navier-Stokes equations 17where E and e are the total energy and internal energy in the �ow, and q stands for the heat ondution�ux, assumed to be given by :
q = −λ∇e,with λ ≥ 0. We suppose that the equation of state may be set under the form p = ℘(ρ, e) with ℘(·, 0) = 0and ℘(0, ·) = 0. This system must be omplemented by suitable boundary onditions and initial onditionsfor u, ρ and e, whih we suppose positive for the two latter unknowns.Let us suppose that the solution is regular. Subtrating the kineti energy balane equation from thetotal energy balane, we obtain the internal energy balane equation :

∂t(ρe) + div(ρeu) + p div(u) = τ (u) : ∇u. (23)Sine,
(i) the visous dissipation term τ (u) : ∇u is non-negative,

(ii) thanks to the mass balane equation, the �rst two terms may be reast as a transport operator :
∂t(ρe) + div(ρeu) = ρ [∂te+ u · ∇e],

(iii) and, �nally, beause, from the assumption on the equation of state, the pressure vanishes when
e = 0,this equation implies that e remains non-negative at all times.In the framework of inompressible or low Mah number �ows, the natural energy balane equation isthe internal energy one (23), so disretizing (23) instead of the total energy balane (22) is a reasonablehoie in view to get an algorithm valid for all the �ow regimes. In addition, it presents two advantages :- �rst, its allow to avoid the spae disretization of the total energy, whih is rather unatural forstaggered shemes sine the veloity and the salar variables are not oloated,- seond, a suitable disretization of (23) may yield, "by onstrution" of the sheme, the positivityof the internal energy.However, integrating (22) over Ω yields a stability estimate for the solution, whih reads, if we supposefor short that u is presribed to zero on the whole boundary ∂Ω, and that the system is adiabati, i.e.

∇q · n = 0 on ∂Ω :
d

dt

∫

Ω

[1
2
ρ |u|2 + ρe

]
dx ≤ 0, (24)and we would like (an analogue of) this stability estimate to hold at the disrete level.In fat, the bridge between the disretization of (23) and this latter inequality is one again the kinetienergy balane equation, and the tools developped in the previous setions will readily yield the desiredstability result, if, at the disrete level,we are able :

(i) to identify the integral of the dissipation term at the right-hand side of the disrete ounterpartof (23) with what is obtained from the (disrete) L2 inner produt between the veloity and thedi�usion term in the disrete momentum balane equation (22b).
(ii) to prove that the right-hand side of (23) is non-negative in order to preserve the positivity of theinternal energy.



18 General synthesisBoth properties are quite natural for �nite element disretizations, but may be not so easy to obtain forthe MAC sheme ; for this latter ase, a way to build an approximation of the visous and dissipationterms to get this property is proposed in Chapter 3 ( see also [2℄).Two unonditionally stable shemes for the ompressible Navier-Stokes equations are built, on the basis ofthese arguments (Chapter 3) : the �rst one is impliit, and the seond one, used in pratie, is a pressureorretion sheme. We only desribe here this latter, whih reads :Pressure renormalization step � Solve for p̃n+1 :
∀K ∈ M,

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1√
ρnσ ρ

n−1
σ

|σ|2
|Dσ|

(pnK − pnL) , (25a)Predition step � Solve for ũn+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC ase,
∀σ ∈ E otherwise,

|Dσ|
δt

(ρnσũ
n+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i + |Dσ| (∇p̃n+1)σ,i

−|Dσ| (divτ(ũn+1))σ,i = 0,

(25b)Corretion step � Solve for ρn+1, pn+1, en+1 and un+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC ase,
∀σ ∈ E otherwise,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇pn+1)σ,i − (∇p̃n+1)σ,i

]
= 0, (25)

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (25d)

∀K ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ + |K|

(
pn+1 divũn+1

)
K

−div(λ∇e)K = |K|
(
τ (ũn+1) : ∇ũn+1

)
K
,

(25e)
∀K ∈ M, pn+1

K = (γ − 1) ρn+1
K en+1

K . (25f)The onstrution of this sheme relies on the same ingredients as in the barotropi ase, in partiular thetime shift of the densities.The equation (25e) is a approximation of the internal balane over the primal mesh K, whih ensuresthe positivity of the internal energy, thanks to two essential arguments :- �rst, the approximation of the onvetion operator e 7→ ∂t(ρe) + div(ρeu) is upwind (i.e. en+1
σ =



5. Euler equations 19
en+1
K if Fn+1

K,σ ≥ 0 and en+1
L otherwise) and this operator satis�es a onsisteny property with themass balane ∂tρ+ div(ρu) = 0 whih may be stated as the fat that it vanishes if e is onstant.This property is, of ourse, neessary for an operator to satisfy a disrete maximum priniple(onstants are neessarily solutions to an equation obeying a maximum priniple. . .) ; it is alsolassially shown [50℄ to be su�ient.- seond, the internal energy balane is oupled to the algorithm in suh a way that the pressure inthe disretization of the term p divu obeys the equation of state, and thus, in partiular vanisheswhen e < 0 (see [58℄ for another pressure-orretion algorithm using the same oupling).The tehnique used to obtain this result is to de�ne :

|K|
(
pn+1 divũn+1

)
K

= ℘(ρn+1
K , (en+1

K )+)
∑

σ∈E(K)

|σ| ũn+1
σ · nK,σ, (26)where (en+1

K )+ stands for the positive part of en+1
K , i.e. (en+1

K )+ = max(en+1
K , 0). Testing then the internalenergy balane by the negative part of en+1

K , designed by (en+1
K )− = −min(en+1

K , 0), and summing over
K ∈ M. Supposing, for short, that the normal veloity vanishes on the boundaries, Lemma A.0.2 yields :
∑

K∈M

[ |K|
δt

(
ρn+1
K en+1

K − ρnKe
n
K

)
+

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ

]
(en+1
K )− ≥

−1

δt

∑

K∈M

̺n+1
K

[
(en+1
K )−

]2 − ̺nK
[
(enK)−

]2
,while, ∀K ∈ M, (pn+1 divũn+1

)
K

(en+1
K )− = 0 and the right-hand side is non-negative, whih yieldsthe result. A topologial degree argument, applied to the algebrai system orresponding to the wholeorretion step, yields the existene of at least one solution and, sine, for this solution, e ≥ 0, (en+1

K )+ =

en+1
K and the disretization (26) is onsistent.The obtained stability result is stated in the following theorem.Theorem .4.1There exists a solution to the sheme whih satis�es ρ > 0, e > 0 and for all n ≤ N , the followinginequality holds :
∑

K∈M

|K| ρnKenK +
1

2

∑

σ∈Eint

|Dσ| ρn−1
σ |unσ|2 +

δt2

2
|pn|2ρn−1, M

≤
∑

K∈M

|K| ρ0
Ke

0
K +

1

2

∑

σ∈Eint

|Dσ| ρ−1
σ |u0

σ|2 +
δt2

2
|p0|2ρ−1, M,where, for any disrete pressure q :

|q|2ρ, M =
∑

σ=K|L

1

ρσ

|σ|2
|Dσ|

(pL − pK)2.5 Euler equationsFor solutions with shoks, Equation (23) is not equivalent to (22) ; more preisely speaking, one anshow that, at a shok loation, a positive measure should replae τ (u) : ∇u (whih formally vanishes



20 General synthesissine µ = 0) at the right-hand side of Equation (23). Disretizing (23) instead of (22) may thus yield asheme whih does not ompute the orret weak disontinuous solutions, the manifestation of this non-onsisteny being that the numerial solutions present shoks whih do not satisfy the Rankine-Hugoniotonditions assoiated to (22). The essential result of this setion is to provide solutions to irumventthis problem.This study is losely related to the analysis performed in the barotropi ase. Indeed, it may be hekedthat the entropy of the barotropi problem takes an expression similar to the total energy E (in fat, ifthe equation of state in the barotropi ase is derived by supposing that the �ow is isentropi, we havethe exat equality H = ρe) ; the elasti potential balane (in the barotropi ase) plays the same role asthe internal energy balane (in the non-barotropi ase). The only di�erene is that the entropy onditionis an inequality while the total energy is an equality : in other words, while, for the barotropi ase, wejust heked that residual terms were non-positive, we now have to ensure that they vanish with thedisretization steps. To this purpose, we thus follow a strategy quite similar to Setion 3 :- Starting from the disrete momentum balane equation, with an ad ho disretization of the onve-tion operator, we derive a disrete kineti energy balane ; residual terms are present in this relation,whih do no tend to zero with spae and time steps (they are the disrete manifestations of thethe above mentioned measures).- These residual terms are then ompensated by soure terms added to the internal energy balane.We provide a theoretial justi�ation of this proess by showing that, in the 1D ase, if the sheme isstable enough and onverges to a limit (in a sense to be de�ned), this limit satis�es a weak form of(22) whih implies the orret Rankine-Hugoniot onditions. Then, we perform numerial tests whihsubstantiate this analysis. Two di�erent time disretizations are proposed in Chapter 4 : �rst, a fullyimpliit sheme (a solution to whih may be rather di�ult to obtain in pratie) and, seond, a pressureorretion sheme (the algorithm indeed used in the tests presented here) ; we only present here the latteralgorithm.5.1 The disrete kineti energy balane equation and the orretive souretermsWe derive here a slightly di�erent disrete kineti energy balane than in Setion 3.2.b. Our startingpoint, however, is still the veloity predition step whih we multiply by the orresponding unknown, i.e.Equation (20), whih now reads, sine, in the present algorithm, we omit the pressure renormalizationstep :
|Dσ|
δt

(
ρnσũ

n+1
σ,i − ρn−1

σ unσ,i
)

ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i + |Dσ| (∇pn)σ,i ũn+1
σ,i = 0.The next step is to multiply the veloity orretion equation by ũn+1

σ,i and use the identity 2a(a − b) =

a2 + (a− b)2 − b2 to get :
1

2

|Dσ|
δt

[
ρnσ(un+1

σ,i )2 − ρnσ(ũ
n
σ,i)

2
]

+ |Dσ|
[
(∇pn+1)σ,i − (∇pn)σ,i

]
ũn+1
σ,i

+
|Dσ|
2 δt

ρnσ
(
un+1
σ,i − ũn+1

σ,i

)2
= 0.



5. Euler equations 21Invoking Lemma A.0.2 for the �rst two terms of the �rst of these relations and summing with the seondone yields :
1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ,i )2 − ρn−1

σ (unσ,i)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũn+1
σ,i ũn+1

σ′,i

+ |Dσ| (∇pn+1)σ,i ũn+1
σ,i = Rn+1

σ,i , (27)with :
Rn+1
σ,i =

|Dσ|
2 δt

ρnσ
(
un+1
σ,i − ũn+1

σ,i

)2 − |Dσ|
2 δt

ρn−1
σ

(
ũn+1
σ,i − unσ,i

)2

− δup
[ ∑

ε=Dσ |Dσ′

1

2
|Fnσ,ε|

(
ũn+1
σ,i − ũn+1

σ′,i

)]
ũn+1
σ,i .We reognize at the left-hand side a onservative disrete kineti energy balane. The next step is now todeal with the residual terms at the right-hand side, or, more preisely speaking, to somewhat ompensatethem by some soure term whih we introdued in the internal energy balane. Let us denote by Sn+1

Kthe soure term in the balane over the ell K. We hoose :
∀K ∈ M,

Sn+1
K =

1

2

∑

σ∈E(K)

|DK,σ|
δt

ρn−1
K

(
ũn+1
σ − unσ

)2 − 1

2

∑

σ∈E(K)

|DK,σ|
δt

ρnK
(
un+1
σ − ũn+1

σ

)2

+ δup
∑

ε∩K̄ 6=∅,

ε=Dσ |Dσ′

αK,ε
|Fn+1
σ,ε |
2

(ũn+1
σ − ũn+1

σ′ )2. (28)The oe�ient αK,ε is �xed to 1 if the fae ε is inluded in K, and this is the only situation to onsiderfor the RT and CR disretization. For the MAC sheme, some dual edges are inluded in the primal ells,whereas some lie on their boundary ; for ε on a ell boundary, we denote by Nε the set of ells M suhthat M̄ ∩ ε 6= ∅ (the ardinal of this set is always 4), and ompute αK,ε by :
αK,ε =

|K|∑
M∈Nε

|M | .For a uniform grid, this formula yields αK,ε = 1/4.The expression of the terms (SK)K∈M is justi�ed by the passage to the limit in the sheme (for aone-dimensional problem) performed in Setion 5.2. Let us just here remark that :
∑

K∈M

Sn+1
K +

∑

E,i

Rn+1
σ,i = 0,whih shows that the introdution of this term allows to reover the total energy balane over the wholeomputational domain Ω. Note however that, the term Sn+1
K may be negative, whih we have indeedobserved in omputations, and so the above proof of the positivity of the internal energy is not validhere ; however, even in very severe ases (as, for instane, Test 3 of [68, hapter 4℄), at least with areasonable time step, we still obtained e > 0.



22 General synthesisRemark 2 (Form of the orretive soure terms)Comparing with the soure term of the ontinuous internal energy balane (23), it is easy to identify in thelast part of SK the visous dissipation assoiated to the numerial di�usion introdued by the upwinding.In fat, this analogy also holds for the �rst two terms : they are dissipation and antidissipation termsassoiated to the di�usion and antidi�usion introdued by the semi-impliit time disretization.Note by the way that only a dissipation term is obtained for the impliit ase (i.e. the orretive terms
Sn+1
K are non-negative, see Chapter 4), and thus, for this time disretization, the positivity of the internalenergy is ensured.Remark 3 (On the neessity of the orretive soure terms)Let us onsider a sequene of disretizations (M(m), δt(m))m∈N, the spae and time steps of whih tend tozero, an assoiated sequene of disrete veloities (u(m))m∈N, and the orresponding sequene of (pieewiseonstant funtions assoiated to the) orretive term (S(m))m∈N. It may be heked that S(m) tends tozero in L1(Ω× (0, T )) as soon as the time and spae derivatives of the funtions (u(m))m∈N are boundedin a strong enough norm, and in partiular stronger than the BV norm (for instane, suppose that thejumps between two onseutive time steps and adjaent ells are bounded by δt and h respetively), i.e.everywhere the solution is regular. On the opposite, for a sequene (u(m))m∈N obtained by projeting adisontinuous funtion u, S(m) does not tend to zero.5.2 Passing to the limit in the shemeAs for the barotropi equations, we now pass to the limit in the sheme.We suppose given a sequene of meshes and time steps (M(m), δt(m))m∈N, suh that the time step andthe size h(m) of the mesh M(m), de�ned by :

h(m) = supK∈M(m) diam(K),tend to zero as m→ ∞.Let ρ(m), p(m), e(m), ũ(m) and u(m) be the assoiated solution of the pressure orretion sheme (25)with the mesh M(m) and the time step δt(m) (or, more preisely speaking, as in the barotropi ase, a1D version of the sheme). To the disrete unknowns, we assoiate pieewise onstant funtions on timeintervals and on primal or dual meshes :
ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK X(n,n+1),

e(m)(x, t) =
N−1∑

n=0

∑

K∈M

(e(m))nK XK X(n,n+1), u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
X(n,n+1),

ũ(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(ũ(m))nσ XDσ
X(n,n+1).We suppose that the sequene of disrete solutions (ρ(m), p(m), e(m), u(m), ũ(m)

)
m∈N

is uniformly boundedin L∞
(
(0, T )× Ω

), i.e. :
|(ρ(m))nK | + |(p(m))nK | + |(e(m))nK | ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (29)



5. Euler equations 23and :
|(u(m))nσ| + |(ũ(m))nσ| ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N. (30)In addition, we also suppose the following uniform ontrol on the translates in spae and time :

‖ρ(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV + ‖ũ(m)‖T ,x,BV ≤ C, ∀m ∈ N, (31)and :
‖ρ(m)‖T ,t,BV + ‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N. (32)As in the barotropi ase, we are not able to prove the estimates (29)�(32) for the solutions of the sheme,but suh inequalities are satis�ed by the "interpolation" of the solution to a Riemann problem, and areobserved in omputations (of ourse, as far as possible, i.e. with a limited sequene of meshes and timesteps).A weak solution to the ontinuous problem satis�es, for any ϕ ∈ C∞

c

(
[0, T )× Ω

) :
−
∫

Ω×(0,T )

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (33a)
−
∫

Ω×(0,T )

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (33b)
−
∫

Ω×(0,T )

[
ρE ∂tϕ+ (ρE + p)u ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)E(x, 0)ϕ(x, 0) dx = 0, (33)
ρ = ℘(p, e), E =

1

2
u2 + e. (33d)One again, sine the test funtion ϕ vanishes at the boundary, these relations do not imply anythingabout the boundary onditions, but imply the Rankine-Hugoniot onditions. The sheme onsistenyresult that we are seeking for is stated in the following theorem.Theorem .5.1Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequene of meshes and time steps,suh that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), e(m), u(m), ũ(m)

)
m∈N

be theorresponding sequene of solutions. We suppose that this sequene satis�es (29)�(32) and onverges in
Lr
(
(0, T ) × Ω

)5, for 1 ≤ r <∞, to a limit (ρ̄, p̄, ē, ū, ¯̃u) ∈ L∞
(
(0, T )× Ω

)5.Then ¯̃u = ū and the limit (ρ̄, p̄, ē, ū) satis�es the system (33).5.3 Numerial testsWe now assess the behaviour of the sheme on a one dimensional Riemann problem. We hoose initialonditions suh that the struture of the solution onsists in two shok waves, separated by the ontatdisontinuity, with su�iently strong shoks to allow to easily disrimate between onvergene to theorret weak solution or not. These initial onditions are those proposed in [68, hapter 4℄, for the testreferred to as Test 5 :left state : ρLuL
pL


 =




5.99924

19.5975

460.894


 right state : ρRuR

pR


 =




5.99242

−6.19633

46.0950






24 General synthesisThe problem is posed over Ω = (−0.5, 0.5), and the disontinuity is initially loated at x = 0.Sine numerial experiments addressing barotropi �ows (see Setion 3.2.d) show that, at least for onedimensional omputations, it is not neessary to use upwinding in the momentum balane equation, weonly employ a entered approximation of the veloity at the dual faes.The density �elds obtained with h = 1/2000 (or a number of ells n = 2000) at t = 0.035, with andwithout assembling the orretive soure term in the internal energy balane, are shown together with theanalytial solution on Figure 4. The density and the pressure obtained, still with and without orretiveterms, for various meshes, are plotted on Figure 5 and 6 respetively. For these omputations, we take
δt = h/20, whih yields a CFL number, with respet to the material veloity only, lose to one. The�rst onlusion is that both shemes seem to onverge, but the orretive term is neessary to obtain theorret solution. In this ase, for instane, we obtain the orret intermediate state for the pressure andveloity up to four digits in the essential part of the orresponding zone :(analytial) intermediate state : [

p∗

u∗

]
=

[
1691.65

8.68977

] for x ∈ (0.028, 0.428)numerial results : ∣∣∣∣∣∣

p ∈ (1691.6, 1691.8)

u ∈ (8.689, 8.690)
for x ∈ (0.032, 0.417)One an hek that the solution obtained without the orretive term is not a weak solution to the Eulersystem.We also observe that the sheme is rather di�usive, speially at the ontat disontinuity, where thebene�ial ompressive e�et of the shoks does not apply.6 Conlusion and perspetivesWe developed a lass of shemes for barotropi and non-barotropi �ows, based on staggered spaedisretizations and on a frational time-stepping tehnique falling in the lass of pressure orretionmethods. Upwinding is performed in an equation-by-equation way, and only with respet to the materialveloity ; for non-barotropi equations, the energy equation is the internal energy balane. All of theseharateristis ensure that the shemes boil down to usual inompressible �ow solvers for a vanishing Mahnumber ; therefore they are hoped to be stable and aurate in the whole inompressible to ompressiblerange. Numerial tests performed here fous on ompressible �ows, and assess the fat that weak solutionto invisid problems are orretly omputed ; they are supported by theoretial arguments. These testswill be ontinued, adressing omplex multi-dimensional geometries.From an algorithmi point of view, let us �rst mention that, for high Mah number �ows, expliit versionsof these shemes are now under development [59℄ ; this would provide e�ient algorithms (in partiular,with an immediate onstrution of the �uxes at the ell faes), well suited to fast transient regimes,and o�ering, if neessary, the possibility of a partial impliitation without loosing any stability features(by the shemes studied in this work). In expliit shemes, less di�usive spae disretizations, suh asMUSCL-like or adaptative numerial visosity [30, 31℄ tehniques, are easy to implement ; this will bedone in a near future.
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28 Chapitre I. Pressure orretion staggered shemes for barotropi monophasi and two-phase �ows
W

e assess in this paper the apability of a pressure orretionsheme to ompute irregular solutions (i.e. solutions withshoks) of the homogeneous model for barotropi two-phase�ows. This sheme is designed to inherit the stability properties of the onti-nuous problem : the unknowns (in partiular the density and the dispersedphase mass fration y) are kept within their physial bounds, and the entropy ofthe system is onserved, thus providing an unonditional stability property. Inaddition, the sheme keeps the veloity and pressure onstant through ontatdisontinuities. These properties are obtained by oupling the mass balaneand the transport equation for y in an original pressure orretion step. Thespae disretization is staggered ; the numerial shemes whih are onsideredare the Marker-And Cell (MAC) �nite volume sheme and the nononforminglow-order Rannaher-Turek (RT) �nite element approximation ; in either ase,a �nite volume tehnique is used for all onvetion terms. Numerial experi-ments performed here address the solution of various Riemann problems, oftenalled in this ontext "shok tube problems". They show that, provided thata su�ient dissipation is introdued in the sheme, it onverges to the (weak)solution of the ontinuous hyperboli system. Observed orders of onvergeneas a funtion of the mesh and time step at onstant CFL number vary with thestudied ase and the CFL number, and range from 0.5 to 1.5 for the veloityand the pressure ; in most ases, the density and mass fration onverge with a
0.5 order. Finally, the sheme shows a satisfatory behaviour up to large CFLnumbers.
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I.1 IntrodutionWe address in this paper the following homogeneous two-phase �ow model, desribing for instane the�ow of a mixture between a liquid phase and a gas phase :
∂tρ+ div(ρu) = 0, (I.1)
∂tz + div(z u) = 0, (I.2)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (I.3)where ∂t is the time derivative, ρ, u and p are the (average) density, veloity and pressure in the �ow, zstands for the partial density of the gas phase. The �rst two equations, (I.1) and (I.2), are the mixtureand the gas mass balane equations respetively, and the third equation (I.3) is the mixture momentumbalane equation. The tensor τ is the visous part of the stress tensor, given by the following expression :
τ (u) = µ (∇u + ∇

tu) − 2

3
µ (divu) I. (I.4)The visosity µ is supposed to be onstant (in spae), so this relation yields :

div(τ (u)) = µ

[
∆u +

1

3
∇divu

]
. (I.5)The problem is de�ned over an open bounded onneted subset Ω of Rd, d ≤ 3, and over a �nite timeinterval (0, T ). We suppose that suitable initial and boundary onditions are provided for ρ, u and z ; inpartiular, the presribed values for ρ and z are supposed to be positive, and ρ, u and z are supposed tobe presribed at the in�ow boundaries.To lose the problem, we need an additional relation, whih results from the ombination of the mixtureequation of state and of phasi equations of state, i.e. relations satis�ed by the density of eah phase.Let us begin with the latter ones. The liquid density ρℓ is supposed to be onstant, and the gas density

̺g is assumed to depend on the pressure only :
ρg = ̺g(p), (I.6)where ̺g is de�ned and inreasing over [0,+∞), ̺g(0) = 0 and lims→+∞ ̺g(s) = +∞. Suh a �ow (i.e. a�ow where phasi densities are funtions of the pressure only) is usually referred to as a barotropi �ow.Finally, the mixture equation of state is usually written :

ρ = (1 − α) ρℓ + αρg, z = αρg = ρy, or ρ =
1

y

ρg
+

1 − y

ρℓ

, (I.7)where α is alled the void fration (the volume of gas per spei� volume), and y = z/ρ is the gas massfration (the gas mass per spei� mass). Note that Relation (I.7) may be reast as :
ρ =

[
1 − z

̺g(p)

]
ρℓ + z,whih shows that it indeed provides a losure relation to the system (I.1)-(I.3), i.e. an additional relationinvolving only variables initially present in (I.1)-(I.3).



32 Chapitre I. Pressure orretion staggered shemes for barotropi monophasi and two-phase �owsWe now reall some estimates whih are satis�ed, at least formally, by the solution of System (I.1)-(I.3).Equation (I.1) shows that ρ remains non-negative at all time. Replaing z by ρy in the gas mass balaneequation (I.2) and using the mass balane equation (I.1), we get :
∂t(ρy) + ∇ · (ρyu) = ρ

(
∂ty + u · ∇y

)
= 0.Let us suppose that ρ does not vanish (whih is not neessarily true at the ontinuous level, sine divu isnot bounded in L∞(Ω), but will be true at the disrete level). Then this relation implies that y satis�esthe transport equation ∂ty + u · ∇y = 0, and thereby it follows a maximum priniple. Spei�ally, if theinitial and boundary onditions for ρ and z are suh that y ∈ [ε, 1] at t = 0, where 0 < ε ≤ 1 (whihexludes purely liquid zones at the initial time), we obtain that y remains in the interval [ε, 1] at all times.From the seond form of (I.7) and the fat that ρ > 0, we an dedue that ρ ∈ [min(ρℓ, ρg), max(ρℓ, ρg)]and, now from the �rst form of (I.7), α ∈ (0, 1], so ρg > 0 and, sine ̺g is one-to-one from (0,+∞) toitself, there exists a positive pressure p suh that ρg = ̺g(p).Let us now de�ne the funtion P , from (0,+∞) to R, as a primitive of s 7→ ℘g(s)/s

2, where ℘g = ̺−1
g .Then, if we suppose that the veloity is presribed to zero at the boundary, the solution to System(I.1)-(I.3) satis�es :

d

dt

∫

Ω

[1
2
ρ |u|2 + zP(̺g(p))

]
dx ≤ 0. (I.8)The quantity zP(̺g(p)) is often alled the Helmholtz energy, 1

2 ρ |u|2 the kineti energy and their sum isthe total energy of the system. Sine the funtion P is inreasing, Inequality (I.8) provides an estimateon the solution.When µ = 0, the visous term τ(u) vanishes and the system (I.1)-(I.3) beomes hyperboli, with asimple wave struture (see [32℄ for a omprehensive presentation). The solution to the Riemann problemsalways involves a ontat disontinuity and two additional waves, whih are either shok or rarefationwaves. Through the ontat disontinuity, the pressure and veloity are kept onstant, and z, ρ or yare disontinuous. The existene of this wave may be inferred by just heking that, provided this isonsistent with initial and boundary onditions, a solution to the system with onstant veloity andpressure exists : indeed, from the �rst form of (I.7), it may be seen that ρ and z are linked by an a�nerelation with onstant (for a onstant pressure) oe�ients ; (I.1) and (I.2) then boil down to the sametransport equation (with a onstant veloity) and (I.3) is trivially satis�ed.Finally, note that, sine y satis�es a transport equation, if y = 1 at the initial time (everywhere in domain)and at in�ow boundaries (at all time), the solution satis�es y = 1 for all x ∈ Ω and t ∈ (0, T ). In suha ase, System (I.1)-(I.3) boils down to the governing equations of barotropi monophasi �ows ; for thepartiuliar equation of state ̺g(s) = s1/2, we reover in one or two dimensions the usual shallow-waterequations.The use of pressure orretion shemes for ompressible single phase �ow seems to be widespread, see eg.[36℄ for the seminal work and [75℄ for a omprehensive introdution. Indeed, pressure orretion shemesare often partly impliit, thereby ensuring some stability with respet to the time step together withintroduing a deoupling of the equations whih helps the numerial solution of the nonlinear sytems.Extensions to multi-phase �ows are sarer and seem to be restrited to iterative algorithms, often similar



I.2. The pressure orretion sheme 33in spirit to the usual SIMPLE algorithm for inompressible �ows [66, 57, 47℄. In this paper, we performa numerial study of a non-iterative pressure-orretion sheme introdued in [26℄, based on a low order�nite element and a �nite volume disretization, whih enjoys the following properties :
(i) the sheme has at least one solution, and any solution satis�es the above listed "disrete-maximum-based" estimates : ρ > 0, the gas mass fration y satis�es a disrete maximum priniple (so 0 < y ≤ 1),and p > 0.
(ii) the sheme is unonditionally stable, in the sense that its solution(s) satis�es a disrete analogue ofInequality (I.8),
(iii) the pressure and veloity are kept onstant through ontat disontinuities.In addition, the sheme is onservative for ρ and z. As in the ontinuous ase, thanks to the fat that yis kept onstant if it is onsistent with the initial and boundary onditions, it also ope with monophasibarotropi �ows, a partiuliar ase of whih may be formally identi�ed to the shallow water equations.Finally, the sheme boils down to the usual projetion sheme for inompressible �ows (obtained in thepresent framework when y = 0 or, asymptotially, when the funtion ̺g beomes onstant), and is indeedroutinely used for the omputation of low Mah number �ows, as, for instane, lassial bubble olumnsof hemial engineering proesses or diphasi �ows enountered in nulear safety studies. Its auraywas assessed for smooth solutions in [26℄, and the aim of the present paper is to hek its onvergeneand auray in non-di�usive ases, for weak solutions with disontinuities.The paper is organized as follows. We �rst present the sheme (Setion I.2). Then we study severalRiemann problems, �rst monophasi (y = 1) (Setion I.3.1) then biphasi : in this latter ase, we �rstaddress a �ow whih involves only a ontat disontinuity and shoks (Setion I.3.2.a), and �nally a �owwith rarefation waves (Setion I.3.2.b). Finally, we assess in Setion I.4 the behaviour of the sheme ontwo-dimensional test ases.I.2 The pressure orretion shemeI.2.1 Time semi-disretizationLet us onsider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), whih is supposeduniform. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the onstant time step. In a time semi-disretesetting, denoting by ρ−1 and u0 initial guesses for the density and veloity, the algorithm proposed inthis paper is the following.0 - Initialization � Compute ρ0 by solving the following semi-disrete mass balane equation :

ρ0 − ρ−1

δt
+ div(ρ0u0) = 0. (I.9)Then, for n ≥ 0 :1 - Predition step � Solve the following semi-disrete linearized momentum balane equation for ũn+1 :

ρn ũn+1 − ρn−1 un

δt
+ div(ρn ũn+1 ⊗ un) + ∇pn − div(τ (ũn+1)) = 0. (I.10)2 - Pressure orretion step � Solve (simultanuously) the following non linear equations for pn+1, un+1,



34 Chapitre I. Pressure orretion staggered shemes for barotropi monophasi and two-phase �ows
ρn+1 and zn+1 :

ρn
un+1 − ũn+1

δt
+ ∇(pn+1 − pn) = 0, (I.11a)

ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0, (I.11b)

zn+1 − zn

δt
+ div(zn+1 un+1) = 0, (I.11)

ρn+1 = ̺(pn+1, zn+1) = zn+1(1 − ̺g(p
n+1)

ρℓ
) + ρℓ. (I.11d)Step 1 is the usual predition step for the veloity, whih onsists in solving the momentum balaneequation (I.3) with the beginning-of-step pressure. Step 2 is the pressure orretion step. Its resolution isperformed by ombining equations (I.11a) and (I.11b), therefore obtaining a non-linear ellipti problemfor the pressure, whih reads in the time semi-disrete setting :

ρn+1 − ρn

δt2
− div

[ ρn+1

ρn
∇(pn+1 − pn)

]
= − 1

δt
div(ρn+1ũn+1),with ρn+1 = ̺(pn+1, zn+1) = zn+1(1 − ̺g(p

n+1)

ρℓ
) + ρℓ.

(I.12)Note that, for a given spae disretization, this equation must be established at the algebrai level,with the disrete equivalent manipulations whih were neessary to derive it at the ontinuous level (i.e.multiplying the �rst equation by ρn+1/ρn, taking its divergene and substrating to the seond relation)[26℄.Two features are unusual in this algorithm. The �rst one is the time-shift of the densities in the preditionstep : thanks to this time-shift, the densities satisfy (I.11b) of the preeding orretion step and thereforethe onvetion operator vanishes for onstant veloities (i.e. ũn+1 = 1), whih ensures the onservationof the kineti energy [20, 1℄. Seond, the pressure orretion step ouples the mixture and dispersed phasemass balane equations (I.11b) and (I.11) ; this oupling preserves the a�ne relation between ρn+1 and
zn+1 through the equation of state (I.11d), with oe�ients only depending on the pressure (taken at thesame time level). Thus, as in the ontinuous ase, both equations boil down to only one relation when thepressure is onstant ; onsequently, the arguments neessary to obtain solutions with onstant veloityand pressure (i.e. ontat disontinuity waves) still hold at the disrete level.I.2.2 Disrete spaes and unknownsThe sheme has been developed (and atually works) with unstrutured (in partiular simpliial) dis-retizations, and for 2D and 3D ases. We shall restrit ourselves here to 1D Riemann problems, andto L-shaped two-dimensional domains. Hene, for the sake of oniseness, we only desribe here thease of strutured meshes, using either a �nite volume MAC or a Rannaher-Turek (RT) �nite elementdisretization whih we now present.Let Ω be a retangular domain of Rd, d = 2 or 3, and let M be a deomposition of the domain Ω intoretangles or retangular parallelepipeds, supposed to be regular in the usual sense of the �nite element



I.2. The pressure orretion sheme 35literature (e.g. [9℄). By E and E(K) we denote the set of all faes σ of the mesh and of the element K ∈ Mrespetively. The set of faes inluded in the boundary of Ω is denoted by Eext and the set of internal faes(i.e. E \ Eext) is denoted by Eint. For eah internal fae of the mesh σ = K|L, nKL stands for the normalvetor to σ, oriented from K to L. The outward normal vetor to a fae σ of K is denoted by nK,σ. For
K ∈ M and σ ∈ E , we denote by |K| the measure of K and by |σ| the (d − 1)-dimensional measure ofthe fae σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E the subset of the faes of E whih are perpendiular tothe ith unit vetor of the anonial basis of Rd.For both MAC and RT disretizations, the degrees of freedom for the pressure, the density and thevariables y and z are assoiated to the ells of the mesh M : the degrees of freedom are therefore

{
pK , ρK , yK , zK , K ∈ M

}
.Let us then turn to the degrees of freedom for the veloity.- RT disretization. The veloity is disretized using the so-alled Rannaher�Turek (RT) ele-ment [65℄. The approximation for the veloity is thus non-onforming (the disrete funtions aredisontinuous through a fae, but the jump of their integral is imposed to be zero) ; the degreesof freedom for the veloities are loated at the enter of the faes of the mesh, and we hoose theversion of the element where they represent the average of the veloity through a fae. The set ofdegrees of freedom reads :

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.We denote by ϕ
(i)
σ the vetor shape funtion assoiated to uσ,i, whih, by de�nition, reads ϕ

(i)
σ =

ϕσ e(i), where ϕσ is the RT salar shape funtion and e(i) is the ith vetor of the anonial basisof Rd, and we de�ne uσ by uσ =
∑d

i=1 uσ,i e
(i). With these de�nitions, we have the identity :

u(x) =
∑

σ∈E

d∑

i=1

uσ,i ϕ(i)
σ (x) =

∑

σ∈E

uσ ϕσ(x), for a.e. x ∈ Ω.- MAC disretization. The degrees of freedom for the ith omponent of the veloity, de�ned atthe entres of the fae σ ∈ E(i), are denoted by :
{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.Let us now turn to the treatment of Dirihlet boundary onditions. Let ED ⊂ Eext be the set of faesloated on the Dirihlet boundary, and let uD be the presribed value of the veloity on these faes. Forthe RT disretization, as usual in the �nite element framework, these Dirihlet boundary onditions arebuilt-in in the de�nition of the disrete spae :

∀σ ∈ ED, for 1 ≤ i ≤ d, uσ,i =
1

|σ|

∫

σ

uD,i,where uD,i stands for the ith omponent of uD. For the MAC sheme, the normal omponents of theveloity at the Dirihlet boundary are also presribed :for 1 ≤ i ≤ d, ∀σ ∈ ED ∩ E(i), uσ,i =
1

|σ|

∫

σ

uD,i,while Dirihlet onditions for tangential omponents will be used, as usual for �nite volumes, in thede�nition of the di�usion term.



36 Chapitre I. Pressure orretion staggered shemes for barotropi monophasi and two-phase �owsI.2.3 Disrete equationsWe now desribe the spae disretization of eah equation of the time semi-disrete algorithm. We hooseto present the equations of the projetion step in their original form, i.e. before the derivation of theellipti problem for the pressure, whih is thoroughly desribed in [26℄. Indeed, this latter step is purelyalgebrai, in the sense that it transforms a nonlinear algebrai system into another nonlinear algebraisystem whih is stritly equivalent, and thus has no impat on the properties of the sheme (besides, ofourse, the e�ieny issue).We begin with the disretization of the mass balane equations (I.11b) and (I.11) of the projetion step.For both the MAC and RT disretizations, let us denote by un+1
σ · nK,σ the outward normal veloity tothe fae σ of K, whih is omputed, for the RT element, by taking the inner produt of the veloity atthe fae with the outward normal vetor (so exatly as said by the notation) and whih is given, for theMAC sheme, by the value of the omponent of the veloity at the enter of the fae (up to a hange ofsign). Disrete equations are obtained by an upwind �nite volume disretization and read :

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

|σ| un+1
σ · nK,σ ρn+1

σ = 0,

|K|
δt

(zn+1
K − znK) +

∑

σ∈E(K)

|σ| un+1
σ · nK,σ zn+1

σ = 0,
(I.13)where ρn+1

σ (resp. zn+1
σ ) is the upwind approximation of ρn+1 (resp. zn+1) at the fae σ, the de�nition ofwhih we now reall for the sake of ompleteness. For an internal fae σ = K|L, ρn+1

σ (resp. zn+1
σ ) standsfor ρn+1

K (resp. zn+1
K ) if un+1

σ ·nK,σ ≥ 0 and for ρn+1
L (resp. zn+1

L ) otherwise ; for an external fae σ ∈ E(K),
ρn+1
σ (resp. zn+1

σ ) is equal to ρn+1
K (resp. zn+1

K ) if the �ow is direted outward Ω (i.e. un+1
σ ·nK,σ ≥ 0) orgiven by the boundary onditions otherwise. This approximation ensures that ρn+1 > 0 if ρn > 0 and ifthe density is presribed to a positive value at in�ow boundaries. In addition, if we set yn+1
K = zn+1

K /ρn+1
Kand ynK = znK/ρ

n
K , we may reast the seond equation of (I.13) as :

|K|
δt

(ρn+1
K yn+1

K − ρnKy
n
K) +

∑

σ∈E(K)

|σ| un+1
σ · nK,σ ρn+1

σ yn+1
σ = 0, (I.14)where we reognize in yn+1

σ the upwind approximation of yn+1 at the fae σ. This relation thus yieldsthat yn+1 satis�es a disrete maximum priniple by standard arguments [50℄.In the ase of the MAC disretization, the veloity predition equation is approximated by a �nitevolume tehnique over a dual mesh. For the RT disretization, the time derivative and onvetion termsare approximated by a similar �nite volume tehnique, while the �nite element formulation is used forthe other terms. For eah omponent of the veloity, a dual mesh of the omputational domain Ω thushas to be de�ned :- RT disretization. For the RT disretization, the dual mesh is the same for all the veloityomponents, and dual ells are hosen as follows. For any K ∈ M and any fae σ ∈ E(K), let DK,σbe the one with basis σ and with vertex the mass enter of K. The volume DK,σ is referred to asthe half-diamond ell assoiated to K and σ. For σ ∈ Eint, σ = K|L, we now de�ne the diamondell Dσ assoiated to σ by Dσ = DK,σ ∪DL,σ ; for an external fae σ ∈ Eext ∩E(K), Dσ is just thesame volume as DK,σ.
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Dσ

Dσ′

σ′ = K|MK

L

M

ε = D
σ |D

σ ′

Dσ

K

L

σ = K|L

σ′

ε = Dσ|Dσ′

Fig. I.1 � Notations for ontrol volumes and dual ells � Left : Finite Elements (the present skethillustrates the possibility, implemented in the ISIS software, of mixing simpliial (Crouzeix-Raviart) andquadrangular ells, even if only retangular ells are used in this paper) � Right : MAC disretization,dual ell for the y-ompnenent of the veloity.- MAC disretization For the MAC sheme, the dual mesh depends on the omponent of theveloity. For eah of them, its de�nition di�ers from the RT one only by the hoie of the half-diamond ell, whih, for K ∈ M and σ ∈ E(K), is now the retangle of basis σ and of measure
|DK,σ| equal to half the measure of K.We denote by ε = Dσ|Dσ′ the fae separating two diamond ells Dσ and Dσ′ (see Figure I.1).In both ases, for 1 ≤ i ≤ d and σ ∈ E(i), we denote by (divτ(ũn+1))σ,i an approximation of the i-thomponent of the visous term assoiated to σ, and we denote by (∇pn)σ,i the i-th omponent of thedisrete pressure gradient at the fae σ. With these notations, we are able to write the following generalform of the approximation to the momentum balane equation :

|Dσ|
δt

(ρ̄nσ ũn+1
σ,i − ρ̄n−1

σ unσ,i) +
∑

ε∈E(Dσ)

Fnσ,ε ũn+1
ε,i

+|Dσ|(∇pn)σ,i − |Dσ|(divτ(ũn+1))σ,i = (fn+1)σ,i,

(I.15)this equation being written for 1 ≤ i ≤ d, σ ∈ E \ ED in the ase of the RT disretization, and for
1 ≤ i ≤ d, σ ∈ E(i) \ED for the MAC sheme. In this relation, ρ̄nσ and ρ̄n−1

σ stand for an approximation ofthe density on the fae σ at time tn and tn−1 respetively (whih must not be onfused with the upstreamdensity ρnσ used in the mass balane), Fnσ,ε is the disrete mass �ux through the dual fae ε outward Dσ,and ũn+1
ε,i stands for an approximation of ũn+1

i on ε whih may be hosen either entred or upwind. Inthe entered ase, for an interior fae ε = Dσ|Dσ′ , we thus get ũn+1
ε,i = (ũn+1

σ,i + ũn+1
σ′,i )/2 while, in theupwind ase, we have ũn+1

ε,i = ũn+1
σ,i if Fnσ,ε ≥ 0 and ũn+1

ε,i = ũn+1
σ′,i otherwise.The quantity (fn+1)σ,i is a foring term, whih, for our purpose here, does not vanish only on externalfaes where Neumann onditions are presribed ; if this latter read τ · n − pn = f , we get :

(fn+1)σ,i =
1

δt

∫ (n+1) δt

n δt

∫

σ

f · e(i) dγ.



38 Chapitre I. Pressure orretion staggered shemes for barotropi monophasi and two-phase �owsThe �nite element disretization of the i-th omponent of the pressure gradient term reads :
|Dσ|(∇pn)σ,i = −

∑

M∈M

∫

M

pn divϕ(i)
σ dx.Sine the pressure is pieewise onstant, using the de�nition of the RT shape funtions, an easy ompu-tation yields for an internal fae σ = K|L :

|Dσ|(∇pn)σ,i = |σ| (pnL − pnK) nK,σ · e(i),and, for an extermal fae σ ∈ E(K) ∩ Eext \ ED :
|Dσ|(∇pn)σ,i = −|σ| pnK nK,σ · e(i).These expressions oinide whih the disrete gradient in the MAC disretization.The �nite element disretization of the visous term (divτ(ũn+1))σ,i, assoiated to σ and to the omponent

i, reads :
|Dσ|(divτ(ũn+1))σ,i = −µ

∑

K∈M

∫

K

∇ũn+1 · ∇ϕ(i)
σ − µ

3

∑

K∈M

∫

K

div ũn+1 div ϕ(i)
σ .The MAC disretization of this same visous term is detailed in [2℄.The main motivation to implement a �nite volume approximation for the �rst two terms is to obtaina disrete equivalent of the kineti energy theorem, whih holds in the ase of homogeneous Dirihletboundary onditions and reads :

∑

σ∈Eint

[ |Dσ|
δt

(ρ̄nσ ũn+1
σ − ρ̄n−1

σ unσ) +
∑

ε∈E(Dσ)

Fnσ,ε ũn+1
ε

]
· uσ ≥

1

2

∑

σ∈Eint

|Dσ|
δt

[
¯̺nσ |ũn+1

σ |2 − ¯̺n−1
σ |unσ|2

]
.

(I.16)For this result to be valid, the neessary ondition is that the onvetion operator vanishes for a onstantveloity, i.e. that the following disrete mass balane over the diamond ells is satis�ed [1, 20℄ :
∀σ ∈ Eint,

|Dσ|
δt

(ρ̄nσ − ρ̄n−1
σ ) +

∑

ε∈E(Dσ)

Fnσ,ε = 0.This governs the hoie for the de�nition of the density approximation ρ̄σ and the mass �uxes Fσ,ε. Thedensity ρ̄σ is de�ned by a weighted average : ∀σ ∈ Eint, σ = K|L, |Dσ| ρ̄σ = |DK,σ| ρK + |DL,σ| ρL and
∀σ ∈ Eext \ ED, σ ∈ E(K), ρ̄σ = ρK . The �ux Fσ,ε through the dual fae ε of the half diamond ell DK,σis omputed as the �ux through ε of a onstant divergene lifting of the mass �uxes through the faes ofthe primal ell K, i.e. the quantities (|σ|uσ ·nσ ρσ)σ∈E(K) appearing in the disrete mass balane (I.13).For a detailed onstrution of this approximation, we refer to [1, 38℄.Equation (I.11a) is disretized similarly to the momentum balane (I.15), i.e. a �nite volume tehniqueis used for the unsteady term in the RT disretization. Hene, for both shemes, the disretization of(I.11a) reads :

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇pn+1)σ,i − (∇pn)σ,i

]
= 0,this equation being written for 1 ≤ i ≤ d, σ ∈ E \ ED in the ase of the RT disretization, and for

1 ≤ i ≤ d, σ ∈ E(i) \ ED for the MAC sheme.



I.3. Numerial experiments : Riemann problems 39I.3 Numerial experiments : Riemann problemsIn this setion, we assess the behaviour of the sheme for several 1D Riemann problems (often alled also"shok tube problems") for the hyperboli system (I.1)-(I.3) with µ = 0 in (I.4), for whih an analytialexpression of the solution is known. We take bene�t of the fat that the pressure orretion sheme isable to keep y = 1 at any time, if the initial and boundary onditions allow, to �rst begin with a singlephase �ow, namely the solution of the so-alled "Sod shok tube" problem. We then turn to two-phase�ows, namely "two-�uid shok tube" model problems.The omputations presented here are performed with the ISIS ode [40℄, built from the software om-ponent library PELICANS [63℄, both under development at IRSN and available as open-soure softwares.The ISIS omputer ode is devoted to the solution of 2D or 3D problems (as the sheme presented inprevious setions), so we are lead to de�ne a fake 2D problem, designed to boil down to the addressed 1DRiemann problem. The domain Ω is retangular, and the mesh is omposed of only one horizontal stripeof ells (see Figures I.2� I.4).
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yFig. I.2 � Primal mesh and loation of the unknowns for the Rannaher-Turek element, for a meshonsisting of only one stripe of ells, with homogeneous Neumann onditions at the bottom and leftboundary, and a Dirihlet boundary ondition at the left side of the omputational domain.
Dσσ

εFig. I.3 � Dual �nite volume mesh for the Rannaher-Turek element, for a mesh onsisting of only onestripe of ells.In order to de�ne a one-dimensional problem on this two dimensional domain, we impose a symmetryondition to the veloity at the top and bottom of the domain Ω (i.e. , with u = (u1, u2), we set u2 = 0and ∂x2u1 = 0), whih is satis�ed by an horizontal �ow invariant with respet to the seond oordinate.An easy omputation shows that, with the hosen mesh and boundary onditions, we obtain a disreteproblem whih exatly oinides with a 1D disretization for the MAC sheme ; this is learly not thease for the RT element, sine degrees of freedom for the horizontal veloity subsist at three di�erentvertial loations.
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yFig. I.4 � Primal mesh and loation of the unknowns for the MAC disretization, for a mesh onsistingof only one stripe of ells, with homogeneous Neumann onditions at the bottom and left boundary, anda Dirihlet boundary ondition at the left side of the omputational domain.
σ

ε
DσFig. I.5 � Dual �nite volume mesh for the MAC disretization, for a mesh onsisting in only one stripeof meshes.All the solutions omputed in the following are suh that the �ow enters the domain on the left andleaves it on the right. So, at the left side of the domain, we impose u = (uL, 0), ρ = ρL and z = zL ; atthe right hand side of the domain, we presribe a Neumann boundary ondition, with a surfae foringterm equal to −pR n, where n is the unit outward normal vetor to the boundary ∂Ω.As desribed above, for the veloity onvetion term in the momentum balane equation, the approxi-mation of the veloity at the faes of the dual mesh (see Figures I.3 and I.5) may be hosen entred orupwind ; we will refer to the �rst option in the following as the entred variant (although upwinding isalways used in the disrete mass balane equations), and to the seond one as the upwind variant.I.3.1 Sod shok tube problemIn order to simulate the Sod shok tube test, the gas mass fration is set to y ≡ 1 (one-phase problem) ;we onsider here the non-visous homogeneous model resulting from Equations (I.1)�(I.3), with µ = 0,with an equation of state where p is proportional to ρ (in fat, we take p = ρ), whih orresponds to theisothermal Euler equations. The (1D) ontinuous problem is posed over the interval (−2, 3) and, for theomputation, we take Ω = (−2, 3) × (0, 0.01). The two initial onstant states are given by :

(
ρ

u

)

L

=

(
1

0

)
,

(
ρ

u

)

R

=

(
0.125

0

)
.With this initial ondition, the solution onsists in a rarefation wave travelling to the left and a shoktravelling to the right.We �rst address the results obtained with the RT disretization. The �rst outome is that the shemeonverges to the exat solution as soon as some di�usion is introdued in the momentum balane equation,



I.3. Numerial experiments : Riemann problems 41either by adding a small arti�ial visosity term to the entred approximation or by using the upwindsheme ; otherwise, i.e. with µ = 0 and the entred variant, the usual (for a entred disretizationof the advetion operator) odd-even osillations a�et the omputed veloity, and onvergene is lost.More preisely, due to the partiular struture of the mesh (see Figures I.2 and I.3), we observe in thislatter ase that the solution seems to result from the superposition of two di�erent regular funtions,one being assoiated to the degrees of freedom loated at the intermediate elevation and the seond onebeing assoiated to degrees of freedom loated on the top and bottom boundaries ; surprinsingly, thesetwo funtions do not hange when re�ning the mesh and time step with a onstant CFL number. Asan exemple of the numerial results obtained in onvergent ases, the solution at t = 1 obtained with amesh onsisting of 2000 ells, δt = 0.00125 and a residual visosity of µ = 0.001 is presented in FigureI.6, together with the exat solution. Using v = 1.6 (whih orresponds approximately to the veloity ofthe faster wave, namely the shok) as veloity range, these numerial parameters orrespond to a CFL
= v δt/h = 0.8.Sine ombining a entred disretization of the momentum balane equation with the addition of anarti�ial visosity may seem to be an appealing tehnique to avoid an exessive numerial dissipation (forinstane, assoiated to an adjustment of µ as a funtion of the regularity of the solution, in the spiritof [30, 31℄), we now investigate the in�uene of the value of µ on the auray of the entred sheme.We observe in Figure I.7 and Figure I.8 that taking a large visosity yields inaurate results, whih iseasily explained by the fat that the solved problem is too far from the original one. On the other hand,for too low values of the visosity, osillations appear, and the numerial error inreases. In between, theerror remains small, and one an remark that the optimal value for µ with respet to the L1 norm ofthe error dereases with the time and spae steps, as would be the numerial dissipation introdued bythe upwinding tehnique. Comparing Figures I.7 and I.8, we note that the plateau is wider for CFL=9.6than for CFL=0.8, but the overall shape of the urves remains essentially similar for both CFL numbers.We end this study of the RT disretization by reporting the auray of the shemes as a funtion ofthe time and spae step, with two onstant CFL numbers. We study the entred sheme with µ = 0.001and the upwind sheme with µ = 0 (we shall always set µ = 0 for the upwind sheme hereafter). Forthe entred sheme, the observed orders of onvergene (Figure I.9) are about 0.5 at CFL=0.8 and 1at CFL=9.6 respetively, for both the veloity and the pressure. For the upwind variant, the order ofonvergene is 0.75 for any CFL.With the MAC disretization, the behaviour is quite di�erent, sine the sheme seems to be onvergentin its entred as well as in its upwind version, without needing the addition of any arti�ial visosity.The solution at t = 1 obtained with the same parameters as for the RT disretization (i.e. 2000 ells,
δt = 0.00125, so CFL = v δt/h = 0.8, and a residual visosity of µ = 0.001) is presented in Figure I.10.The in�uene of the addition of an arti�ial visosity to the entred variant is shown in Figures I.11 andI.12. Finally, we one again assess the auray of the shemes as a funtion of the time and spae step,with two onstant CFL numbers (Figure I.13), all the omputations being now performed with µ = 0.Results seem to indiate that the order of onvergene does not depend on the CFL number, neither onthe upwind or entred hoie : in all ases, the order of the onvergene is lose to 0.8, for the veloityand the pressure.
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Fig. I.6 � Sod shok tube problem � Centred RT sheme � Numerial solution of the perturbed visousproblem at t = 1 with µ = 0.001, 2000 ells, δt = 0.00125 (i.e. CFL=0.8). Veloity (left) and pressure(right).
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Fig. I.7 � Sod shok tube problem � Centred RT sheme � L1 norm of the error between numerialsolution of the perturbed visous problem and exat solution of the invisid problem at t = 1, for threemeshes, as a funtion of the visosity µ, with CFL = 0.8. Veloity (left) and pressure (right).
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Fig. I.8 � Sod shok tube problem � Centred RT sheme � L1 norm of the error between numerialsolution of the perturbed visous problem and exat solution of the invisid problem at t = 1, for threemeshes, as a funtion of the visosity µ, with CFL= 9.6. Veloity (left) and pressure (right).
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Fig. I.9 � Sod shok tube problem � Centred and upwind RT shemes � L1 norm of the error betweennumerial solution of the perturbed visous problem and exat solution of the invisid problem at t = 1,as a funtion of the mesh (or time) step, for two �xed CFL numbers. In the entred ase, the used arti�ialvisosity is µ = 0.001, i.e. a value lose to the one whih yields the more aurate results. Veloity (left)and pressure (right).
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Fig. I.10 � Sod shok tube problem � Centred MAC sheme � Numerial solution of the perturbed visousproblem at t = 1 with µ = 0.001, 2000 ells, δt = 0.00125 (i.e. CFL=0.8). Veloity (left) and pressure(right).
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Fig. I.11 � Sod shok tube problem � Centred MAC sheme � L1 norm of the error between numerialsolution of the perturbed visous problem and exat solution of the invisid problem at t = 1, for threemeshes, as a funtion of the visosity µ, with CFL = 0.8. Veloity (left) and pressure (right).
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Fig. I.13 � Sod shok tube problem � Centred and upwind MAC sheme � L1 norm of the error betweenthe numerial solution and the exat solution at t = 1, as a funtion of the mesh (or time) step, for two�xed CFL numbers. Veloity (left) and pressure (right).



46 Chapitre I. Pressure orretion staggered shemes for barotropi monophasi and two-phase �owsI.3.2 Two-�uid shok tubeWe present here the numerial results for the two-�uid shok tube. The ontinuous problem is posed over
(−3, 2) and we use a omputational retangular domain Ω = (−3, 2)× (0, 0.01). The equation of state isgiven by (I.7), with the following phasi equation of state for the gas phase :

p = 10 ρg.The onstant liquid density is set to ρℓ = 0.8. We perform two tests, where the initial left and rightonstant states are hosen in order to yield two di�erent �ow strutures : a ontat disontinuity (in bothases), propagating between two shok waves in the �rst ase, and two rarefation waves in the seondone.I.3.2.a First ase : shok � ontat disontinuity � shokThe two initial onstant states are given by :
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 .With this initial data, the exat solution onsists in two shoks, the �rst one travelling to the left andthe seond one to the right, separated by a ontat disontinuity slowly moving to the right.The onvergene behaviour of the shemes is quite similar to that of the one-phase ase, namely onver-gene of the upwind sheme or of the entered sheme with a residual visosity in both ases and non-onvergene of the entered sheme with µ = 0 and the RT element. A numerial solution given by theentred sheme at t = 0.1 with 5000 ells, δt = 4. 10−5 and µ = 0.002 is plotted in Figure I.14 andFigure I.15 for the RT and MAC disretization respetively, together with the exat solution. Taking

v = 18.16 (the veloity of the fastest wave, namely the right shok), the CFL number for these numerialparameters is CFL=v δt/h = 0.75.We then plot the solution obtained at t = 0.1 for various CFL numbers, with the entred shemes,
2500 ells and µ = 0.002. We observe in Figure I.16, that with the RT disretization, the solution isqualitatively orret up to a CFL of the order of 20, and then strongly deteriorates, showing in partiularwild veloity and pressure osillations at the ontat disontinuity. On the ontrary, we observe morereasonable pro�les for the MAC disretization in Figure I.17 : the osillations only a�et the pressurein the viinity of the ontat disontinuity for large CFL numbers (≥ 80). Note that, in any ase, thestruture of the solution seems to remain orret, i.e. we do not observe the apparition of spurious waves(for instane, non-entropi shoks), as often happens with a sheme without any numerial di�usion. .We then assess the auray of the sheme as a funtion of the time and spae step, with two onstantCFL numbers, for the entred variants with µ = 0.002 and for the upwind variant. The observed orders ofonvergene for the entred RT sheme (Figure I.18) are about 1.5 and 1. at CFL=0.75 and 9 respetively,for both veloity and pressure ; for ρ and y, the order of onvergene is 0.7 and 0.5 respetively, for bothCFL numbers. For the upwind RT sheme, the order of onvergene is 1 for both the veloity and thepressure and 0.5 for ρ and y, at any CFL number. Again, for the MAC sheme (Figure I.19), the order



I.3. Numerial experiments : Riemann problems 47of onvergene does not seem to depend on the CFL number nor on the upwind or entred hoie : in allases, the order of onvergene is 1 for both the veloity and the pressure and 0.5 for the density and thegas mass fration. These behaviours are onsistent with what is usually observed : the onvergene orderis about 1/2 for the variables whih jump at the ontat disontinuity, while, for the other variables whihvary only at shoks, the ompressive e�et of the shoks ounterbalanes the di�usion of the sheme andyields a onvergene order lose to 1.
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Fig. I.14 � Two-phase test : shok / ontat disontinuity / shok � Centred RT sheme � Numerialsolution at t = 0.1, with 5000 ells, δt = 4. 10−5 (so CFL= 0.75) and µ = 0.002. Veloity (top left),pressure (top right), gas mass fration (bottom left), density (bottom right).
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Fig. I.16 � Two-phase test : shok / ontat disontinuity / shok � Centred RT sheme � Numerialsolutions at t = 0.1 with 2500 ells, µ = 0.002, for several CFL numbers. Veloity (top left), pressure (topright), gas mass fration (bottom left), density (bottom right).
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Fig. I.17 � Two-phase test : shok / ontat disontinuity / shok � Centred MAC sheme � Numerialsolutions at t = 0.1 with 2500 ells, µ = 0.002, for several CFL numbers. Veloity (top left), pressure (topright), gas mass fration (bottom left), density (bottom right).
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Fig. I.18 � Two-phase test : shok / ontat disontinuity / shok � Centred and upwind RT shemes� L1 norm of the error at t = 0.1 between the omputed solution and the exat one, as a funtion ofthe mesh (or time) step, for two �xed CFL numbers. In the entred ase, the used arti�ial visosityis µ = 0.002, i.e. a value lose to the one whih yields the more aurate results. Veloity (top left),pressure (top right), gas mass fration (bottom left) and density (bottom right).
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Fig. I.19 � Two-phase test : shok / ontat disontinuity / shok � Centred and upwind MAC shemes� L1 norm of the error at t = 0.1 between the omputed solution and the exat one, as a funtion ofthe mesh (or time) step, for two �xed CFL numbers. In the entred ase, the used arti�ial visosity is
µ = 0.002, i.e. the same value as for the RT disretization. Veloity (top left), pressure (top right), gasmass fration (bottom left) and density (bottom right).



I.3. Numerial experiments : Riemann problems 53I.3.2.b Seond ase : rarefation-ontat disontinuity-rarefationWe onlude this study by the numerial simulation of a two-phase �ow with rarefation waves. The twoinitial onstant states are given by :
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 .The numerial solutions at t = 0.1, obtained for 5000 ells, δt = 0.0001 and µ = 0.002 with the RT andMAC entred shemes, presented in Figure I.20 (RT) and Figure I.21 respetively, are in lose agreementwith the exat solution.
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Fig. I.20 � Two-phase test : rarefation wave / ontat disontinuity / rarefation wave � Centred RTsheme � Numerial solution at t = 0.1 with 5000 ells, δt = 0.0001 and µ = 0.002. Veloity (top left),pressure (top right), gas mass fration (bottom left), density (bottom right).
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Fig. I.21 � Two-phase test : rarefation wave / ontat disontinuity / rarefation wave � Centred MACsheme � Numerial solution at t = 0.1 with 5000 ells, δt = 0.0001 and µ = 0.002. Veloity (top left),pressure (top right), gas mass fration (bottom left), density (bottom right).



I.4. A two-dimensional test ase 55I.4 A two-dimensional test aseWe now turn to two-dimensional test ases. To this purpose, we use a "barotropi monophasi version",whih we then extend to obtain a two-phase �ow problem, of a test whih is lassial for (non-barotropiand monophasi) Euler equations [76, 31℄, and is often referred to as "the Mah 3 wind tunnel with step".The �ow enters through the left boundary a L-shaped domain, with a forward faing step, with thefollowing geometry :
Ω = (0, 3) × (0, 1) \ (0.6, 3)× (0, 0.2).All the onservative variables, i.e. ρ and ρu for the monophasi �ow and ρ, ρy and ρu in the two-phasease, are presribed at the inlet (i.e. left) setion. The equation of state of the �uid is p = ρ and theinlet values are suh that the Mah number is 3, whih is obtained here by taking u = (3, 0)t and ρ = 1.On the top and bottom wall, we use homogeneous Neumann boundary onditions. The �ow is free atthe out�ow (right) setion, whih means, sine the resulting Mah number at this boundary is greaterthan one, that the three eigenvalues of the Jaobian matrix of the system are positive and therefore noboundary ondition should be presribed here ; however, sine our disretization of the pressure gradientis entered and, less importantly, beause we use a physial-like di�usion term in the momentum balaneequation, we need an expression for the fore whih exerts at this surfae, whih we suppose given by :

τ · n − pn = p0 n,where p0 is given the same value than the inlet pressure, i.e. p0 = 1. We disuss later the e�ets of thisboundary ondition. The initial ondition is u = (3, 0)t and ρ = p = 1.The mesh is built from a regular 3n×n Cartesian grid of the retangle (0, 3)× (0, 1), suppressing meshesat the right bottom part of the domain (i.e. (0.6, 3) × (0., 0.2)) to take the step into aount. Theomputations presented in this setion are performed with the entered MAC sheme, and we use anarti�ial visosity �xed at µ = 0.01, whih is in the range of what would be the numerial visosityintrodued by an upwinding tehnique, for the meshes used in this study.The pressure �eld obtained with n = 500 (i.e. from a 1500 × 500 grid) and δt = 2. 10−3 is shown inFigure I.22. As in the non-barotropi ase, we obtain a shok up�ow the step, whih propagates andre�ets on the boundaries. Here, however, the shok moves slowly upward, while it is stationary in thenon-barotropi ase (so, ontrary to this latter ase, the �ow is not steady at t = 4).Besides the fat that we use, for numerial reasons, a non-physial out�ow boundary ondition, thetime-splitting of pressure orretion methods is also known to introdue spurious pressure boundaryonditions. It is indeed the ase for the present sheme, even if it is derived by an algebrai splitting (i.e.by disretizing �rst the equations up to obtain an impliit fully disrete sheme and then splitting intime, instead of �rst writting a split time semi-disrete algorithm with (arti�ial) boundary onditionsexpliitely stated at eah step) : we show in [12℄ that the ellipti problem solved at the orretion step forthe pressure inrement takes the form of a �nite volume di�usion problem, with homogeneous Neumannonditions at the boundary where the veloity is presribed and homogeneous Dirihlet onditions whenthe veloity is free. In the present ase, it means in partiular that the pressure su�ers from a numerialboundary ondition at the outlet setion whih tends to �x it at the initial value. Note, however, that
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Fig. I.22 � Wind tunnel with step, monophasi ase � Centred MAC sheme � Isolines of the pressure�eld obtained at t=4 with a 1500× 500 mesh and δt = 5. 10−4. Minimal value (blue) : p= 0.8 � Maximalvalue (red) : p= 9.48
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Fig. I.23 � Wind tunnel with step, monophasi ase � Centred MAC sheme � Pressure obtained at t=4along the line x2 = 0.3, with an 300× 100 mesh and various time steps, and with a 1500× 500 mesh and
δt = 5. 10−4.this boundary ondition is only presribed in the "�nite volume way" (i.e. through the expression of the�ux), whih may be seen as a penalization proess with a δt/h oe�ient, so this ondition is relaxedwhen this latter ratio is small [12℄. We observe in Figure I.22 that this outlet ondition indeed generatesa pressure boundary layer. To investigate this phenomenon in more detail, we plot in Figure I.23 thevalue of the pressure along the x2 = 3 line, for various meshes and time steps. We observe that theperturbation of the solution remains loalized, and that, as wellknown for inompressible �ow problems,the extension of the a�eted zone dereases with the spae step. Besides, we also see that the omputationis at least qualitatively orret for rather oarse meshes and time steps (using v = |u| + c = 4 with cthe speed of sound at the inlet setion, δt = 0.1 (resp. δt = 0.01) orresponds with n = 100 to CFL=40(resp. CFL=4)) ; in partiular, onvergene with respet to the time step seems to be reahed, for thispartiuliar �ow, for CFL numbers far greater than 1.We now turn to a two-phase ase, whih is obtained by initializing the gas mass fration by y = 0.1 for
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Fig. I.24 � Wind tunnel with step, non-uniform y ase � Centred MAC sheme � Isolines of the pressure�eld obtained at t=1.6 with a 1500x500 mesh and δt = 5. 10−4. Minimal value (blue) : p= 0.095 �Maximal value (red) : p= 14.
x2 ≤ 0.6 and y = 1 in the rest of the domain. We hoose ρg = p and ρℓ = 10. We reall [32℄ that thespeed of sound is given, in the two-phase ase, by :

c2 =
∂p(̺g) ρℓ z

(ρℓ + z − ρ)2
,with z = ρy and, here, ∂p(̺g) = 1. This relation shows that the speed of sound is lower for y = 0.1 thanfor y = 1, and we adjust the inlet veloity to keep the value of the Mah number at 3 in the two-phasezone. Inlet onditions are then given by u = (3c(y = 0.1), 0)t), y = 0.1 for x2 ∈ (0, 0.6) and y = 1 for

x2 ∈ (0.6, 1), and ρ given by the equation of state of the mixture with the loal value of y and p = 1.As a �rst step, we only solve the equations with y(x) �xed at its initial value and independent of time(doing so� we ompute in fat a barotropi �ow in a medium with a spae-dependent equation of state).As a onsequene of this hange of equation of state, we observe that the shok moves upward morerapidly, and interation with the inlet boudary onditions ours as soon as t ≈ 2 ; onsequently, werestrit the time interval of omputation, and stop at t = 1.6. The �nal time pressure, with a mesh builtfrom the 1200×400 grid and δt = 1.25 10−3, is shown in Figure I.24. We observe that part of the pressurewaves re�ets at the y transition, the re�eted wave propagating in a diretion almost parallel to thetransition (i.e. horizontal), thus giving a quite ompliated struture.Finally, we perform the same omputation with the whole set of equations governing the two-phase �ow.The obtained pressure, still at t = 1.6 and with the same grid, is shown in Figure I.25. The �st part of the�ow shows some similarities with the previous omputation, but the pressure evolution is quite di�erentdownstream, due to the fat that the liquid phase is now transported by the �ow.
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Fig. I.25 � Wind tunnel with step, two-phase ase � Centred MAC sheme � Isolines of the pressure �eldobtained at t=1.6 with a 1500x500 mesh and δt = 5. 10−4. Minimal value (blue) : p= 0.086 � Maximalvalue (red) : p= 13.8.



I.5. Conlusion 59I.5 ConlusionIn this paper, we have assessed the apability of a sheme issued from the inompressible �ow ontext,namely a pressure orretion sheme, to ompute disontinuous solutions of hyperboli systems. Numerialtests show that, provided that a su�ient numerial dissipation is introdued in the sheme, it onverges tothe (weak and entropi) solution to the ontinuous problem ; in addition, it shows a satisfatory behaviourup to large CFL numbers. Sine the sheme boils down to a usual projetion sheme when the density isonstant, this approah yields an algorithm whih is robust with respet to the �ow Mah number, andthe present solver is indeed now routinely used to ompute visous two-phase low Mah number �ows, asbubble olumns for instane.The present work may be extended in various ways. First, the observed onvergene an be onfortedby theoretial arguments ; even if a omplete onvergene proof seems di�ult at this time, beause ofthe lak of ompatness of sequenes of disrete solutions due, in partiular, to the absene of di�usionterms, it is possible to show, for monophasi �ows, by passing to the limit in the sheme, that any limitof a onvergent sequene is an entropy weak solution to the ontinuous problem (see next Chapter of thisdoument).Seond, several variants of the sheme may be envisaged. The time disretization may be hanged toan expliit one, to ompute highly transient �ows where a time-step limitation is not too stringent inpratie ; suh a sheme has been implemented, and �rst numerial result are promising. The extension ofthe above mentioned theoretial results to suh a time disretization, under stability restritions, seemspossible. Third, in its present state, the sheme appears to be rather di�usive. Several diretions existto ure this problem. For instane, the arti�ial visosity neessary for the sheme to onverge ould bemonitored by a posteriori indiators, following the ideas developed in [30, 31℄. Another route, espeiallyfor the expliit variant of the sheme, is to implement MUSCL tehniques ; this work is underway.Finally, let us mention that the present sheme has been extented to usual (i.e. non-batropi) Euler andNavier-Stokes equations, with a quite similar numerial behaviour and theoretial basis (see Chapters 3and 4 of this doument).





ChapitreII Consistent staggered shemesfor ompressible �ows �Barotopi equations.

I
n this paper, we analyse the stability and onsisteny of a time-impliitsheme and a pressure orretion sheme, based on staggered spae dis-retizations, for the ompressible barotropi Euler equations. We �rstshow that the solutions to these shemes satisfy a disrete kineti energy and adisrete elasti potential balane equations. Integrating these equations on thedomain readily yields disrete ounterparts of the stability estimates known forthe ontinuous problem. Then, in one spae dimension, we prove that if thesolutions to these shemes onverge to some limit, then this limit is an entropyweak solution of the ontinous problem.
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II.1 IntrodutionThe problem addressed in this paper is the system of the so-alled barotropi ompressible Euler equations,whih reads :
∂t ρ+ div(ρu) = 0, (II.1a)
∂t (ρu) + div(ρu ⊗ u) + ∇p = 0, (II.1b)
p = ργ , (II.1)where t stands for the time, ρ, u and p are the density, veloity and pressure in the �ow. The threeabove equations are respetively the mass balane, the momentum balane and the equation of state ofthe �uid ; γ ≥ 1 is a oe�ient spei� to the �uid onsidered. The problem is de�ned over an openbounded onneted subset Ω of Rd, 1 ≤ d ≤ 3, of boundary ∂Ω, and a �nite time interval (0, T ). Thissystem must be supplemented by initial onditions for ρ and u ; the initial ondition for ρ is assumed tobe positive. It must also be supplemented by a suitable boundary ondition, whih we suppose to be :

u · n = 0,at any time and a.e. on ∂Ω, where n stands for the normal vetor to the boundary.Let us denote by Ek the kineti energy Ek = 1
2 ρ |u|2. Taking the inner produt of (II.1b) by u yields,after formal ompositions of partial derivatives and using (II.1a) :

∂tEk + div
(
Ek u

)
+ ∇p · u = 0. (II.2)This relation is refered to as the kineti energy balane.Let us now de�ne the funtion P , from (0,+∞) to R, as a primitive of s 7→ ℘(s)/s2, where ℘ is theequation of state (preisely speaking, the funtion giving the pressure as a funtion of the density, so,here, ℘(s) = sγ) ; this quantity is often alled the elasti potential. Let H be the funtion de�ned by

H(s) = sP(s), ∀s ∈ (0,+∞) ; it may easily be heked that sH′(s)−H(s) = ℘(s) ; therefore, by a formalomputation detailed in the appendix, multiplying (II.1a) by H′(ρ) yields :
∂t
(
H(ρ)

)
+ div

(
H(ρ)u

)
+ p div(u) = 0. (II.3)Let us denote by S the quantity S = Ek + H(ρ). Summing (II.2) and (II.3), we get :

∂tS + div
(
(S + p)u

)
= 0. (II.4)This shows that S is an entropy of the system, and an entropy solution to (II.1) is thus required to satisfy,

∀ϕ ∈ C∞
c

(
Ω × [0, T )

)
, ϕ ≥ 0 :

∫ T

0

∫

Ω

[
−S∂tϕ− (S + p)u · ∇ϕ

]
dxδt−

∫

Ω

S(x, 0) ϕ(x, 0) dx ≤ 0. (II.5)Then, formally, if we suppose that the normal veloity is presribed to zero at the boundary, integrating(II.4) yields :
d

dt

∫

Ω

[1
2
ρ |u|2 + H(ρ)

]
dx = 0. (II.6)



64 Chapitre II. Consistent staggered shemes for ompressible �ows � Barotopi equations.Sine the funtion H is bounded by below and inreasing, Inequality (II.6) provides an estimate of thesolution.We study two shemes for the numerial solution of System (II.1) whih di�er by the time disretization :the �rst one is impliit, and the seond one is a non-iterative pressure-orretion sheme introdued in[20℄. This latter algorithm (and, by an easy extension, also the �rst one) was shown in [20℄ to have at leastone solution, to provide solutions satisfying ρ > 0 (and therefore also p > 0) and to be unonditionallystable, in the sense that its (their) solution(s) satis�es a disrete analogue of Inequality (II.6). The resultspresented in this paper omplement this work in several diretions. For the impliit sheme, these are :- A disrete kineti energy balane, whih is a disrete analogue of (II.2) is obtained on dual ells,while a disrete potential elasti balane, whih is a disrete analogue of (II.3) is obtained onprimal ells.These equations are �rst used to obtain the stability of the sheme by a simple integration in spae(i.e. summation over the primal and dual ontrol volumes).- Seond, in one spae dimension and for the hyperboli ase, the limit of any onvergent sequeneof solutions to the sheme is shown to satisfy the Rankine-Hugoniot onditions, and thus to exhibit"orret" shoks.- Finally, passing to the limit on the disrete kineti energy and elasti potential balanes, suh alimit is also shown to satisfy the entropy inequality (II.5).For the pressure orretion sheme, the results are essentially the same : the sheme is unonditionallystable, and the passage to the limit in the sheme shows that, in ase of onvergene, the predited andend-of-step veloities neessarily tend to the same funtion, and that the limit is a weak solution to theproblem, satisfying the entropy inequality.II.2 Meshes and unknownsLet M be a deomposition of the domain Ω, supposed to be regular in the usual sense of the �nite elementliterature (eg. [9℄). The ells may be :- for a general domain Ω, either onvex quadrilaterals (d = 2) or hexahedra (d = 3) or simplies,both type of ells being possibly ombined in a same mesh,- for a domain the boundaries of whih are hyperplanes normal to a oordinate axis, retangles(d = 2) or retangular parallelepipeds (d = 3) (the faes of whih, of ourse, are then also neessarilynormal to a oordinate axis).By E and E(K) we denote the set of all (d−1)-faes σ of the mesh and of the element K ∈ M respetively.The set of edges inluded in the boundary of Ω is denoted by Eext and the set of internal ones (i.e. E \Eext)is denoted by Eint ; a fae σ ∈ Eint separating the ells K and L is denoted by σ = K|L. The outwardnormal vetor to a fae σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the measureof K and by |σ| the (d− 1)-measure of the fae σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E and E(i)
ext ⊂ Eextthe subset of the faes of E and Eext respetively whih are perpendiular to the ith unit vetor of theanonial basis of Rd.



II.2. Meshes and unknowns 65The spae disretization is staggered, using either the Marker-And Cell (MAC) sheme [37, 36℄, or non-onforming low-order �nite element approximations, namely the Rannaher and Turek element (RT)[65℄ for quadrilateral or hexahedri meshes, or the lowest degree Crouzeix-Raviart (CR) element [11℄ forsimpliial meshes.For all these spae disretizations, the degrees of freedom (d.o.f.) for the pressure and the density areassoiated to the ells of the mesh M, and are denoted by :
{
pK , ρK , K ∈ M

}
.Let us then turn to the d.o.fs for the veloity.- Rannaher-Turek orCrouzeix-Raviart disretizations � The d.o.fs for the veloities are loatedat the enter of the faes of the mesh, and we hoose the version of the element where they representthe average of the veloity through a fae. The set of d.o.fs reads :

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.- MAC disretization � The d.o.fs for the ith omponent of the veloity, de�ned at the entres ofthe fae σ ∈ E(i), so the whole set of veloity d.o.fs reads :
{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.For the approximation of the time derivative and onvetion terms in the momentum balane equation,for the MAC disretization but also for the RT and CR disretizations, we need a dual mesh whih wenow de�ne :- Rannaher-Turek or Crouzeix-Raviart disretizations � For the RT or CR disretization, thedual mesh is the same for all the veloity omponents. When K ∈ M is a simplex, a retangleor a uboid, for σ ∈ E(K), we de�ne DK,σ as the one with basis σ and with vertex the massenter of K (see Figure II.1). We thus obtain a partition of K in m sub-volumes, where m isthe numbers of faes of the mesh, eah sub-volume having the same measure |DK,σ| = |K|/m.We extend this de�nition to general quadrangles and hexahedra, by supposing that we have builta partition still of equal-volume sub-ells, and with the same onnetivities ; note that this is ofourse always possible, but that suh a volume DK,σ may be no longer a one, sine, if K is farfrom a pallelogram, it may not be possible to build a one having σ as basis, the opposite vertexlying in K and a volume equal to |K|/m. The volume DK,σ is referred to as the half-diamond ellassoiated to K and σ.For σ ∈ Eint, σ = K|L, we now de�ne the diamond ell Dσ assoiated to σ by Dσ = DK,σ ∪DL,σ ;for an external fae σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.- MAC disretization � For the MAC sheme, the dual mesh depends on the omponent of theveloity. For eah omponent, the MAC dual mesh only di�ers from the RT or CR dual mesh bythe hoie of the half-diamond ell, whih, for K ∈ M and σ ∈ E(K), is now the retangle orretangular parallellepiped of basis σ and of measure |DK,σ| = |K|/2.We denote by |Dσ| the measure of the dual ell |Dσ|, and by ε = Dσ|Dσ′ the fae separating two diamondells Dσ and Dσ′ .
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Dσ
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Fig. II.1 � Primal and dual meshes for the Rannaher-Turek and Crouzeix-Raviart elements.Finally, we need to deal with the impermeability (i.e. u · n = 0) boundary ondition. Sine the d.o.fsfor the veloity lie on the boundary (and not inside the ells), these onditions are taken into aount inthe de�nition of the disrete spaes. To avoid tehnialities in the expression of the shemes, we supposethroughout this paper that the boundary is a.e. normal to a oordinate axis, even in the ase of the RTor CR disretizations, whih allows to simple set to zero the orresponding veloity d.o.f. :for 0 ≤ n ≤ N − 1, ∀σ ∈ E(i)
ext, un+1

σ,i = 0. (II.7)Extending this setting to general domains just implies to rede�ne, through linear ombinations, the d.o.fsat the external faes, to make the normal veloity appear as a new d.o.f..
II.3 An impliit shemeII.3.1 The shemeLet us onsider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), andlet δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the onstant time step. We onsider an impliit-in-time



II.3. An impliit sheme 67numerial sheme, whih reads in its fully disrete form :
∀K ∈ M,

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (II.8a)For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC ase,

∀σ ∈ E \ E(i)
ext otherwise,

|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε∈Ē(Dσ)

Fn+1
σ,ε un+1

ε,i − |Dσ| (∆T u)n+1
σ,i + |Dσ| (∇p)n+1

σ,i = 0, (II.8b)
∀K ∈ M, pn+1

K = ℘(ρn+1
K ) = (ρn+1

K )γ , (II.8)where the terms introdued for eah disrete equation are de�ned herafter.Equation (II.8a) is obtained by disretization of the mass balane over the primal mesh, and Fn+1
K,σ standsfor the mass �ux aross σ outwardK, whih, beause of the impermeability ondition, vanishes on externalfaes and is given on internal ones by :

∀σ ∈ Eint, σ = K|L, Fn+1
K,σ = |σ| ρ̃n+1

σ un+1
σ · nK,σ.In this relation, the notation un+1

σ ·nK,σ stands for the approximation of the normal veloity to the fae
σ outward K. For the MAC disretization, this quantity is given (up, possibly, to a hange of sign) bythe veloity d.o.f. loated at the fae ; for the RT and CR disretizations, it is omputed by taking theinner produt of the (vetor valued) veloity on σ, un+1

σ , and the outward normal vetor nK,σ (i.e. doingexatly what the notation says). The density at the fae σ = K|L, ρ̃n+1
σ , is approximated by the upwindtehnique :

ρ̃n+1
σ =

∣∣∣∣∣∣

ρn+1
K if un+1

σ · nK,σ ≥ 0,

ρn+1
L otherwise.We now turn to the disrete momentum balane (II.8b). For the disretization of the time derivative, wemust provide a de�nition for the values ρn+1

σ and ρnσ, whih approximate the density on the edge σ attime tn+1 and tn respetively. They are given by the following weighted average :
∀σ ∈ Eint, σ = K|L, |Dσ| ρnσ = |DK,σ| ρnK + |DL,σ| ρnL. (II.9)We now turn to the onvetion term. The �rst task is to de�ne the the disrete mass �ux through thedual edge ε outward Dσ, denoted by Fn+1

σ,ε ; the guideline for its onstrution is that a �nite volumedisretization of the mass balane equation over the diamond ells of the form :
∀σ ∈ E , |Dσ|

ρn+1
σ − ρnσ
δt

+
∑

ε∈E(Dσ)

Fn+1
σ,ε = 0, (II.10)must hold in order to be able to derive a disrete kineti energy balane (see Setion II.3.1 below). For adual edge ε inluded in the primal ell K, this �ux is omputed as a linear ombination (with onstantoe�ients, i.e. independent of the edge and the ell) of the mass �uxes through the faes of K, i.e.the quantities (Fn+1

K,σ )σ∈E(K) appearing in the disrete mass balane (II.8a). We do not give here this



68 Chapitre II. Consistent staggered shemes for ompressible �ows � Barotopi equations.set of oe�ients, and refer to [1, 38, 25℄ for a detailed onstrution of this approximation. Let us note,however, that the �ux aross the dual faes whih are loated on the boundary, and whih exatly matha primal fae, is the same as for this latter, namely zero. So we need to provide an approximation for
un+1
ε,i only at internal dual faes, whih is hosen to be entered :

un+1
ε,i = (un+1

σ,i + un+1
σ′,i )/2.The quantity (∆T u)n+1

σ,i stands for a possible stabilizing di�usion term, whih reads :
|Dσ| (∆T u)n+1

σ,i =
∑

ε∈Ē(Dσ), ε=Dσ |Dσ′

ν hd−2
ε (un+1

σ − un+1
σ′ ),where hε is a harateristi dimension of the fae ε, and ν stands for a non-negative oe�ient, possiblydepending on a power of hε. Note that this term is usually (i.e. for general meshes) not onsistent witha Laplae operator. Choosing :

ν hd−2
ε =

1

2
|Fn+1
σ,ε |, (II.11)whih implies a dependeny of ν as hε, yields the usual upwind sheme. We prefer here to assoiatethe di�usive e�ets of the sheme to a separate term for two reasons : �rst, we will suppose in theonsisteny analysis (Setion II.3.3) a partiular behaviour of the oe�ient ν (preisely speaking, that

ν/h2
ε is bounded away from zero) whih is not satis�ed by the expression (II.11) ; seond, this formalismmay prepare for a stabilization strategy whih ould be less di�usive than the upwind hoie, for instanehoosing ν on the basis of an a posteriori analysis of the loal regularity of the solution [30, 31℄.The last term (∇pn+1)σ,i stands for the i-th omponent of the disrete pressure gradient at the fae σ,and this operator is built as the transpose of the natural divergene operator de�ned by |K| div(u)K =

∑
σ∈E(K) |σ| uσ · nK,σ. Consequently, beause of the impermeability boundary onditions, the disretegradient vanishes at the external faes. It reads for the internal ones :for σ ∈ Eint, σ = K|L, (∇pn+1)σ,i =

|σ|
|Dσ|

(pn+1
L − pn+1

K ) nK,σ · e(i).Finally, the initial approximations for ρ and u are given by the average of the initial onditions ρ0 and
u0 on the primal and dual ells respetively :

∀K ∈ M, ρ0
K =

1

|K|

∫

K

ρ0(x) dx,For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC ase,

∀σ ∈ E \ E(i)
ext otherwise, u0

σ,i =
1

|Dσ|

∫

Dσ

(u0(x))i dx.

(II.12)



II.3. An impliit sheme 69II.3.2 EstimatesII.3.2.a The disrete kineti energy balane equationLet us multiply equation (II.8b) by the orresponding veloity unknown un+1
σ,i , whih yields T conv

σ,i +T∆
σ,i+

T∇
σ,i = 0, with :

T conv
σ,i =

[ |Dσ|
δt

(
ρn+1
σ un+1

σ,i − ρnσu
n
σ,i

)
+

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

]
un+1
σ,i ,

T∆
σ,i =

[ ∑

ε=Dσ |Dσ′

ν hd−2
ε (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i ,

T∇
σ,i = |Dσ| (∇pn+1)σ,i un+1

σ,i .The study of the properties linked to the �nite volume disretization for the onvetion operator isperformed in the Appendix. From the identity (A.5), we get :
T conv
σ,i =

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+
|Dσ|
2 δt

ρnσ
(
un+1
σ,i − unσ,i

)2
.Let us de�ne Rn+1

σ,i by the sum of T∆
σ,i and of the last term of T conv

σ,i :
Rn+1
σ,i =

1

2

|Dσ|
δt

ρnσ
(
un+1
σ,i − unσ,i

)2
+
[ ∑

ε=Dσ |Dσ′

ν hd−2
ε (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i . (II.13)With this notation, we thus obtain the following relation :

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+ |Dσ| (∇pn+1)σ,i un+1
σ,i = −Rn+1

σ,i . (II.14)This equation may be seen as a disrete kineti energy balane, with a remainder term at the right-handside.II.3.2.b The disrete elasti potential balane equationLet P be the elasti potential, de�ned by P ′

(z) = ℘(z)/z2, and H be the funtion de�ned over (0,+∞)by H(z) = z P(z). Let us multiply the disrete mass balane (II.8a) by H′(ρn+1
K ). By Lemma A.0.1, usingthe fat that zH′(z) −H(z) = ℘(z), we get :

|K|
δt

[
ρn+1
K P(ρn+1

K ) − ρnKP(ρnK)
]

+
∑

σ∈E(K)

ρn+1
σ P(ρn+1

σ ) un+1
σ · nK,σ

+ pn+1
K

∑

σ∈E(K)

un+1
σ · nK,σ = −Rn+1

K , (II.15)with :
Rn+1
K =

1

2

|K|
δt

H′′(ρn+1
K ) (ρn+1

K − ρnK)2 +
1

2

∑

σ=K|L

(un+1
σ · nK,σ)− H′′(ρn+1

σ ) (ρn+1
L − ρn+1

K )2, (II.16)



70 Chapitre II. Consistent staggered shemes for ompressible �ows � Barotopi equations.where ρn+1
K ∈ [min(ρn+1

K , ρnK),max(ρn+1
K , ρnK)], ρn+1

σ ∈ [min(ρn+1
σ , ρn+1

K ),max(ρn+1
σ , ρn+1

K )] for all σ ∈
E(K), and, for a ∈ R, a− ≥ 0 is de�ned by a− = −min(a, 0). Note that, sine the funtion H is onvex,
RK is non-negative.II.3.2. Stability estimatesProposition II.3.1Let γ ≥ 1, and let P be the elasti potential, de�ned by P ′

(z) = ℘(z)/z2 = zγ−2, i.e. P(z) = zγ−1/(γ−1)if γ > 1 and P(z) = log(z) if γ = 1. Let H be the funtion de�ned by H(s) = sP(s). We suppose thatthe initial density is positive.Then there exists a solution (un) 0≤n≤N and (ρn) 0≤n≤N to the sheme, the density satis�es ρ > 0 and,for 1 ≤ n ≤ N , the following inequality holds :
∑

K∈M

|K| H(ρnK) +
1

2

∑

σ∈Eint

|Dσ| ρnσ |unσ|2 + Rn ≤ C, (II.17)where C ∈ R+ only depends on the initial onditions, and Rn is non-negative remainder whih gatherssome ontrol of the spae and time translates of the unknowns :
Rn =

1

2

n∑

k=1

∑

σ∈Eint

|Dσ| ρkσ |ukσ − uk−1
σ |2 +

n∑

k=1

δt
∑

ε∈Ē, ε=Dσ |Dσ′

ν hd−2
σ |ukσ − ukσ′ |2

+
γ

2

n∑

k=1

δt
∑

σ∈Eint, σ=K|L

|σ| (ρnσ,γ)γ−2 |unσ| |ρnK − ρnL|2,with ρkσ,γ equal to either ρkK or ρkL and suh that (ρkσ,γ)
γ−2 = min

(
(ρkK)γ−2, (ρkL)γ−2

).Remark 4Note that Proposition II.3.1 yields an estimate on the unknowns also for γ = 1, even if the funtion H isnot positive, sine H satis�es H(s) ≥ −1/e, ∀s ∈ (0,+∞). In fat, we may rephrase the inequality (II.17)by hanging the expression of H to H(s) = max(s log(s), 0) and adding |Ω|/e to the onstant C at theright-hand side.Proof The positivity of the density is a onsequene of the properties of the upwind sheme [27, Lemma2.1℄. Summing (II.14) over the edges and (II.15) over the ells, and �nally summing over the time stepsyields, using the fat that the �uxes in these two equations anel by onservativity :
∑

K∈M

|K| ρnK P(ρnK) +
1

2

∑

σ∈Eint

|Dσ| ρnσ |unσ|2 + Rn ≤ C,with C given by :
C =

1

2

∑

σ∈Eint

|Dσ| ρ0
σ |u0

σ|2 +
∑

K∈M

|K| ρ0
K P (ρ0

K).Finally, the existene of a solution may be inferred by the Brouwer �xed point theorem, by an easyadaptation of the proof of [17, Proposition 5.2℄. The essential idea of this proof is that the onservativityof the mass balane disretization, together with the fat that the density is positive, yields an estimatefor ρ in the L1-norm, and so, by a norm equivalene argument, of the pressure in any norm ; the disretemomentum balane equation then provides a ontrol on the veloity. Therefore, omputing
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(i) ρ from the mass balane for �xed u,

(ii) p from ρ by the equation of state,
(iii) and �nally u from the momentum balane equation with �xed ρ and p,yields an iteration in a bounded onvex subset of a �nite dimensional spae. �II.3.3 Passing to the limit in the shemeThe objetive of this setion is to show, in the one dimensional ase, that, if a sequene of solutions isontrolled in suitable norms and onverges to a limit, this latter neessarily satis�es a (part of the) weakformulation of the ontinuous problem.Definition II.3.2 (Regular sequene of disretizations, impliit ase)We de�ne a regular sequene of disretizations (M(m), δt(m))m∈N as a sequene of meshes and time stepssatisfying :

(i) the time step δt(m) and the size h(m) of the meshM(m), de�ned by h(m) = sup
K∈M(m)

diam(K),tend to zero as m→ ∞,
(ii) there exists θ > 0 suh that :

θ ≤ diam(K)diam(L)
≤ 1

θ
, ∀m ∈ N and K, L ∈ M(m) sharing an interfae. (II.18)Let suh a regular sequene of disretizations be given, and ρ(m), p(m) and u(m) be the solution given bythe sheme (II.8) with the mesh M(m) and the time step δt(m), or, more preisely speaking, a 1D versionof the sheme whih may be obtained by taking the MAC variant, only one horizontal stripe of meshes,supposing that the vertial omponent of the veloity (the d.o.f. of whih are loated on the top andbottom boundaries) vanishes, and that the measure of the faes is equal to 1. To the disrete unknowns,we assoiate pieewise onstant funtions on time intervals and on primal or dual meshes, so the density

ρ(m), the pressure p(m) and the veloity u(m) are de�ned almost everywhere on Ω × (0, T ) by :
ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

(ρ(m))nK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

(p(m))nK XK X(n,n+1),

u(m)(x, t) =

N−1∑

n=0

∑

σ∈E

(u(m))nσ XDσ
X(n,n+1),where XK , XDσ

and X(n,n+1) stand for the harateristi funtion of K, Dσ and the interval (tn, tn+1)respetively.A weak solution to the ontinuous problem satis�es, for any ϕ ∈ C∞
c

(
Ω × (0, T )

) :
−
∫ T

0

∫

Ω

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (II.19a)
−
∫ T

0

∫

Ω

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dxδt−

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (II.19b)
p = ργ . (II.19)



72 Chapitre II. Consistent staggered shemes for ompressible �ows � Barotopi equations.Note that these relations are not su�ient to de�ne a weak solution to the problem, sine they do notimply anything about the boundary onditions. However, they allow to derive the Rankine-Hugoniotonditions ; so, if we show that they are satis�ed by the limit of a sequene of solutions to the disreteproblem, this implies, loosely speaking, that the sheme omputes the right shok veloities, whih is theresult we are searhing for. It is stated in the following theorem.Theorem II.3.3Let Ω be an open bounded interval of R. We suppose that the initial data satis�esH(ρ0) ∈ L1(Ω) (i.e. that
ρ0 log(ρ0) ∈ L1(Ω) for γ = 1 and that ρ0 ∈ Lγ(Ω) for γ > 1) and that ρ0 u

2
0 ∈ L1(Ω). Let (M(m), δt(m))m∈Nbe a regular sequene of disretizations in the sense of De�nition II.3.2, and (ρ(m), p(m), u(m))m∈N be theorresponding sequene of solutions. We suppose that this sequene onverges in Lp(Ω × (0, T ))3, for

1 ≤ p < ∞, to (ρ̄, p̄, ū) ∈ L∞(Ω × (0, T ))3. We suppose in addition that both sequenes (ρ(m))m∈Nand (1/ρ(m))m∈N are uniformly bounded in L∞(Ω × (0, T )) and that the sequene of numerial di�usionoe�ients (ν(m))m∈N satis�es :
lim

m→+∞
ν(m) = 0, lim

m→+∞

(h(m))2

ν(m)
= 0.Then the limit (ρ̄, p̄, ū) satis�es the system (II.19).Remark 5 (Sharper bounds and onvergene assumptions)The onvergene properties and bounds assumed for the solution have been hosen so as to math whatmay be observed in pratie. However, examining the proof of this theorem, we observe that we really needis that ρ(m)u(m), ρ(m)(u(m))2, p(m)u(m) onverge in the distribution sense to ρ̄ū, ρ̄ū2 and p̄ū respetively,that (ρ(m))γ onverge a.e. to ρ̄γ , and that the sequene (u(m))m∈N be bounded in L3

(
Ω × (0, T )

). Therequired seond assumption for (ν(m))m∈N is in fat :
lim

m→+∞

(h(m))2

ν(m)
‖ρ(m)‖

L∞

(
Ω×(0,T )

) = 0,and may be veri�ed, for instane supposing a relation between δt(m) and h(m) and invoking inverseinequalities, with milder estimates of (ρ(m))m∈N. Finally, the bound of (1/ρ(m))m∈N in L∞
(
Ω × (0, T )

)(whih, loosely speaking, means that the appearane of void is exluded) is needed to obtain the weak-BVestimate :
lim

m→+∞
h(m)

N∑

n=0

∑

σ∈Eint, σ=K|L

|unσ| (ρnK − ρnL)2 = 0 (II.20)from the "weighted weak-BV estimate" (II.17) :
N∑

n=0

∑

σ∈Eint, σ=K|L

(ρnσ,γ)
γ−2 |unσ| (ρnK − ρnL)2 = 0where we reall that ρnσ,γ is equal to either ρnK or ρnL. This assumption is thus useless for γ ≤ 2. For γ > 2,in the ase of a non-vanishing visosity, Equation (II.20) may perhaps be derived by using the densityitself as test funtion in the disrete mass balane equation, and invoking a ontrol of the divergene ofthe veloity (from the di�usion term), see [17, Proposition 5.5℄ for suh a omputation in the steady ase.



II.3. An impliit sheme 73Proof With the assumed onvergene for the sequene of solutions, the limit satis�es the equation ofstate. The proof of this theorem is thus obtained by passing to the limit in the sheme, �rst for the massbalane equation and then for the momentum balane equation. Thanks to the assumption on the initialondition, the stability estimate of Proposition II.3.1 is uniform with respet to m, and thus providesuniform bounds for some spae translates of the solution, whih are used all along the proof.Mass balane equation � Let ϕ ∈ C∞
c (Ω× [0, T )). Let m ∈ N, M(m) and δt(m) be given. Dropping forshort the supersript (m), we de�ne ϕM, an interpolate of ϕ on the primal mesh, by :

ϕM =
N−1∑

n=0

∑

K∈M

ϕnK XK X(tn,tn+1), (II.21)where, for 1 ≤ n ≤ N , K ∈ M and σ ∈ E , we set ϕnK = ϕ(xK , t
n), with xK the mass enter of K. Wealso de�ne the time disrete derivative of this disrete funtion by :

ðtϕM =
N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕnK

δt
XK X(tn,tn+1), (II.22)and its spae disrete derivative :

ðxϕM =

N−1∑

n=0

∑

σ∈E, σ=K<L

ϕnL − ϕnK
dσ

XDσ
X(tn,tn+1), (II.23)where the notation σ = K < L means that σ = K|L with the orientation xK < xL. Thanks to theregularity of ϕ, the pieewise onstant funtions ϕM, ðtϕM and ðxϕM onverge in Lr

(
Ω × (0, T )

), for
r ≥ 1 (inluding r = +∞), to ϕ, ∂tϕ and ∂xϕ respetively. Sine the support of ϕ is ompat in Ω× [0, T ),for m large enough, the interpolate of ϕ vanishes at the boundary ells and at the �nal time ; hereafter,we systematially assume that we are in this ase.Let us multiply the �rst equation of the sheme by δt ϕnK , and sum the result on n ∈ {0, ..., N − 1} and
K ∈ M, to obtain T (m)

1 + T
(m)
2 = 0 with :

T
(m)
1 =

N∑

n=0

∑

K∈M

|K| (ρn+1
K − ρnK) ϕnK , T

(m)
2 =

N∑

n=0

δt
∑

K∈M

[ ∑

σ∈E(K)

Fn+1
K,σ

]
ϕnK .Reordering the sums in T (m)

1 yields :
T

(m)
1 = −

N∑

n=1

δt
∑

K∈M

|K| ρn+1
K

ϕn+1
K − ϕnK

δt
−
∑

K∈M

|K| (ρ0)K (ϕ0)K ,so :
T

(m)
1 = −

∫ T

0

∫

Ω

ρ(m)
ðt ϕM dxδt−

∫

Ω

(ρ0)(m)ϕ0.Sine, by assumption, the sequene of disrete solutions and of interpolates onverge in Lr
(
Ω × (0, T )

)for r ≥ 1, and by de�nition of the disrete initial onditions, we get :
lim

m−→+∞
T

(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ∂tϕdxδt−
∫

Ω

ρ̄(x, 0) ϕ(x, 0) dx.
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K,σ and reordering the sums in T (m)

2 , we get :
T

(m)
2 = −

N∑

n=0

δt
∑

σ=K<L

|Dσ| ρ̃n+1
σ un+1

σ

ϕnL − ϕnK
dσ

,where dσ stands in this relation for |xK − xL| and we reall that ρ̃n+1
σ is the upwind approximation of

ρn+1 at the fae σ. Using |Dσ| = (|K| + |L|)/2, we thus have T (m)
2 = T (m)

2 + R(m)
2 with :

T (m)
2 = −

N∑

n=0

δt
∑

σ=K<L

[ |K|
2

ρn+1
K +

|L|
2

ρn+1
L

]
un+1
σ

ϕnL − ϕnK
dσ

,

R(m)
2 = −

N∑

n=0

δt
∑

σ=K<L

[
δσ

|K|
2

(ρn+1
L − ρn+1

K ) + (1 − δσ)
|L|
2

(ρn+1
K − ρn+1

L )
]
un+1
σ

ϕnL − ϕnK
dσ

,and δσ is equal to 0 or 1 depending on the sign of un+1
σ . We get :

T (m)
2 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðxϕM dxδt, and lim

m−→+∞
T (m)

2 = −
∫ T

0

∫

Ω

ρ̄ ū ∂xϕdxδt.The remainder term R(m)
2 is bounded as follows :

|R(m)
2 | ≤ Cϕ

N∑

n=0

δt
∑

σ∈Eint, σ=K|L

|Dσ| |ρn+1
K − ρn+1

L | |un+1
σ |

≤ Cϕ h
1/2

N∑

n=0

δt
[ ∑

σ∈Eint, σ=K|L

|un+1
σ | |ρn+1

K − ρn+1
L |2

]1/2 [ ∑

σ∈Eint, σ=K|L

|Dσ| |un+1
σ |

]1/2
.Therefore, thanks to the stability estimates, this term tends to zero when m tends to +∞.Momentum balane equation � Let ϕE be an interpolate of ϕ on the dual mesh, de�ned by :

ϕE =

N−1∑

n=0

∑

σ∈E

ϕnσ XDσ
X(tn,tn+1), (II.24)where, for 1 ≤ n ≤ N , K ∈ M and σ ∈ E , we set ϕnσ = ϕ(xσ , t

n), with xσ the absissa of the fae σ. Wealso de�ne the time and spae disrete derivatives of this disrete funtion by :
ðtϕE =

N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕnσ
δt

XDσ
X(tn,tn+1),

ðxϕE =

N−1∑

n=0

∑

K∈M, K=<σ,σ′>

ϕnσ′ − ϕnσ
hK

XK X(tn,tn+1),

(II.25)where the notation K =< σ, σ′ > means that K = (xσ, xσ′ ), with xσ < xσ′ and, for σ = K|L, dσ =

(hK + hL)/2. The pieewise onstant funtions ϕE , ðtϕE and ðxϕE onverge in Lr
(
Ω× (0, T )

), for r ≥ 1(inluding r = +∞), to ϕ, ∂tϕ and ∂xϕ respetively.



II.3. An impliit sheme 75Let us multiply Equation (II.8b) of the sheme by δt ϕnσ, and sum the result over n ∈ {0, ..., N − 1} and
σ ∈ Eint. We obtain T (m)

1 + T
(m)
2 + T

(m)
3 + T

(m)
4 = 0 with :

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ|
(
ρn+1
σ un+1

σ − ρnσu
n
σ

)
ϕnσ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

ε∈E(Dσ)

Fn+1
σ,ε un+1

ε

]
ϕnσ ,

T
(m)
3 =

N−1∑

n=0

δt
∑

σ∈Eint, σ=K<L

(pn+1
L − pn+1

K ) ϕnσ,

T
(m)
4 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

K=(σ,σ′)

ν

hK
(un+1
σ − un+1

σ′ )
]
ϕnσ.Thanks to the de�nition of the quantity ρσ, reordering the sums, we get for T (m)

1 :
T

(m)
1 = −

N∑

n=0

δt
∑

σ∈Eint, σ=K|L

[ |K|
2
ρn+1
K +

|L|
2
ρn+1
L

]
un+1
σ

ϕn+1
σ − ϕnσ
δt

−
∑

σ∈Eint, σ=K|L

[ |K|
2
ρ0
K +

|L|
2
ρ0
L

]
u0
σ ϕ

0
σ.Therefore :

T
(m)
1 = −

∫ T

0

∫

Ω

ρ(m) u(m)
ðt ϕM dxδt−

∫

Ω

(ρ0)(m) (u0)(m) ϕ0,and :
lim

m−→+∞
T

(m)
1 = −

∫ T

0

∫

Ω

ρ̄ ū ∂tϕdxδt −
∫

Ω

ρ̄(x, 0) ū(x, 0) ϕ(x, 0) dx.Let us now turn to T (m)
2 . In one dimension, the mass �uxes at the dual edges are given by, for 0 ≤ n ≤

N − 1, K ∈ M, with K =< σ, σ′ > and ε = Dσ|Dσ′ :
Fn+1
σ,ε =

1

2

(
−Fn+1

K,σ + Fn+1
K,σ′

)
=

1

2

(
ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′

)
.Reordering the sums, we thus get, sine the disretization of the onvetion term is entered :

T
(m)
2 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

(ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′ ) (un+1
σ + un+1

σ′ ) (ϕnσ′ − ϕnσ),whih we write T (m)
2 = T (m)

2 + R(m)
2 with :

T (m)
2 = −1

2

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

ρn+1
K

[
(un+1
σ )2 + (un+1

σ′ )2
]

(ϕnσ′ − ϕnσ).This term reads :
T (m)

2 = −
∫ T

0

∫

Ω

ρ(m) (u(m))2 ðxϕE dxδt, so lim
m−→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxδt.
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2 reads :

R(m)
2 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[
(ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′ )(un+1
σ + un+1

σ′ )

− 2ρn+1
K

(
(un+1
σ )2 + (un+1

σ′ )2
)]

(ϕnσ′ − ϕnσ).Expanding the quantity 2 ρn+1
K ((un+1

σ )2 +(un+1
σ′ )2) thanks to the identity 2(a2 + b2) = (a+ b)2 +(a− b)2,we get R(m)

2 = R(m)
2,1 + R(m)

2,2 :
R(m)

2,1 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[(
(ρ̃n+1
σ − ρn+1

K ) un+1
σ + (ρ̃n+1

σ′ − ρn+1
K ) un+1

σ′

)

(un+1
σ + un+1

σ′ )
]

(ϕnσ′ − ϕnσ),

R(m)
2,2 =

1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

ρn+1
K (un+1

σ − un+1
σ′ )2 (ϕnσ′ − ϕnσ).First we study R(m)

2,1 . Thanks to the de�nition of the upwind approximation, reordering the sum by faes,we get :
R(m)

2,1 =
ε

4

N−1∑

n=0

δt
∑

σ∈Eint, σ=L→K,K=(σ,σ′)

(ρn+1
L − ρn+1

K ) un+1
σ (un+1

σ + un+1
σ′ ) (ϕnσ − ϕnσ′),where the notation σ = L → K means that the fae σ separates K and L and the �ow goes from Lto K, K = (σ, σ′) means that σ and σ′ are the faes of K and ε = ±1. Sine |ϕnσ − ϕnσ′ | ≤ Cϕ |K| ≤

Cϕ (|Dσ| + |Dσ′ |), we get :
|R(m)

2,1 | ≤ Cϕ
4

N−1∑

n=0

δt
∑

σ∈Eint, σ=L|K,K=(σ,σ′)

(
|Dσ| + |Dσ′ |

)
|ρn+1
L − ρn+1

K | |un+1
σ | |un+1

σ + un+1
σ′ |.Therefore, by the Cauhy-Shwarz inequality, we get :

|R(m)
2,1 | ≤ Cϕ

4
h1/2

N−1∑

n=0

δt
[ ∑

σ∈Eint, σ=L|K,K=(σ,σ′)

|un+1
σ | (ρn+1

L − ρn+1
K )2

]1/2

[ ∑

σ∈Eint, σ=L|K,K=(σ,σ′)

(
|Dσ| + |Dσ′ |

)
|un+1
σ |

(
un+1
σ + un+1

σ′

)2]1/2
.Sine the ratio of the size of two neighbouring meshes is bounded by regularity assumption on the mesh,we get from the estimates on the solution :

|R(m)
2,1 | ≤ Cϕ

4
h1/2 ‖u(m)‖3/2

L3(Ω×(0,T )),and so R(m)
2,1 tends to zero when m tends to +∞. For R(m)

2,2 , we have, thanks to the estimate (II.17) :
|R(m)

2,2 | ≤ Cϕ h
2
N−1∑

n=0

δt
∑

K∈M

|K| ρn+1
K

(un+1
σ − un+1

σ′

hK

)2 ≤ C
h2

ν(m)
‖ρ(m)‖L∞(Ω×(0,T )),where C does not depend on m, and, therefore, this term also tends to zero when m tends to +∞.



II.3. An impliit sheme 77We turn to the term T
(m)
3 :

T
(m)
3 = −

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

|K| pn+1
K

ϕnσ′ − ϕnσ
hK

= −
∫ T

0

∫

Ω

p(m)
ðxϕE dxδt,so :

lim
m−→+∞

T
(m)
3 = −

∫ T

0

∫

Ω

p̄ ū ∂xϕdxδt.Let us �nally study T (m)
4 . Reordering the sums, we get :
T

(m)
4 =

N−1∑

n=0

δt
∑

K∈M,K=(σ,σ′)

ν(m)

hK
(un+1
σ − un+1

σ′ ) (ϕnσ − ϕσ′ ).The Cauhy-Shwarz inequality yields :
|T (m)

4 | ≤
[N−1∑

n=0

δt
∑

K∈M,K=(σ,σ′)

ν(m)

hK
(un+1
σ − un+1

σ′ )2
]1/2

[N−1∑

n=0

δt
∑

K∈M,K=(σ,σ′)

ν(m)

hK
(ϕnσ − ϕnσ′)2

]1/2
,and thus, in view of the estimate (II.17), this term tends to zero as soon as ν(m) tends to zero.Conlusion � Gathering the limits of all the terms of the mass and momentum balane equationonludes the proof. �We now turn to the entropy ondition.Theorem II.3.4Let Ω be an open bounded interval of R. We suppose that the initial data satis�esH(ρ0) ∈ L1(Ω) (i.e. that

ρ0 log(ρ0) ∈ L1(Ω) for γ = 1 and that ρ0 ∈ Lγ(Ω) for γ > 1) and that ρ0 u
2
0 ∈ L1(Ω). Let (M(m), δt(m))m∈Nbe a regular sequene of disretizations in the sense of De�nition II.3.2, and (ρ(m), p(m), u(m))m∈N be theorresponding sequene of solutions. We suppose that this sequene onverges in Lp(Ω × (0, T ))3, for

1 ≤ p < ∞, to (ρ̄, p̄, ū) ∈ L∞(Ω × (0, T ))3. We suppose in addition that both sequenes (ρ(m))m∈N and
(1/ρ(m))m∈N are bounded in L∞(Ω × (0, T )) and that the sequene of numerial di�usion oe�ients
(ν(m))m∈N satis�es :

lim
m→+∞

ν(m) = 0, lim
m→+∞

(h(m))2

ν(m)
= 0.Then the limit (ρ̄, p̄, ū) satis�es the entropy ondition (II.5).Proof Let ϕ ∈ C∞

c

(
Ω × [0, T )

), ϕ ≥ 0. With the same notations for the interpolate of ϕ as in thepreeding proof, we multiply the kineti balane equation (II.14) by ϕnσ, and the elasti potential balane(II.15) by ϕnK , sum over the edges and ells respetively and over the time steps, to get :
∑

E∈Eint

T n+1
σ ϕnσ +

∑

K∈M

T n+1
K ϕnK = −

∑

E∈Eint

Rn+1
σ ϕnσ −

∑

K∈M

Rn+1
K ϕnK , (II.26)



78 Chapitre II. Consistent staggered shemes for ompressible �ows � Barotopi equations.where :
T n+1
σ =

1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ )2 − ρn−1

σ (unσ)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε u
n+1
σ un+1

σ′ + |Dσ| (∇p)n+1
σ un+1

σ ,

T n+1
K =

|K|
δt

[
ρn+1
K P(ρn+1

K ) − ρnKP(ρnK)
]

+
∑

σ∈E(K)

ρn+1
σ P(ρn+1

σ ) un+1
σ nK,σ

+pn+1
K

∑

σ∈E(K)

un+1
σ nK,σ,and the quantities Rn+1

σ and Rn+1
K are given by (the one-dimensional version of) Equation (II.13) and(II.16) respetively.For the passage to the limit in this equation, we essentially refer to the study performed in ChapterIV. Indeed, the entropy inequality for the barotropi model is the same as the total energy balane fornon-barotropi �ows (up to the hange from an inequality to an equality) ; the passage to the limit inthis latter equation, with the same disretization as here, is detailed in Chapter IV of this doument.The treatment of the terms at the left-hand side of (II.26) is idential, and we thus omit this proof here.Sine we only seek here an inequality, the non-negative part of the remainder terms, i.e. the �rst part in

Rn+1
σ and the whole term Rn+1

K , poses no problem, and we only have to study the seond part of Rn+1
σ ,whih reads :

(Rdiff)n+1
σ =

[ ∑

K∈M,K=(σ,σ′)

ν

hK
(un+1
σ − un+1

σ′ )
]
un+1
σ .For 0 ≤ n ≤ N − 1 and K ∈ M, K = (σ, σ′), let us de�ne the quantity Sn+1

K by :
Sn+1
K =

ν

hK
(un+1
σ − un+1

σ′ )2.We have SK ≥ 0, and we prove in Chapter IV that the di�erene between the disrete funtions assoiatedto ((Rdiff)n+1
σ

)
σ∈Eint, 0≤n≤N−1

and (Sn+1
K )K∈M, 0≤n≤N−1 tends to zero in the distribution sense, i.e. :

N−1∑

n=0

δt
[ ∑

σ∈Eint

ϕnσ (Rdiff)n+1
σ −

∑

K∈M

ϕnK Sn+1
K

]
≤ C h,where C only depends on ϕ and on bounds on the solution either assumed or given by (II.17). Thisonludes the proof. �II.4 Pressure orretion shemeII.4.1 The shemeWe derive in this setion a pressure orretion numerial sheme from the impliit sheme (II.8). The �rststep, is a renormalization of the pressure the interest of whih is lari�ed only by the analysis (stability ofthe sheme and satisfation of the entropy ondition). The next step, as usual, is to ompute a tentativeveloity by solving the momentum balane equation with the known (here, the renormalized) pressure.Then, the veloity is orreted and the other variables are advaned in time. For stability reasons, or, inother words, to be able to derive a kineti energy balane, we need that the mass balane over the dual



II.4. Pressure orretion sheme 79ells (II.10) to hold ; sine the mass balane is not yet solved when performing the predition step, thisleads us to perform a time shift of the density at this step.The algorithm reads :Renormalization step � Solve for p̃n+1 :
∀K ∈ M,

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(
p̃n+1
K − p̃n+1

L

)
=

∑

σ=K|L

1

(ρnσ ρ
n−1
σ )1/2

|σ|2
|Dσ|

(
pnK − pnL

)
. (II.27a)Predition step � Solve for ũn+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC ase,

∀σ ∈ E \ E(i)
ext otherwise,

|Dσ|
δt

(ρnσũ
n+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i − |Dσ| (∆T ũ)n+1

σ,i + |Dσ| (∇p̃)n+1
σ,i = 0. (II.27b)Corretion step � Solve for ρn+1, pn+1 and un+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC ase,

∀σ ∈ E \ E(i)
ext otherwise,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇p)n+1

σ,i − (∇p̃)n+1
σ,i

]
= 0, (II.27)

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (II.27d)

∀K ∈ M, pn+1
K = (ρn+1

K )γ . (II.27e)The initialization of the sheme is performed as follows. First, ρ−1 and u0 are given by the average ofthe initial onditions ρ0 and u0 on the primal and dual ells respetively :
∀K ∈ M, ρ−1

K =
1

|K|

∫

K

ρ0(x) dx,For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) \ E(i)
ext in the MAC ase,

∀σ ∈ E \ E(i)
ext otherwise, u0

σ,i =
1

|Dσ|

∫

Dσ

(u0(x))i dx.

(II.28)The initial pressure, p0, is obtained from ρ−1 through the equation of state. Finally, we ompute ρ0 bysolving the mass balane equation (II.27d). This proedure allows to make the �rst predition step with
(ρ−1
σ )σ∈E , (ρ0

σ)σ∈E and the dual mass �uxes satisfying the mass balane.



80 Chapitre II. Consistent staggered shemes for ompressible �ows � Barotopi equations.II.4.1.a The disrete kineti energy balane equationTo derive a disrete kineti energy balane equation, we multiply the veloity predition equation by theorresponding d.o.f. of the predited veloity, i.e. Equation (II.27b) by ũn+1
σ,i , to obtain :

|Dσ|
δt

(
ρnσũ

n+1
σ,i − ρn−1

σ unσ,i
)

ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i

− |Dσ|(∆T ũ)n+1
σ,i ũn+1

σ,i + |Dσ| (∇p̃)n+1
σ,i ũn+1

σ,i = 0. (II.29)We then write the veloity orretion equation as :
[ |Dσ|
δt

ρnσ

]1/2
un+1
σ,i +

[ |Dσ| δt
ρnσ

]1/2
(∇p)n+1

σ,i =
[ |Dσ|
δt

ρnσ

]1/2
ũn+1
σ,i +

[ |Dσ| δt
ρnσ

]1/2
(∇p̃)n+1

σ,i ,and square this relation, sum with (II.29) and get, applying Lemma A.0.2 (again on the dual mesh) tothe �rst two terms of (II.29) :
1

2

|Dσ|
δt

[
ρnσ(un+1

σ,i )2 − ρn−1
σ (unσ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũn+1
σ,i ũn+1

σ′,i

+ |Dσ| (∇p)n+1
σ,i un+1

σ,i = −Rn+1
σ,i − Pn+1

σ,i , (II.30)where Rn+1
σ,i and Pn+1

σ,i read, using the de�nition of (∆T ũ)n+1
σ,i :

Rn+1
σ,i =

1

2

|Dσ|
δt

ρn−1
σ

(
ũn+1
σ,i − unσ,i

)2
+
[ ∑

ε=Dσ |Dσ′

ν hd−2
ε (ũn+1

σ,i − ũn+1
σ′,i )

]
ũn+1
σ,i ,

Pn+1
σ,i =

|Dσ| δt
ρnσ

[(
(∇p)n+1

σ,i

)2 −
(
(∇p̃)n+1

σ,i

)2]
.

(II.31)II.4.2 Stability estimatesProposition II.4.1Let γ ≥ 1, and let P be the elasti potential, satisfying P ′

(s) = ℘(s)/s2 = zγ−2, so P(s) = sγ−1/(γ − 1)if γ > 1 and P(s) = log(s) if γ = 1. Let H be the funtion de�ned by H(s) = sP(s). We suppose thatthe initial density is positive.Then there exists a solution (un) 0≤n≤N and (ρn) 0≤n≤N to the sheme, the density satis�es ρ > 0 and,for 1 ≤ n ≤ N , the following inequality holds :
∑

K∈M

|K| H(ρnK) +
1

2

∑

σ∈E

|Dσ| ρn−1
σ |unσ |2 + Rn ≤ C, (II.32)where C only depends on the initial onditions and on the density �eld ρ0 omputed at the initialisationof the algorithm. The remainder term R is non-negative, and gathers some estimates of the spae andtime translates of the unknowns :

Rn =
1

2

n∑

k=1

∑

σ∈E

|Dσ| ρk−2
σ |ũkσ − uk−1

σ |2 +

n∑

k=1

δt
∑

ε∈Ē, ε=Dσ |Dσ′

ν hd−2
σ |ũkσ − ũkσ′ |2

+
γ

2

n∑

k=1

δt
∑

σ∈Eint, σ=K|L

|σ| (ρkσ,γ)γ−2 |ukσ| |ρkK − ρkL|2 + δt2
|Dσ|
ρn−1
σ

|(∇p)nσ,i|2,with ρkσ,γ equal to either ρkK or ρkL and suh that (ρkσ,γ)
γ−2 = min

(
(ρkK)γ−2, (ρkL)γ−2

).



II.4. Pressure orretion sheme 81Proof Essential arguments of the proof of this proposition are given in [20℄, and we only brie�y reallhere how to obtain this estimate, for the sake of ompleteness. As in the impliit ase, we sum the kinetienergy balane equation (II.30) over the faes, and the elasti potential balane (II.15) (whih is thesame, and obtained by the same omputation, as in the impliit ase) over the ells, and �nally sum thetwo obtained relations. We obtain a "loal in time" version of Equation (II.32), whih reads :
T n+1 − T n +Rn+1 + Pn+1 = 0, (II.33)where :

T n+1 =
∑

K∈M

|K| H(ρn+1
K ) +

1

2

∑

σ∈E

|Dσ| ρnσ |un+1
σ |2.and :

Rn+1 =
∑

σ∈E, 1≤i≤d

Rn+1
σ,i , Pn+1 =

∑

σ∈Eint, 1≤i≤d

Pn+1
σ,i ,with Rn+1

σ,i and Pn+1
σ,i given by Equation (II.31) (the latter sum being restrited to the internal faes sinethe pressure disrete gradient vanishes at external ones). The term Pn+1 thus reads :

Pn+1 =
∑

σ∈Eint

|Dσ| δt2
ρnσ

[
|(∇p)n+1

σ |2 − |(∇p̃)n+1
σ |2

]Before summing over the time steps, we need to transform Pn+1 to get a di�erene between a sameexpression written at two onseutive time levels, whih is possible thanks to the renormalization step.Indeed, multiplying (II.27a) by p̃n+1
K and summing over the ells yields, after a disrete integration byparts and use of the identity 2(a− b) a = a2 + (a− b)2 − b2 :

∑

σ∈Eint

|Dσ| δt2
ρnσ

|(∇p̃)n+1
σ |2 ≤

∑

σ∈Eint

|Dσ| δt2
ρn−1
σ

|(∇p)nσ |2.Summing this relation with (II.33) and summing over the time steps yields the estimate (II.32) with :
C =

∑

K∈M

|K| H(ρ0
K) +

1

2

∑

σ∈Eint

|Dσ| ρ−1
σ |u0

σ|2 +
∑

σ∈Eint

|Dσ| δt2
ρ−1
σ

|(∇p)0σ|2.

�Remark 6 (Regularity assumptions for the initial onditions)For a given mesh, the quantity denoted above by C is bounded as soon as ρ0 is positive and belongs to
L1(Ω) and u0 belongs to L1(Ω)d respetively. When dealing with a sequene of disretizations to pass tothe limit in the sheme, we will have to suppose that C is ontrolled independently of the mesh and timestep, whih neessitates (i) that the initial kineti energy and (ii) that H(ρ0

K) are bounded in L1(Ω), and
(iii) than the last term involving the disrete pressure gradient does not blow-up.Assumption (ii) (and, of ourse, (i)) may be obtained by supposing that both u0 and ρ0 belongs to
L∞(Ω) and L∞(Ω)d respetively and that δt/h is bounded (possibly by a number far greater than 1) ;indeed, ρ0 is then obtained in this ase by a single time step of a (disrete) transport equation with aveloity �eld the divergene of whih is ontrolled by 1/h, so ρ0 is ontrolled in L∞(Ω).Assumption (iii) may be inferred from the fat that the initial pressure (i.e. the pressure obtained fromthe initial density through the equation of state) is bounded in L∞(Ω) ∩ BV(Ω), 1/ρ0 is bounded in
L∞(Ω), and that δt2 dereases at least as fast as the spae step. This is the assumption we make for thepassage to the limit in the sheme.



82 Chapitre II. Consistent staggered shemes for ompressible �ows � Barotopi equations.II.4.3 Passing to the limit in the shemeAs for the impliit sheme, we show in this setion, in the one dimensional ase, that, if a sequene ofsolutions is ontrolled in suitable norms and onverges to a limit, this latter neessarily satis�es a (partof the) weak formulation of the ontinuous problem. With the same adaptation to one dimension of thesheme as in the impliit ase, we get the following result.Definition II.4.2 (Regular sequene of disretizations, pressure orretion ase)We de�ne a regular sequene of disretizations (M(m), δt(m))m∈N as a sequene of meshes and time stepssatisfying :
(i) both the time step δt(m) and the size h(m) of the mesh M(m) tend to zero as m→ ∞,

(ii) there exists C > 0 suh that :
∀m ∈ N,

δt(m)h(m)
≤ C,where h(m) = minK∈M(m) hK .

(ii) there exists θ > 0 suh that :
θ ≤ diam(K)diam(L)

≤ 1

θ
, ∀m ∈ N and K, L ∈ M(m) sharing an interfae. (II.34)Theorem II.4.3Let Ω be an open bounded interval of R. We suppose that the ρ0, 1/ρ0 and u0 are bounded in L∞(Ω)and that the initial pressure (i.e. the pressure obtained from the initial density ρ0 through the equationof state) is bounded in BV(Ω).Let (M(m), δt(m))m∈N be a regular sequene of disretizations in the sense of De�nition II.4.2, and

(ρ(m), p(m), u(m), ũ(m))m∈N be the orresponding sequene of solutions. We suppose that this sequeneonverges in Lp(Ω × (0, T ))4, for 1 ≤ p < ∞, to (ρ̄, p̄, ū, ¯̃u) ∈ L∞(Ω × (0, T ))4. We suppose in additionthat both sequenes (ρ(m))m∈N and (1/ρ(m))m∈N are uniformly bounded in L∞(Ω × (0, T )) and that thesequene of numerial di�usion oe�ients (ν(m))m∈N satis�es :
lim

m→+∞
ν(m) = 0, lim

m→+∞

(h(m))2

ν(m)
= 0.Then ū = ¯̃u and the triplet (ρ̄, p̄, ū) satis�es the system (II.19).Remark 7 (On the "non appearane of void assumption")The assumption that (1/ρ(m))m∈N is bounded in L∞(Ω×(0, T )) is used twie in the proof of this theorem.First, to obtain ū = ¯̃u. Here, the hypothesis may be irumvented by replaing this onlusion by ρ̄ū = ρ̄¯̃u(or, in other words, ū = ¯̃u everywhere ρ̄ 6= 0), whih is easily obtained from Inequality (II.35) below. Theseond time is, as for the impliit ase, to obtain an "unweighted" estimate of the density spae translatesfor γ ≥ 2, and we do not repeat here the above disussion on this issue.



II.4. Pressure orretion sheme 83Proof Let m ∈ N be given. Dropping for short the supersript (m), the estimate of Proposition II.4.1yields :
n∑

k=1

δt
∑

σ∈Eint

|Dσ| ρk−1
σ (ũkσ − uk−1

σ )2 ≤ C δt, (II.35)where, by the assumption on the initial data, the real number C is independant of m. We thus get :
‖ũ(m) − u(m)(., .− δt)‖2

L2 ≤ C δt(m) ‖ 1

ρ(m)
‖
L∞

.Letting m tend to +∞ in this equation yields ū = ¯̃u.The passage to the limit in the mass balane equation is the same as in the impliit ase, and we onlyneed to address here the momentum balane equation. Let ϕ ∈ C∞
c (Ω × [0, T )), and let us de�ne theinterpolate ϕE and its disrete derivatives as in the impliit ase. Summing the veloity predition andorretion equations, multiplying the result by δt ϕnσ and then summing over the edges and time steps,we get T (m)

1 + T
(m)
2 + T

(m)
3 + T

(m)
4 = 0, with :

T
(m)
1 =

N−1∑

n=0

∑

σ∈Eint

|Dσ|
[
ρnσu

n+1
σ − ρn−1

σ unσ
]
ϕnσ ,

T
(m)
2 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

ε∈E(Dσ)

Fnσ,εũ
n+1
ε

]
ϕnσ

T
(m)
3 =

N−1∑

n=0

δt
∑

σ∈Eint, σ=K<L

(pn+1
L − pn+1

K ) ϕnσ,

T
(m)
4 =

N−1∑

n=0

δt
∑

σ∈Eint

[ ∑

K=(σ,σ′)

ν

hK
(ũn+1
σ − ũn+1

σ′ )
]
ϕnσ.The passage to the limit in T

(m)
1 is the same as for the impliit sheme, just noting that the sequene

(
ρ(m)(·, · − δt)

)
m∈N

onverges to ρ̄ as (ρ(m))m∈N.Let us now turn to T (m)
2 . By a omputation similar to the impliit ase, we get :

T
(m)
2 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

(ρ̃nσu
n
σ + ρ̃nσ′ unσ′) (ũn+1

σ + ũn+1
σ′ ) (ϕnσ′ − ϕnσ),whih we write T (m)

2 = T (m)
2 + R(m)

2 with :
T (m)

2 = −1

2

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

ρnK

[
unσ ũ

n+1
σ + unσ′ ũn+1

σ′

]
(ϕnσ′ − ϕnσ).This term reads :

T (m)
2 = −

∫ T

0

∫

Ω

ρ(m)(·, · − δt) u(m)(·, · − δt) ũ(m)
ðxϕE dxδt,so :

lim
m−→+∞

T
(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ū2 ∂xϕdxδt.
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2 reads :

R(m)
2 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[
(ρ̃nσu

n
σ + ρ̃nσ′unσ′)(ũn+1

σ + ũn+1
σ′ )

− 2ρnK (unσ ũ
n+1
σ + unσ′ ũn+1

σ′ )
]

(ϕnσ′ − ϕnσ).Expanding the quantity 2ρnK (unσ ũ
n+1
σ + unσ′ ũ

n+1
σ′ ) thanks to the identity 2(ab + cd) = (a + c)(b + d) −

(a− c)(b − d), we get R(m)
2 = R(m)

2,1 + R(m)
2,2 :

R(m)
2,1 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[(
(ρ̃nσ − ρnK) unσ + (ρ̃nσ′ − ρnK) unσ′

)

(ũn+1
σ + ũn+1

σ′ )
]

(ϕnσ′ − ϕnσ),

R(m)
2,2 =

1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

ρnK (unσ − unσ′) (ũn+1
σ − ũn+1

σ′ ) (ϕnσ′ − ϕnσ).First we study R(m)
2,1 . Thanks to the de�nition of the upwind approximation, reordering the sum by faes,we get :

R(m)
2,1 =

ε

4

N−1∑

n=0

δt
∑

σ∈Eint, σ=L→K,K=(σ,σ′)

(ρnL − ρnK) unσ (ũn+1
σ + ũn+1

σ′ ) (ϕnσ − ϕnσ′ ),where the notation σ = L → K means that the fae σ separates K and L and the �ow goes from Lto K, K = (σ, σ′) means that σ and σ′ are the faes of K and ε = ±1. Sine |ϕnσ − ϕnσ′ | ≤ Cϕ |K| ≤
Cϕ (|Dσ| + |Dσ′ |), we get :

|R(m)
2,1 | ≤ Cϕ

4

N−1∑

n=0

δt
∑

σ∈Eint, σ=L|K,K=(σ,σ′)

(
|Dσ| + |Dσ′ |

)
|ρnL − ρnK | |unσ| |ũn+1

σ + ũn+1
σ′ |.Therefore, by the Cauhy-Shwarz inequality, we get :

|R(m)
2,1 | ≤ Cϕ

4
(h(m))1/2

[N−1∑

n=0

δt
∑

σ∈Eint, σ=L|K,K=(σ,σ′)

|unσ| (ρnL − ρnK)2
]1/2

[N−1∑

n=0

δt
∑

σ∈Eint, σ=L|K,K=(σ,σ′)

(
|Dσ| + |Dσ′ |

)
|unσ|

(
ũn+1
σ + ũn+1

σ′

)2]1/2
.Sine the ratio of the size of two neighbouring meshes is bounded by regularity assumption on the mesh,we get from the estimate (II.32) on the solution :

|R(m)
2,1 | ≤ C (h(m))1/2

[
‖u(m)‖L2 + ‖u(m)‖2

L4

]
,where C does not depend on m, and so R(m)

2,1 tends to zero when m tends to +∞. For R(m)
2,2 , we have, bythe Cauhy-Shwarz inequality :

|R(m)
2,2 | ≤ Cϕ

N−1∑

n=0

δt
∑

K∈M

|K| ρn+1
K |unσ + unσ′ | (ũn+1

σ − ũn+1
σ′ )

≤ Cϕ
h(m)

(ν(m))1/2
‖ρ(m)‖L∞ ‖u(m)‖L2

[N−1∑

n=0

δt
∑

K∈M

ν(m)

hK
(ũn+1
σ − ũn+1

σ′ )2
]1/2

,



II.4. Pressure orretion sheme 85and thus, thanks to the estimate (II.32) :
|R(m)

2,2 | ≤ C
h(m)

(ν(m))1/2
‖ρ(m)‖L∞ ‖u(m)‖L2 ,where C does not depend on m. Therefore, this term also tends to zero when m tends to +∞.Finally, terms T (m)

3 and T (m)
4 are dealt with as in the impliit ase. �We now turn to the satisfation of the entropy ondition. Let us introdue the following disrete L1(0, T ; BV(Ω))norm, de�ned for any funtion q pieewise onstant on primal ells by :

‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ∈Eint, σ=K|L

|qnL − qnK |. (II.36)We are now in position to state the following result.Theorem II.4.4Let Ω be an open bounded interval of R. We suppose that the ρ0, 1/ρ0 and u0 are bounded in L∞(Ω)and that the initial pressure (i.e. the pressure obtained from the initial density ρ0 through the equationof state) is bounded in BV(Ω).Let (M(m), δt(m))m∈N be a regular sequene of disretizations in the sense of De�nition II.4.2. Let
(ρ(m), p(m), u(m))m∈N be the orresponding sequene of solutions. We suppose that this sequene onvergesin Lp(Ω × (0, T ))4, for 1 ≤ p < ∞, to (ρ̄, p̄, ū, ū) ∈ L∞(Ω × (0, T ))4. We suppose in addition that bothsequenes (ρ(m))m∈N and (1/ρ(m))m∈N are uniformly bounded in L∞(Ω × (0, T )), and that (p(m))m∈N isuniformly bounded in the disrete L1(0, T ; BV(Ω)) norm de�ned by (II.36).Finally, we assume that the sequene of numerial di�usion oe�ients (ν(m))m∈N satis�es :

lim
m→+∞

ν(m) = 0, lim
m→+∞

(h(m))2

ν(m)
= 0.Then the limit (ρ̄, p̄, ū) satis�es the entropy ondition (II.5).Proof Let ϕ ∈ C∞

c

(
Ω×[0, T )

), ϕ ≥ 0. With the same notations for the interpolate of ϕ as in the preedingproofs, we multiply the kineti balane equation (II.30) by ϕnσ , and the elasti potential balane (II.15)by ϕnK , sum over the edges and ells respetively and over the time steps, to get :
∑

E∈Eint

T n+1
σ ϕnσ +

∑

K∈M

T n+1
K ϕnK = −

∑

E∈Eint

Rn+1
σ ϕnσ −

∑

K∈M

Rn+1
K ϕnK

−
∑

E∈Eint

Pn+1
σ ϕnσ, (II.37)where :

T n+1
σ =

1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ )2 − ρn−1

σ (unσ)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũ
n+1
σ ũn+1

σ′ + |Dσ| (∇p)n+1
σ un+1

σ ,

T n+1
K =

|K|
δt

[
ρn+1
K P(ρn+1

K ) − ρnKP(ρnK)
]

+
∑

σ∈E(K)

ρn+1
σ P(ρn+1

σ ) un+1
σ nK,σ

+pn+1
K

∑

σ∈E(K)

un+1
σ nK,σ,



86 Chapitre II. Consistent staggered shemes for ompressible �ows � Barotopi equations.and the quantities Rn+1
σ and Pn+1

σ are given by (the one-dimensional version of) Equation (II.31).As in the impliit ase, we refer to Chapter IV for the passage to the limit in the terms at the leftt-handside of (II.37). The term assoiated to Rn+1
σ is dealt with as in the impliit ase, and Rn+1

K is non-negative.Hene, the essential additional di�ulty lies in the ontrol of the additional remainder term involvingthe pressure gradients, i.e. the last term of (II.37). We �rst give the main steps of this bound in thesemi-disrete setting. In this formalism, this remainder term reads in the kineti energy balane :
Pn+1 =

δt

ρn
[
|∇pn+1|2 − |∇p̃n+1|2

]
,So multiplying Pn+1, as above, by an interpolate of ϕ(·, tn), denoted by ϕn, and integrating with respetto spae and time, we get :

Pkin =

N−1∑

n=0

δt

∫

Ω

Pn+1 ϕn dx =

N−1∑

n=0

δt

∫

Ω

δt

ρn

[
|∇pn+1|2 − |∇p̃n+1|2

]
ϕn dx.On the other hand, the pressure renormalization step reads, at step n+ 1 :

div
( 1

ρn
∇p̃n+1

)
= div

( 1

(ρn−1ρn)1/2
∇p̃n

)
.Multiplying by 2δt p̃n+1ϕn and integrating over spae and time, we get :

2δt

N−1∑

n=0

δt

∫

Ω

[ 1

(ρn)1/2
∇p̃n+1 − 1

(ρn−1)1/2
∇p̃n

]
· 1

(ρn)1/2
∇(p̃n+1ϕn) = 0.Developping the last gradient term and using the identity 2 (a− b, a) = (a, a)+ (a− b, a− b)− (b, b), validfor any inner produt (·, ·), we get Pren + Rren ≤ 0 with :

Pren =

N−1∑

n=0

δt

∫

Ω

[ δt
ρn

|∇p̃n+1|2 − δt

ρn−1
|∇p̃n|2

]
ϕn dx,

Rren = 2

N−1∑

n=0

δt

∫

Ω

[ δt
ρn

∇p̃n+1 − δt

(ρn−1ρn)1/2
∇p̃n

]
· ∇ϕn p̃n+1.The term Rren is bounded as follows :

|Rren| ≤ Cϕ ‖1

ρ
‖
L∞

‖p‖L∞ ‖∇p‖L1 δt,and thus tends to zero as δt (with, at the disrete level, the L1 norm of the pressure replaed by its BVnorm). On the other hand, we get :
Pkin + Pren = δt

N−1∑

n=0

δt

∫

Ω

[ 1

ρn
|∇pn+1|2 − 1

ρn−1
|∇pn|2

]
ϕn dx.By a disrete integration by parts with respet with the time, we get :

Pkin + Pren = δt2
∫

Ω

1

ρ−1
|∇p0|2 ϕ0 dx − δt

N−1∑

n=0

δt

∫

Ω

1

ρn
|∇pn+1|2(ϕn+1 − ϕn) dx.Thanks to the regularity of ϕ, we have :

Pkin + Pren ≤ Cϕ ‖1

ρ
‖
L∞

δt2
[∫

Ω

|∇p0|2 dx +

N−1∑

n=0

δt

∫

Ω

|∇pn+1|2 dx
]
,



II.4. Pressure orretion sheme 87and, in the fully disrete setting, we will onlude that this term tend to zero by invoking the inverseinequality ‖∇p‖L∞ ≤ C ‖p‖L∞/h, with C only depending on the regularity of the mesh, whih yields :
Pkin + Pren ≤ Cϕ ‖1

ρ
‖
L∞

‖p‖L∞

[
‖p0‖BV(Ω) + ‖p‖T ,x,BV

] δt2h .So, �nally, we have Pkin ≥ Pkin +Pren +Rren and we have proved that, when the time step tends to zero,the sum at the right-hand side of this relation tends to zero, whih is the result we are seeking.Let us now undertake this program in the disrete setting. We multiply the pressure renormalizationrelation (II.27a) by p̃n+1
K ϕnK , whih yields :

∀K ∈ M, p̃n+1
K ϕnK

∑

σ∈E(K), σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ ρnσ)

1/2
(pnK − pnL)

]
= 0.Summing over the ells and reordering the sums, we get :

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ ρnσ)

1/2
(pnK − pnL)

] [
p̃n+1
K ϕnK − p̃n+1

L ϕnL
]

= 0.Let us now split the di�erene p̃n+1
K ϕnK−p̃n+1

L ϕnL using the identity 2(ab−cd) = (a−c)(b+d)+(a+c)(b−d).Multiplying by δt, we get Pn+1
ren +Rn+1

ren,1 +Rn+1
ren,2 = 0 with :

Pn+1
ren = δt

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

(ρnσ)
1/2

(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ )1/2

(pnK − pnL)
]

1

(ρnσ)
1/2

[
p̃n+1
K − p̃n+1

L

]
ϕnσ,

Rn+1
ren,1 = δt

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ ρnσ)

1/2
(pnK − pnL)

]
p̃n+1
σ

[
ϕnK − ϕnL

]
,

Rn+1
ren,2 = δt

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L ) − 1

(ρn−1
σ ρnσ)

1/2
(pnK − pnL)

]
p̃n+1
σ

[
ϕ̃nσ − ϕnσ

]
.with, for σ = K|L, ϕ̃nσ = (ϕnK + ϕnL)/2 and p̃n+1

σ = (p̃n+1
K + p̃n+1

L )/2. Thanks to the regularity of ϕ, weobtain :
N−1∑

n=0

δt
[
|Rn+1

ren,1| + |Rn+1
ren,2|

]
≤ Cϕ δt ‖

1

ρ
‖
L∞

‖p‖L∞ ‖p‖T ,x,BV .Using the identity 2 (a− b) a = a2 + (a− b)2 − b2, we get for Pn+1
ren :

Pn+1
ren ≥ δt

∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(p̃n+1
K − p̃n+1

L )2 − 1

ρn−1
σ

(pnK − pnL)2
]
ϕnσ.Let us reall the expression of Pn+1

σ :
Pn+1
σ =

δt hσ
ρnσ

[(
(∇p)n+1

σ

)2 −
(
(∇p̃)n+1

σ

)2]
=

δt

ρnσ hσ

[
(pn+1
K − pn+1

L )2 − (p̃n+1
K − p̃n+1

L )2
]
.De�ning Pn+1 =

∑
σ∈Eint

Pn+1
σ ϕnσ, summing with Pn+1

ren and integrating with respet to the time, weobtain :
N−1∑

n=0

δt
[
Pn+1 + Pn+1

ren

]
≥
N−1∑

n=0

δt2
∑

σ∈Eint, σ=K|L

1

hσ

[ 1

ρnσ
(pn+1
K − pn+1

L )2 − 1

ρn−1
σ

(pnK − pnL)2
]
ϕnσ .
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N−1∑

n=0

δt
[
Pn+1 + Pn+1

ren

]
≥ −δt2

∑

σ∈Eint, σ=K|L

1

ρ−1
σ hσ

(p0
K − p0

L)2 ϕ0
σ

−
N−1∑

n=0

δt2
∑

σ∈Eint, σ=K|L

1

ρnσ hσ
(pn+1
K − pn+1

L )2
[
ϕn+1
σ − ϕnσ

]
.Using the fat that, for 0 ≤ n ≤ N and σ = K|L ∈ Eint, (pnK − pnL)2 ≤ ‖p‖L∞ |pnK − pnL|, we get, thanksto the regularity of ϕ :

N−1∑

n=0

δt
[
Pn+1 + Pn+1

ren

]
≥ −Cϕ

δt2h ‖p‖L∞

[
‖p0‖BV (Ω) + ‖p‖T ,x,BV

]
,whih is the desired estimate. �



ChapitreIII An unonditionally stablepressure orretion sheme forNavier-Stokes equations

I
n this paper we present a pressure orretion sheme whih is an exten-sion to the full ompressible Navier-Stokes equations of a sheme whihwas reently introdued for the ompressible barotropi Navier-Stokesequations [20℄ and for the drift-�ux model [26℄ . The spae disretization isstaggered, using either the Marker-And Cell (MAC) sheme or a nononforminglow-order �nite element approximation ; general quandrangular or triangularmeshes may thus be onsidered. The pressure orretion sheme is shown topreserve the stability properties of the ontinuous problem, irrespetively of thespae and time steps. To ensure the positivity of the energy, a key ingredientis to ouple the mass and energy balane in the projetion step. The existeneof a solution to eah step of the sheme is proven.
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III.1 IntrodutionThe main objet of this paper is to study the behaviour of a pressure orretion sheme for the fullompressible Navier-Stokes equations, with a low order �nite element- �nite volume disretization orwith the MAC sheme. In partiular, we wish to design a sheme for whih we are able to prove theexistene of a solution at eah step of the sheme, and suh that the approximate density and internalenergy thus obtained are non-negative and the approximate total energy is ontroled. Let us onsider theompressible Navier-Stokes equations, whih may be written as :
∂tρ+ div(ρu) = 0, (III.1a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (III.1b)
∂t(ρE) + div(ρE u) + div(pu) + div(q) = div(τ (u) · u), (III.1)
E =

1

2
|u|2 + e, (III.1d)

ρ = ℘(p, e). (III.1e)where t stands for the time, ρ, u, p, E and e are the density, veloity, pressure, total energy and internalenergy of the �ow, τ (u) stands for the shear stress tensor, whih satis�es
τ (u) : u ≥ 0, ∀u ∈ R

d, (III.2)
q stands for the heat di�usion �ux, and the funtion ℘ is the equation of state (EOS). The problem issupposed to be posed over Ω × (0, T ), where Ω is an open bounded onneted subset of Rd, d ≤ 3 and
(0, T ) is a �nite time interval. This system must be supplemented by suitable boundary onditions, initialonditions and losure relations. For the sake of simpliity, we shall assume that u is presribed to zero onthe whole boundary ∂Ω, and that the system is adiabati, i.e. ∇q ·n = 0 on ∂Ω. The initial onditionsfor ρ, e are assumed to be positive ; �nally, the losure relations for τ (u) and for q, are given by :

τ (u) = µ(∇u + ∇
tu) − 2µ

3
divu I, q = −λ∇e, (III.3)where λ and µ are two positive parameters, possibly depending on x. In the sequel, we shall assume λ = 1for the sake of simpliity. Let us suppose, again for the sake of simpliity, that u is presribed to zero onthe whole boundary ∂Ω, and that the system is adiabati, i.e. ∇q · n = 0 on ∂Ω.Replaing the total energy E by its expression (III.1d) in the total energy equation (III.1), we obtain :

∂t(ρe) + div(ρeu) + p divu + div(q) +
1

2
∂t(ρ |u|2) +

1

2
div(ρ |u|2 u) + ∇p · u = div(τ (u).u). (III.4)Noting that we have :

1
2∂t(ρ |u|2) + 1

2div(ρ |u|2 u) = |u|2

2 [∂t(ρ) + div(ρu)] + ρu · ∂t(u) + ρ |u|2div(u)

= [ρ∂t(u) + ∂t(ρ)u + div(ρu)u + ρdiv(u)u] · u

= [∂t(ρu) + div(ρu ⊗ u)] · u



92 Chapitre III. An unonditionally stable pressure orretion sheme for Navier-Stokes equationswe get from the total energy equation (III.4) and from the momentum balane equation (III.1b) :
∂t(ρe) + div(ρeu) −△e+ p div(u) = τ (u) : ∇u. (III.5)Formally, taking the inner produt of (III.1b) with u and integrating over Ω, integrating (III.5) over Ω,and summing both relations yields the stability estimate :

d

dt

∫

Ω

[1
2
ρ |u|2 + ρe

]
dx ≤ 0. (III.6)Sine we assume the initial ondition for ρ to be positive, the mass balane (III.1a) formally implies thatthe density ρ remains positive.We assume that the equation of state (III.1e) is suh that there exists a funtion f : R2 → R suh that

p = f(ρ, e) with f(·, 0) = 0 and f(0, ·) = 0, whih we prolong by ontinuity to :
p = f(ρ, e) with f(ρ, e) = 0 ∀ρ ≤ 0 or e ≤ 0. (III.7)Equation (III.5) then implies (thanks to (III.2)) that the internal energy e remains positive (again at leastformally), and so (III.6) yields a ontrol on the unknown u. Mimiking this omputation at the disretelevel neessitates to hek some arguments, among them :

(i) a disrete ounterpart to the relation :
∫

Ω

[
∂t(ρu) + div(ρu ⊗ u)

]
· u dx =

d

dt

∫

Ω

1

2
ρ |u|2 dx.

(ii) the equality of the integral of the dissipation term at the right-hand side of the disrete ounterpartof (III.5) and the (disrete) L2 inner produt between the veloity and the di�usion term in thedisrete momentum balane equation (III.13).
(iii) the non-negativity of the right-hand side of (III.5) in order, to preserve the positivity of theinternal energy.The point (i) is extensively disussed in [25℄ (see also [38℄), and will not be treated here.III.2 Meshes and unknownsLet M be a disretization mesh of the domain Ω onsisting of disretization ells whih are either onvexquadrilaterals (d = 2) or hexahedra (d = 3), or simplies. If the shape of Ω allows, we whall onsiderretangular ells (d = 2) or retangular parallelepipedi ells (d = 3). By E and E(K) we denote theset of all edges σ of the mesh and of the element K ∈ M respetively. The set of edges inluded in theboundary of Ω is denoted by Eext and the set of internal edges (i.e. E \ Eext) is denoted by Eint. Themesh M is supposed to be regular in the usual sense of the �nite selement literature (e.g. [9℄), and, inpartiular, it satis�es the following properties : .2

Ω̄ =
⋃
K∈M K̄for K, L ∈ M, the intersetion K̄ ∩ L̄ is either redued to the empty set, or to a vertex if d = 2and a segment if d = 3, or else it is (the losure of) a ommon (d− 1)-edge of K and L, denoted by

K|L.



III.2. Meshes and unknowns 93For eah internal edge of the mesh σ = K|L, nKL stands for the normal vetor to σ, oriented from K to
L. The outward normal vetor to a fae σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denoteby |K| the measure of K and by |σ| the (d− 1)-dimensional measure of the fae σ. For any K ∈ M and
σ ∈ E(K), we denote by dK,σ the Eulidean distane between the enter xK of the mesh and the edge
σ. For any σ ∈ E , we de�ne dσ = dK,σ + dL,σ, if σ ∈ Eint and dσ = dK,σ if σ ∈ Eext. For any σ and σ′elements of E , we denote by dσσ′ the Eulidean distane between σ and σ′ .The spae disretization is staggered, using either the Marker-And Cell (MAC) sheme [37, 36℄, or non-onforming low-order �nite element approximations, namely the Rannaher and Turek (RT) element [65℄for quadrilateral or hexahedri meshes, or the Crouzeix-Raviart (CR) element [11℄ for simpliial meshes.For all disretizations (MAC, RT and CR), the degrees of freedom for the pressure, the density and theinternal energy are assoiated to the ells of the mesh M. The degrees of freedom are therefore :

{
pK , ρK , eK , K ∈ M

}
.The approximate density, pressure and internal energy therefore belong to the spae Lh of pieewiseonstant funtions :

Lh =
{
qh ∈ L2(Ω) : qh|K = onstant, ∀K ∈ M

}
.For 1 ≤ i ≤ d, the degrees of freedom for the ith omponent of the veloity are assoiated to a subset of

E , denoted by E(i) ⊂ E , and are denoted by
{
uσ,i, σ ∈ E(i)

}
.The de�nition of the sets E(i) depends on the hoie of the disretization :� MAC disretization. In this ase the set E(i) is the set of edges that are orthogonal to the i-thbasis vetor e(i).� RT and CR disretization. In this ase the set E(i) is the whole set Eint, and the degrees offreedom uσ,i are the omponents of the veloities with respet to the �nite element shape funtions.More preisely :+ The referene element K̂ for the Rannaher-Turek rotated bilinear element is the unit

d-ube (with edges parallel to the oordinate axes). The disrete funtional spae on K̂is Q̃1(K̂)d, where Q̃1(K̂) is de�ned as follows :
Q̃1(K̂) = span

{
1, (xi)i=1,...,d, (x2

i − x2
i+1)i=1,...,d−1

}
.+ The referene element for the Crouzeix-Raviart is the unit d-simplex and the disretefuntional spae is the spae P1 of a�ne polynomials.The mapping from the referene element to the atual one is, for the Rannaher-Turek element,the standard Q1 mapping and, for the Crouzeix-Raviart element, the standard a�ne mapping. Thedisrete spae Wh is then de�ned as follows :

Wh = {u ∈ (L2(Ω))d : u|K ∈W (K)d, ∀K ∈ M,
∫

σ

u|K dγ =

∫

σ

u|L dγ ∀σ = K|L ∈ Eint and ∫
σ

udγ = 0, ∀σ ∈ Eext }.



94 Chapitre III. An unonditionally stable pressure orretion sheme for Navier-Stokes equationswhere W (K) is the spae of funtions on K generated by the referene element and the abovedesribed mapping. We de�ne uσ =
∑d
i=1 uσ,i e

(i) where e(i) is the ith vetor of the anonialbasis of Rd.In order to write a disrete momentum onservation, we need to introdue a dual mesh. For any K ∈ Mand any fae σ ∈ E(K), let DK,σ be the one with basis σ and with vertex the mass enter of K in boththe RT and CR ases and let DK,σ be the retangle of basis σ and of measure |DK,σ| equal to half themeasure of K in the MAC ase. The volume DK,σ is referred to as the half-diamond ell assoiated to Kand σ. For σ ∈ Eint, σ = K|L, we now de�ne the diamond ell Dσ assoiated to σ by Dσ = DK,σ ∪DL,σ ;for an external edge σ ∈ Eext ∩ E(K), Dσ is set idential to DK,σ. We denote by ε = Dσ|Dσ′ the faeseparating two diamond ells Dσ and Dσ′ (see Figure III.1).
Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=
K
|L

ε = D
σ |D

σ ′

Fig. III.1 � Rannaher-Turek and Crouzeix-Raviart elements.
III.3 The time-impliit numerial shemeIII.3.1 Semi-disrete algorithmLet us onsider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), whih, for the sake ofsimpliity, we suppose uniform. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the onstant time step. In



III.3. The time-impliit numerial sheme 95a time semi-disrete setting, the impliit-in-time numerial sheme reads.
ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0 (III.8a)

ρn+1 un+1 − ρn un

δt
+ div(ρn+1 un+1 ⊗ un+1) + ∇pn+1 − divτ(un+1) = 0 (III.8b)

ρn+1 en+1 − ρn en

δt
+ div(ρn+1 en+1 un+1) −△en+1 + pn+1 div(un+1) = τ (un+1) : ∇un+1 (III.8)

pn+1 = ℘(en+1, ρn+1). (III.8d)
III.3.2 The fully disrete algorithm and its �rst propertiesLet us now give the spae disretization of the various steps of the algorithm (III.8).III.3.2.a Mass balaneThe mass balane equation (III.8a) is always disretized by an upwind �nite-volume tehnique in orderto ensure the positivity of the density ; more preisely, the disretized mass balane reads :

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (III.9)where Fn+1

K,σ stands for the numerial mass �ux aross σ outward K. On the internal edges, the numerial�ux is de�ned by :
∀σ ∈ Eint, σ = K|L, Fn+1

K,σ = |σ| ρ̃n+1
σ un+1

σ · nK,σ, (III.10)where un+1
σ ·nK,σ is the approximation of the normal veloity to the fae σ outward K, and ρ̃n+1

σ is theupwind density at the edge σ = K|L, that is :
ρ̃n+1
σ =

∣∣∣∣∣∣

ρn+1
K if un+1

σ · nK,σ ≥ 0,

ρn+1
L otherwise . (III.11)Sine u is assumed to be equal to 0 on the boundary, we impose :

∀σ ∈ Eext, σ = K|L, Fn+1
K,σ = 0, (III.12)As mentioned previously, with suh an upwind disretization, we get the positivity of the density :Lemma III.3.1 (Positivity of the density)(see e.g. [27, Lemma 2.1℄) Let (un+1

σ )σinEint be a given disrete veloity �eld, let (ρnK)K∈M be a disretedensity �eld for a given n ∈ N. Assume that ρnK ≥ 0 ∀K ∈ M. If a family (ρn+1
K )K∈M satis�es (III.9)�(III.11), then ρn+1

K ≥ 0, ∀K ∈ M.



96 Chapitre III. An unonditionally stable pressure orretion sheme for Navier-Stokes equationsIII.3.2.b Momentum balaneBeause of the hoie of a staggered disretization, the momentum equation is disretized on a dualmesh, the dual ells of whih are related to the faes where the veloity unknowns are loated. Onretangular grids, it is approximated by the MAC sheme. Otherwise we use a ombined �nite volume ��nite element method with low-degree �nite elements for the di�usive terms, Crouzeix-Raviart elementfor simpliial meshes, Rannaher-Turek element [65℄ for quadrangles and hexahedra, and with a �nitevolume tehnique on the dual mesh for the time derivative term and onvetion term. The fully disretizedmomentum balane equations read, for 1 ≤ i ≤ d, ∀σ ∈ E(i) :
|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε∈Ē(Dσ)

Fn+1
σ,ε un+1

ε,i + |Dσ| (∇pn+1)(i)σ − |Dσ| (divτ(un+1))(i)σ = 0, (III.13)where ρn+1
σ (resp. ρnσ) stands for an approximation of the density on the edge σ at time tn+1 (resp. tn ),

Fn+1
σ,ε is the disrete mass �ux through the dual edge ε outward Dσ, un+1

ε,i stands for an approximationof un+1
i on ε, (divτ(un+1))

(i)
σ is an approximation of the i-th omponent of the visous term assoiatedto σ, and (∇pn+1)

(i)
σ is the i-th omponent of the disrete gradient of the pressure p at the fae σ. Letus give some details on these approximations.Disrete dual densities and mass �uxes The approximate densities ρn+1

σ and disrete mass �uxeson the dual edges are hosen suh the following disrete mass balane over the dual ells is satis�ed :
∀σ ∈ Eint,

|Dσ|
δt

(ρn+1
σ − ρnσ) +

∑

ε∈E(Dσ)

Fn+1
σ,ε = 0, (III.14)This relationship may be obtained from the primal mass balane (III.9) by de�ning ρnσ as a weightedaverage with respet to the primal unknowns :

∀σ ∈ Eint, σ = K|L, |Dσ| ρnσ = |DK,σ| ρnK + |DL,σ| ρnL, (III.15)hoosing for the disrete �ux Fn+1
σ,ε through the dual fae ε of the half dual ell Dσ the value of the �uxthrough ε of a onstant divergene lifting of the mass �uxes (|σ|uσ · nσρσ)σ∈E through the faes of theprimal ell K ; for a detailed onstrution of this approximation, we refer to [25, 1℄ in the �nite elementase in 2D, and to [38℄ in the MAC ase. The additional unknowns un+1

ε,i may be hosen entered orupwind. In the entered ase, for an internal side ε = Dσ|Dσ′ , we thus get un+1
ε,i = (un+1

σ,i +un+1
σ′,i )/2 while,in the upwind ase, we have un+1

ε,i = un+1
σ,i if Fn+1

σ,ε ≥ 0 and un+1
ε,i = un+1

σ′,i otherwise.Beause the veloity unknowns are loated on the edges, the dual disrete balane equation (III.14) isruial in order to obtain the following stability result, whih is a disrete equivalent of the kineti energytheorem :
d∑

i=1

∑

σ∈E
(i)
int

[ |Dσ|
δt

(ρnσ u
n+1
σ,i − ρnσ u

n
σ,i) +

∑

ε∈E(Dσ)

Fn+1
σ,ε un+1

ε,i

]
un+1
σ,i ≥

1

2

d∑

i=1

∑

σ∈E
(i)
int

|Dσ|
δt

[
ρn+1
σ |un+1

σ,i |2 − ρnσ |unσ,i|2
]
.

(III.16)We refer to [27℄ and [38℄ for the proof of this result in the �nite element ase and MAC ase respetively.



III.3. The time-impliit numerial sheme 97Visous term The MAC disretization of the dissipation term (
τ (un+1) : ∇un+1

)
K

assoiated to Kis detailed in the appendix (see formula (III.44), see also [2℄), and the following property is satis�ed :
(
τ (un+1) : ∇un+1

)
K

≥ 0. (III.17)It is lear that (III.17) also holds with a low order �nite element disretization. Multiplying the approxi-mation of the visous term by the orresponding unknown of the veloity un+1
σ,i and summing over theedges and the omponents, we obtain :

d∑

i=1

∑

σ∈E(i)

|Dσ| (divτ (un+1))(i)σ un+1
σ,i = −

∑

K∈M

|K|
(
τ (un+1) : ∇un+1

)
K
. (III.18)This equality is the analogue of ∫

Ω

divτ (u) · u = −
∫

Ω

τ (u) : ∇u. For the proof of the property (III.17)and the equality (III.18), we refer to [2℄.Pressure gradient term The �nite element disretization for the pressure gradient term at the internalfae σ = K|L reads :
|Dσ|(∇pn+1)(i)σ = −

∑

K∈M

∫

K

pn+1 divϕ(i)
σ dx, i = 1, . . . , d.where ϕ

(i)
σ = ϕσ e(i) and where ϕσ is the salar �nite element basis funtion (for the CR �nite element,it is a�ne on eah element, equal to 1 at the enter of σ and equal to 0 at the enter of all other edges).Sine the pressure is pieewise onstant, the transposed of the disrete gradient operator takes the formof the �nite volume standard disretization of the divergene based on the �nite element mesh, whihoinides with the MAC disretization of the divergene ; indeed, the previous relation an be rewrittenas follows :
|Dσ|(∇pn+1)(i)σ = −

∑

K∈M

∫

K

pn+1 divϕ(i)
σ dx = |σ| (pn+1

L − pn+1
K ) nK,σ · e(i). (III.19)Multiplying this equality by un+1

σ,i and summing over the edges and the omponents, we obtain :
d∑

i=1

∑

σ∈E(i)

|Dσ| (∇pn+1)(i)σ un+1
σ,i

= −
∑

K∈M

pn+1
K

∑

σ∈E(K)

|σ| un+1
σ · nK,σ = −

∑

K∈M

|K|pn+1
K (divun+1)K , (III.20)where we have introdued the disrete divergene

(divun+1)K =
1

|K|
∑

σ∈E(K)

|σ| un+1
σ · nK,σ.This equality is also valid in the ase of the MAC disretization ; it is the disrete analogue to ∫

Ω

∇p ·u =

−
∫

Ω

p div(u). The �nite element disretization for this term reads :
|Dσ|(divτ(un+1))(i)σ = −

∑

K∈M

∫

K

τ(un+1) : ∇ϕ(i)
σ dx.



98 Chapitre III. An unonditionally stable pressure orretion sheme for Navier-Stokes equationsIII.3.2. Energy balaneThe internal energy equation (III.5) is disretized in a similar way to the momentum equation. Theresulting disrete internal energy equation reads :
∀K ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ

+
∑

σ∈E(K)
σ=K|L

|σ|e
n+1
K − en+1

L

dσ
+ |K|pn+1

K (div(un+1))K = |K|
(
τ (un+1) : ∇un+1

)
K
, (III.21)where en+1

σ is the internal energy at the edge σ = K|L, omputed with the upwind tehnique :
en+1
σ =

∣∣∣∣∣∣

en+1
K , if un+1

σ · nK,σ ≥ 0,

en+1
L , otherwise. (III.22)Again, this upwind hoie allows to to ensure the positivity of the internal energy, as we shall provethanks to the following lemma, whih states the stability of an appropriate disretization of a onvetionoperator ; it gives, in partiular, the onservation of the kineti energy (III.16) whih we mentioned earlier(see also [20℄).Lemma III.3.2[27, Lemma 2.2℄ Let (ρK)K∈M and (ρ∗K)K∈M be two families of real numbers satisfying the following setof equations :

∀K ∈ M,
|K|
δt

(ρK − ρ∗K) +
∑

σ=K|L

FK,σ = 0where FK,σ is a quantity assoiated to the edge σ and to the ontrol volume K. We suppose that, for anyinternal σ = K|L, FK,σ = −FL,σ. Let (zK)K∈M and (z∗K)K∈M be two families of real numbers. Thenthe following stability property holds :
−
∑

K∈M

y−K

[ |K|
δt

(ρKzK − ρ∗Kz
∗
K) +

∑

σ=K|L

(F+
K,σzK − F−

K,σzL)
]
≥

1

2

∑

K∈M

|K|
δt

[
ρK(z−K)2 − ρ∗K((z∗K)−)2

]
.Let us now state the positivity result. Note that this result together with the positivity of the density(Lemma (III.3.1)) and the stability inequality (III.16) are a priori result sine we have not yet shown theexistene of a solution to the sheme (III.9)�(III.19), (III.21)�(III.22). In fat, these a priori estimatesare used to prove the existene of a solution in Setion III.3.2.e below.Lemma III.3.3 (Positivity of the internal energy)Under assumption (III.7) and (III.2), let n ∈ N, let (ρnK ,u

n
K , e

n
K)K∈M ∈ RcardM × (RcardE)d × RcardM)and assume that enK ≥ 0 ∀K ∈ M ; let (ρn+1

K ,un+1
K , en+1

K )K∈M satisfy (III.9)�(III.19), (III.21)�(III.22),then en+1
K ≥ 0 ∀K ∈ M.



III.3. The time-impliit numerial sheme 99Proof For n ∈ N we assume that enK ≥ 0 for all K ∈ M. Multiplying the disrete internal energyequation (III.21) by (−(en+1
K )−), using the fat that en+1

σ is given by the upwind hoie (III.22) andsumming over the mesh, we obtain :
−
∑

K∈M

(en+1
K )−


 |K|
δt
ρn+1
K en+1

K − ρnKe
n
K +

∑

σ=K|L

((Fn+1
K,σ )+en+1

K − (Fn+1
K,σ )−en+1

L )




︸ ︷︷ ︸
E1

−
∑

K∈M

∑

σ∈E(K)

|σ|e
n+1
K − en+1

L

dσ
(en+1
K )−

︸ ︷︷ ︸
E2

−
∑

K∈M

|K|pn+1
K (divun+1)K(en+1

K )−

︸ ︷︷ ︸
E3

= −
∑

K∈M

|K|
(
τ (un+1) : ∇un+1

)
K

(en+1
K )−

︸ ︷︷ ︸
E4

.By virtue of Lemma III.3.2, the �rst term E1 an be estimated as follows :
E1 ≥ 1

2

∑

K∈M

|K|
δt

[
ρn+1
K ((en+1

K )−)2 − ρnK((enK)−)2
]

=
1

2

∑

K∈M

|K|
δt
ρn+1
K ((en+1

K )−)2.Thanks to (III.7), we have E3 = 0 and thanks to (III.17), we have E4 ≤ 0. Reordering the sum in theterm E2, we obtain :
E2 = −

∑

σ=K|L

|σ|
dσ

[en+1
K − en+1

L ][(en+1
K )− − (en+1

L )−].Sine the funtion x 7→ x− is non-inreasing, we obtain that E2 ≥ 0 ; Gathering all the terms, we obtain :
0 ≤ 1

2

∑

K∈M

|K|
δt
ρn+1
K ((en+1

K )−)2 ≤ 0whih shows that (en+1
K )− = 0, for all K ∈ M ; this onludes the proof. �III.3.2.d Disrete EOSFinally, the equation of state (III.1e) is easily disretized by

ρnK = ℘(pnK , e
n
K), ∀K ∈ M, ∀n ∈ N. (III.23)III.3.2.e Existene of a solution to the fully disrete shemeWe reall the following theorem, whih is a onsequene of the topologial degree theory, see e.g. [13℄, andwhih is a very powerful tool for the proof of existene of non linear systems arising from the disretizationof non linear partial di�erential equations (see [16℄ for other examples of its use).Theorem III.3.4 (Appliation of the topologial degree, finite dimensional ase)Let V be a �nite dimensional vetor spae on R, ‖.‖ a norm on V , let f be a ontinuous funtion from Vto V and let R > 0. Let us assume that there exists a ontinuous funtion F : V × [0, 1] → V satisfying :

(i) F (., 1) = f ,
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(ii) ∀α ∈ [0, 1], if v ∈ V is suh that F (v, α) = 0 then v ∈ BR = {v ∈ V ; ‖v‖ < R},
(iii) the topologial degree of F (., 0) with respet to 0 and BR is equal to d0 6= 0.Then the topologial degree of F (., 1) with respet to 0 and to BR is also equal to d0 6= 0 ; onsequently,there exists at least a solution v ∈ BR suh that f(v) = 0.Theorem III.3.5 (Existene of a solution to the impliit sheme)Under assumption (III.7) and (III.2), assume that ρ0

K > 0 and e0K > 0, for all K ∈ M. There exists asolution (ρnK ,u
n
K , e

n
K)K∈M, n≤N to the impliit sheme (III.9)�(III.19), (III.21)�(III.22) whih satis�es

ρnK > 0, enK > 0 for all K ∈ M and n ≤ N , and suh that the following inequality holds for all n ≤ N :
∑

K∈M

|K| ρnKenK +
1

2

∑

σ∈Eint

|Dσ| ρnσ |unσ|2 ≤
∑

K∈M

|K| ρ0
Ke

0
K +

1

2

∑

σ∈Eint

|Dσ| ρ0
σ |u0

σ|2. (III.24)ProofLet us �rst show that under the assumptions of the theorem, if the family (ρnK ,u
n
K , e

n
K)K∈M, n≤N satis�es(III.9)�(III.19), (III.21)�(III.22), then the inequality (III.24) holds. Multiplying the disrete momentumbalane equation (III.13) by the orresponding unknown of the veloity un+1

σ,i and summing over theedges and the omponents i, by virtue of the stability of the disrete advetion operator (III.16) and theequality (III.20) and (III.18) we obtain :
1

2

∑

σ∈Eint

|Dσ|
δt

[
ρn+1
σ |un+1

σ |2 − ρnσ |unσ |2
]
−
∑

K∈M

|K|pn+1
K (div(un+1))K

+
∑

K∈M

|K|
(
τ (un+1) : ∇un+1

)
K

≤ 0. (III.25)Noting that, by onservativity, FK,σ = −FL,σ for σ = K|L, and that
∑

K∈M

∑

σ∈E(K)
σ=K|L

|σ|e
n+1
K − en+1

L

dσ
= 0,and summing (III.25) with the sum of the disrete internal energy equation (III.21) overK ∈ M, we get :

∑

K∈M

|K|
[
ρn+1
K en+1

K − ρnK enK
]
+

1

2

∑

σ∈Eint

|Dσ|
[
ρn+1
σ |un+1

σ |2 − ̺nσ |unσ|2
]
≤ 0,whih onludes the proof of (III.24).Let us now show the existene of a solution to the sheme (III.9)�(III.19), (III.21)�(III.23). For α ∈ [0, 1]and a �xed n ∈ N, we onsider the following disrete set of equations, for K ∈ M and EinEint. For

α = 0, it is an invertible linear system, and for α = 1, it is the fully disrete sheme (III.9)�(III.19),(III.21)�(III.23).
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|K|
δt

(ρn+1
K − ρnK) + α

∑

σ∈E(K)

Fn+1
K,σ = 0,

|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) + α




∑

ε∈Ē(Dσ)

Fn+1
σ,ε un+1

ε,i .+ |Dσ| (∇pn+1)(i)σ − |Dσ| (divτ(un+1))(i)σ


 = 0,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) + α



∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ +

∑

σ∈E(K)
σ=K|L

|σ|e
n+1
K − en+1

L

dσ
+ |K|pn+1

K (div(un+1))K




= α|K|
(
τ (un+1) : ∇un+1

)
K
, ∀K ∈ M,

ρn+1
K = ℘(pn+1

K , en+1
K ).By the same analysis that we performed for the study of the sheme (III.9)�(III.19), (III.21)�(III.23), anyfamily (ρn+1

K )K∈M and (en+1
K )K∈M satisfying the above sheme is suh that ρn+1

K and en+1
K are positivefor all K. Moreover, the onservativity of the mass balane disretization yields that

∑

K∈M

|K|ρn+1
K =

∑

K∈M

|K|ρnKwhih yields an L∞ bound on the family (ρn+1
K )K∈M ; �nally, the above stability result (III.16) also holds ;we thus have an uniform ontrol over the families of real numbers (ρK)K∈M, (ρKeK)K∈M and vetors

(ρσuσ)σ∈Eint
. For α = 0, the system is linear and invertible with respet to these unknowns. We onludethanks to a topologial degree argument. �III.4 Pressure orretion shemeIII.4.1 Semi-disrete algorithmA pressure orretion numerial sheme is obtained by omplementing the sheme presented in the pree-ding setion by an inremental projetion method. Writing this algorithm in a semi-disrete time setting,this yields the following three steps :1 - solve for p̃n+1

div

(
1

ρn
∇p̃n+1

)
= div

(
1

√
ρn
√
ρn−1

∇pn

) (III.26)2 - Solve for ũn+1 :
ρn ũn+1 − ρn−1 un

δt
+ div(ρn un ⊗ ũn+1) + ∇p̃n+1 − divτ(ũn+1) = 0 (III.27)
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ρn

un+1 − ũn+1

δt
+ ∇(pn+1 − p̃n+1) = 0 (III.28a)

ρn+1 − ρn

δt
+ div(ρn+1 un+1) = 0 (III.28b)

ρn+1 en+1 − ρn en

δt
+ div(ρn+1 en+1 un+1) −△en+1 + pn+1 div(un+1) = τ (ũn+1) : ∇ũn+1 (III.28)

pn+1 = ℘(en+1, ρn+1). (III.28d)The �rst step is a renormalization of the pressure whih is used in the stability analysis.The seond step is a lassial semi-impliit solution of the momentum blane equation to obtain a pre-dited veloity.Finally the last step is an original nonlinear pressure orretion step, whih ouples the mass balaneequation (III.28b) with the internal energy balane equation (III.28). This oupling is important toensure the positivity of the energy : indeed, in the proof of Lemma aIII.3.3, we used the fat that thepressure vanishes in the term pn+1 div(un+1) when en+1 is negative.III.4.2 Disrete algorithmThe spae disretization is again staggered, using either the Marker�And�Cell (MAC) sheme, or non-onforming low-order �nite element approximations.The �nite element disretization for the pressure predition step at the internal fae σ = K|L reads :
∑

K∈M

∫

K

1

ρn
∇p̃n+1 · ∇ϕ(i)

σ dx =
∑

K∈M

∫

K

1
√
ρn
√
ρn−1

∇pn · ∇ϕ(i)
σ dxwhih oinides with the MAC disretization and may be rewritten as follows :

∀K ∈ M,
∑

σ=K|L

|σ|2
|Dσ|

1

ρnσ
(p̃n+1
K − p̃n+1

L ) =
∑

σ=K|L

|σ|2
|Dσ|

1√
ρnσ ρ

n−1
σ

(pnK − pnL) (III.29)The disretization of projetion equation (III.28a) is onsistent with that of the momentum balane(III.27) , i.e. we use a mass lumping tehnique for the unsteady term in both ases and a standard �niteelement formulation for the gradient of the pressure inrement in the �nite element ase :
∀σ ∈ Eint, for 1 ≤ i ≤ d,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) −
∑

K∈M

∫

K

(pn+1 − p̃n+1) ∇ · ϕ(i)
σ dx = 0,whih an be rewritten as follows :

∀σ ∈ Eint, σ = K|L, |Dσ|
δt

ρnσ (un+1
σ − ũn+1

σ )+ |σ|
[
(pn+1
L − p̃n+1

L ) − (pn+1
K − p̃n+1

K )
]
nKL = 0 (III.30)We may then write the general form of the fully disrete to the pressure orretion sheme :



III.4. Pressure orretion sheme 1031 - Renormalization step : ∀K ∈ M, ,
∑

σ=K|L

|σ|2
|Dσ|

1

ρnσ
(p̃n+1
K − p̃n+1

L ) =
∑

σ=K|L

|σ|2
|Dσ|

1√
ρnσ ρ

n−1
σ

(pnK − pnL) (III.31)2 - Veloity predition step : for 1 ≤ i ≤ d, and for any σ ∈ E(i)
int,

|Dσ|
δt

(ρnσũ
n+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i + |Dσ| (∇p̃n+1)(i)σ − |Dσ| (divτ(ũn+1))(i)σ = 0, (III.32)where Fnσ,ε is the dual edge mass �ux.3 - Projetion step :

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |σ|
[
(pn+1
L − p̃n+1

L ) − (pn+1
K − p̃n+1

K )
]
nKL = 0,for 1 ≤ i ≤ d and σ = K|L ∈ E(i)

int ,
(III.33a)

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, ∀K ∈ M, (III.33b)

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ −

∑

σ∈E(K),

σ=K|L

|σ|e
n+1
L − en+1

K

dσ

+|K|pn+1
K (div(un+1))K = |K|

(
τ (ũn+1) : ∇ũn+1

)
K
, ∀K ∈ M,

(III.33)
pn+1
K = ℘(en+1

K , ρn+1
K ), ∀K ∈ M, (III.33d)where Fn+1

K,σ is the primal edge mass �ux.III.4.3 Properties of the shemeTheorem III.4.1There exists a solution to the sheme (III.31)�(III.33d), whih satis�es ρnK > 0, enK > 0 for all K ∈ Mand n ∈ N, and suh that the following inequality holds :
∑

K∈M

|K| ρnKenK +
1

2

∑

σ∈Eint

|Dσ| ρn−1
σ |unσ|2 +

δt2

2
|pn|2ρn−1, M ≤

∑

K∈M

|K| ρ0
Ke

0
K +

1

2

∑

σ∈Eint

|Dσ| ρ−1
σ |u0

σ|2 +
δt2

2
|p0|2ρ−1, M,

(III.34)where
|q|2ρ, M =

∑

σ=K|L

1

ρσ

|σ|2
|Dσ|

(pL − pK)2.ProofThe positivity of the density ρn+1
K and the internal energy en+1

K and the existene of a solution areobtained by repeating arguments similar to those invoked in the impliit-in-time sheme. There remainsto prove that (III.34) holds.



104 Chapitre III. An unonditionally stable pressure orretion sheme for Navier-Stokes equationsMultiplying the disrete momentum balane equation (III.32) by the orresponding unknown of theveloity ũn+1
σ,i and summing and the omponents i and their assoiated edges, by virtue of the stabilityof the disrete advetion operator (III.16) and the equalities (III.20) and (III.18) we obtain :

1

2

∑

σ∈Eint

|Dσ|
δt

[
ρnσ |ũn+1

σ |2 − ρn−1
σ |unσ|2

]
−
∑

K∈M

|K|p̃n+1
K (div(ũn+1))K

+
∑

K∈M

|K|
(
τ (ũn+1) : ∇ũn+1

)
K

≤ 0.Summing the disrete internal energy equation (III.33) over the ells K ∈ M and with the previousrelation, we obtain :
∑

K∈M

|K|
δt

[
ρn+1
K en+1

K − ρnK enK
]
+

1

2

∑

σ∈Eint

|Dσ|
δt

[
ρnσ |ũn+1

σ |2 − ρn−1
σ |unσ|2

]

+
∑

K∈M

|K|pn+1
K (div(un+1))K −

∑

K∈M

|K|p̃n+1
K (div(ũn+1))K ≤ 0

(III.35)Reordering the �rst relation of the projetion step (III.33a) and multiplying by (ρnσ)
−1/2 we obtain, for

1 ≤ i ≤ d and σ = K|L ∈ E(i)
int :

|Dσ|
δt

√
ρnσ u

n+1
σ,i + |σ| 1√

ρnσ
(pn+1
L − pn+1

K )nKL =
|Dσ|
δt

√
ρnσ ũ

n+1
σ,i + |σ| 1√

ρnσ
(p̃n+1
L − p̃n+1

K )nKLSquaring the previous relation and multiplying by δt/2|Dσ| and summing over the edges and the om-ponent i, we obtain :
1

2

∑

σ∈Eint

|Dσ|
δt

[
ρnσ |un+1

σ |2 − ρnσ |ũn+1
σ |2

]
−
∑

K∈M

|K|pn+1
K (div(un+1))K

+
∑

K∈M

|K|p̃n+1
K (div(ũn+1))K +

δt

2

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(pn+1
L − pn+1

K )2

− δt

2

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(p̃n+1
L − p̃n+1

K )2 = 0Summing this last relation with (III.35) and multiplying by δt, we get :
∑

K∈M

|K|
[
ρn+1
K en+1

K − ρnK enK
]
+

1

2

∑

σ∈Eint

|Dσ|
[
ρnσ |un+1

σ |2 − ρn−1
σ |unσ |2

]

+
δt2

2

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(pn+1
L − pn+1

K )2

︸ ︷︷ ︸
|pn+1|2

ρn, M

−δt
2

2

∑

σ=K|L

1

ρnσ

|σ|2
|Dσ|

(p̃n+1
L − p̃n+1

K )2

︸ ︷︷ ︸
|p̃n+1|2

ρn, M

= 0Thanks to the renormalization step (III.31), we have :
|p̃n+1|2ρn, M ≤ |pn|2ρn−1, Mwhih onludes the proof. �



III.5. Appendix : the MAC disretization of the dissipation term 105III.5 Appendix : the MAC disretization of the dissipation termIII.5.1 The two-dimensional aseLet us �rst propose a disretization for the di�usion term −div(τ(u)) in the momentum equation (III.1b)..We begin with the x-omponent of the veloity, for whih we write a balane equation on Kx
i− 1

2 ,j
=

(xi−1, xi) × (yj− 1
2
, yj+ 1

2
) (see Figures III.2 and III.3 for the notations).

: Kx
i− 1

2 ,j

xi− 3
2

xi− 1
2

xi+ 1
2

xi−1 xi
yj− 3

2

yj− 1
2

yj

yj+ 1
2

yj+ 3
2

ux
i− 1

2 ,j
ux
i− 3

2 ,j
ux
i+ 1

2 ,j

ux
i− 1

2 ,j−1

ux
i− 1

2 ,j+1 : σxi,j: σx
i− 1

2 ,j+
1
2

hx
i− 1

2

hxi

hyj

hy
j+ 1

2

Fig. III.2 � Dual ell for the x-omponent of the veloityIntegrating the x omponent of the momentum balane equation over Kx
i− 1

2 ,j
, we get for the di�usionterm :

T̄ dif
i− 1

2 ,j
= −

[∫

Kx

i− 1
2

,j

div
[
τ (u)] dx

]
· e(x) = −

[∫

∂Kx

i− 1
2

,j

τ (u) ndγ
]
· e(x), (III.36)where e(x) stands for the �rst vetor of the anonial basis of R

2. We denote by σxi,j the right fae of
Kx
i− 1

2 ,j
, i.e. σxi,j = {xi} × (yj− 1

2
, yj+ 1

2
). Splitting the boundary integral in (III.36), the part of T̄ dif

i− 1
2 ,jassoiated to σxi,j , also referred to as the visous �ux through σxi,j , reads :

−
[∫

σx
i,j

τ (u) ndγ
]
· e(x) = −2

∫

σx
i,j

µ ∂xu
x dγ +

2

3

∫

σx
i,j

µ (∂xu
x + ∂yu

y) dγ,and the usual �nite di�erene tehnique yields the following approximation for this term :
− 4

3

∫

σx
i,j

µ ∂xu
x dγ +

2

3

∫

σx
i,j

µ ∂yu
y dγ

≈ −4

3
µi,j

hyj
hxi

(uxi+ 1
2 ,j

− uxi− 1
2 ,j

) +
2

3
µi,j

hyj
hyj

(uy
i,j+ 1

2

− u
y

i,j− 1
2

), (III.37)where µi,j is an approximation of the visosity at the fae σxi,j . Similarly, let σx
i− 1

2 ,j+
1
2

= (xi−1, xi)×{yj+ 1
2
}
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−
[∫

σx

i− 1
2

,j+ 1
2

τ (u) ndγ
]
· e(x) = −

∫

σx

i− 1
2

,j+ 1
2

µ (∂yu
x + ∂xu

y) dγ

≈ −µi− 1
2 ,j+

1
2

[hx
i− 1

2

hy
j+ 1

2

(uxi− 1
2 ,j+1 − uxi− 1

2 ,j
) +

hx
i− 1

2

hx
i− 1

2

(uy
i,j+ 1

2

− u
y

i−1,j+ 1
2

)
]
,where µi− 1

2 ,j+
1
2
stands for an approximation of the visosity at the edge σx

i− 1
2 ,j+

1
2

.Let us now multiply eah disrete equation for ux by the orresponding degree of freedom of a veloity�eld v (i.e. the balane over Kx
i− 1

2 ,j
by vx

i− 1
2 ,j

) and sum over i and j. The visous �ux at the fae σxi,jappears twie in the sum, one multiplied by vx
i− 1

2 ,j
and the seond one by −vx

i+ 1
2 ,j

, and the orrespondingterm reads :
T dis
i,j (u,v) = µi,j

[
−4

3

hyj
hxi

(uxi+ 1
2 ,j

− uxi− 1
2 ,j

) +
2

3

hyj
hyj

(uy
i,j+ 1

2

− u
y

i,j− 1
2

)
]

(vxi− 1
2 ,j

− vxi+ 1
2 ,j

)

= µi,j h
y
jh
x
i

[4
3

ux
i+ 1

2 ,j
− ux

i− 1
2 ,j

hxi
− 2

3

u
y

i,j+ 1
2

− u
y

i,j− 1
2

hyj

] vx
i+ 1

2 ,j
− vx

i− 1
2 ,j

hxi
. (III.38)Similarly, the term assoiated to σx

i− 1
2 ,j+

1
2

appears multiplied by vx
i− 1

2 ,j
and by −vx

i− 1
2 ,j+1

, and we get :
T dis
i− 1

2 ,j+
1
2
(u,v) = µi− 1

2 ,j+
1
2
hxi− 1

2
hy
j+ 1

2

[ux
i− 1

2 ,j+1
− ux

i− 1
2 ,j

hy
j+ 1

2

+
u
y

i,j+ 1
2

− u
y

i−1,j+ 1
2

hx
i− 1

2

] vx
i− 1

2 ,j+1
− vx

i− 1
2 ,j

hy
j+ 1

2

. (III.39)Let us now de�ne the disrete gradient of the veloity as follows :� The derivatives involved in the divergene, ∂Mx ux and ∂My uy, are de�ned over the primal ells by :
∂Mx ux(x) =

ux
i+ 1

2 ,j
− ux

i− 1
2 ,j

hxi
, ∂My uy(x) =

u
y

i,j+ 1
2

− u
y

i,j− 1
2

hyj
, ∀x ∈ Ki,j . (III.40)� For the other derivatives, we introdue another mesh whih is vertex-entred, and we denote byKxythe generi ell of this new mesh, with Kxy

i+ 1
2 ,j+

1
2

= (xi, xi+1) × (yj , yj+1). Then, ∀x ∈ Kxy

i+ 1
2 ,j+

1
2

:
∂My ux(x) =

ux
i+ 1

2 ,j+1
− ux

i+ 1
2 ,j

hy
j+ 1

2

, ∂Mx uy(x) =
u
y

i+1,j+ 1
2

− u
y

i,j+ 1
2

hx
i+ 1

2

. (III.41)With this de�nition, we get :
T dis
i,j (u,v) = µi,j

∫

Ki,j

[4
3
∂Mx ux − 2

3
∂My uy

]
∂Mx vx dx,and :

T dis
i− 1

2 ,j+
1
2
(u,v) = µi− 1

2 ,j+
1
2

∫

Kxy

i− 1
2

,j+ 1
2

(∂My ux + ∂Mx uy) ∂My vx dx.Let us now perform the same operations for the y-omponent of the veloity. Doing so, we are lead tointrodue an approximation of the visosity at the edge σy
i− 1

2 ,j+
1
2

= {xi− 1
2
}×(yj , yj+1) (see Figure III.3).
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yj+ 1
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y

i,j+ 1
2

u
y
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u
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2

u
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2
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1
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: σy
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2 ,j+
1
2

Fig. III.3 � Dual ell for the y-omponent of the veloityLet us suppose that we take the same approximation as on σx
i− 1

2 ,j+
1
2

. Then, the same argument yieldsthat multiplying eah disrete equation for ux and for uy by the orresponding degree of freedom of aveloity �eld v, we obtain a dissipation term whih reads :
T dis(u,v) =

∫

Ω

τM(u) : ∇
Mv dx, (III.42)where ∇

M is the disrete gradient de�ned by (III.40)-(III.41) and τM the disrete tensor :
τM(u) =




2µ∂Mx ux µxy (∂My ux + ∂Mx uy)

µxy (∂My ux + ∂Mx uy) 2µ∂My uy


− 2

3
µ (∂Mx ux + ∂My uy) I, (III.43)where µ is the visosity de�ned on the primal mesh by µ(x) = µi,j , ∀x ∈ Ki,j and µxy is the visosityde�ned on the vertex-entred mesh, by µ(x) = µi+ 1

2 ,j+
1
2
, ∀x ∈ Kxy

i+ 1
2 ,j+

1
2

.Now the form (III.42) suggests a natural to disretize the visous dissipation term in the internal energybalane in order for the onsisteny property (ii) to hold. Indeed, if we simply set on eah primal ell
Ki,j :

(τ (u) : ∇u)i,j =
1

|Ki,j|

∫

Ki,j

τM(u) : ∇
Mudx, (III.44)then, thanks to (III.42), the property (ii) whih reads :

T dis(u,u) =
∑

i,j

|Ki,j | (τ (u) : ∇u)i,j .holds. Furthermore, we get from De�nition (III.43) that τM(u)(x) is a symmetrial tensor, for any i, jand x ∈ Ki,j , and therefore an elementary algebrai argument yields :
(τ (u) : ∇u)i,j =

1

|Ki,j |

∫

Ki,j

τM(u) : ∇
Mu dx

=
1

2 |Ki,j|

∫

Ki,j

τM(u) :
[
∇

Mu + (∇Mu)t
]
dx ≥ 0.
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: Kxy

i+ 1
2 ,j+

1
2 ,k

xi+ 1
2

yj+ 1
2

zk− 1
2

zk+ 1
2

Fig. III.4 � The xy-staggered ell Kxy

i+ 1
2 ,j+

1
2 ,k

, used in the de�nition of ∂My ux, ∂Mx uy, and τM(u)x,y =

τM(u)y,x.Remark 8 (Approximation of the visosity)Note that, for the symmetry of τM(u) to hold, the hoie of the same visosity at the edges σx
i− 1

2 ,j+
1
2

and
σy
i− 1

2 ,j+
1
2

is ruial even though other hoies may appear natural. Assuming for instane the visosityto be a funtion of an additional variable de�ned on the primal mesh, the following onstrution seemsreasonable :1. de�ne a onstant value for µ on eah primal ell,2. assoiate a value of µ to the primal edges, by taking the average between the value at the adjaentells,3. �nally, split the integral of the shear stress over σx
i− 1

2 ,j+
1
2

in two parts, one for the part inludedin the (top) boundary of Ki−1,j and the seond one in the boundary of Ki,j.Then the visosities on σx
i− 1

2 ,j+
1
2

and σy
i− 1

2 ,j+
1
2

oinide only for uniform meshes, and, in the general ase,the symmetry of τM(u) is lost.III.5.2 Extension to the three-dimensional aseExtending the omputations of the preeding setion to three spae dimensions yields the followingonstrution.� First, de�ne three new meshes, whih are "edge-entred" : Kxy

i+ 1
2 ,j+

1
2 ,k

= (xi, xi+1) × (yi, yj+1) ×
(zk− 1

2
, zk+ 1

2
) is staggered from the primal mesh Ki,j,k in the x and y diretion (see Figure III.4),

Kxz
i+ 1

2 ,j,k+
1
2

in the x and z diretion, and Kyz

i,j+ 1
2 ,k+

1
2

in the y and z diretion.� The partial derivatives of the veloity omponents are then de�ned as pieewise onstant funtions,the value of whih is obtained by natural �nite di�erenes :- for ∂Mx ux, ∂My uy and ∂Mz uz, on the primal mesh,- for ∂My ux and ∂Mx uy on the ells (Kxy

i+ 1
2 ,j+

1
2 ,k

),
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i+ 1

2 ,j,k+
1
2

),- for ∂My uz and ∂Mz uy on the ells (Kyz

i,j+ 1
2 ,k+

1
2

).� Then, de�ne four families of values for the visosity �eld, µ, µxy, µxz and µyz, assoiated to theprimal and the three edge-entred meshes respetively.� The shear stress tensor is obtained by the extension of (III.43) to d = 3.� And, �nally, the dissipation term is given by (III.44).





ChapitreIV Consistent staggered shemesfor ompressible �ows � Eulerequations.

I
n this paper, we propose an impliit sheme and a pressure orretionsheme for the Euler equations, based on spae disretizations of stag-gered type : MAC sheme or low-order (Rannaher-Turek or Crouzeix-Raviart) �nite elements. Both shemes rely on the disretization of the internalenergy balane equation, whih o�ers two main advantages : �rst, we avoid thespae disretization of the total energy, the expression of whih involves ell-entered and fae-entered variables ; seond, we obtain algorithms whih boildown to usual shemes in the inompressible limit. To obtain orret weak solu-tions (in partiular, with shoks satisfying the Rankine-Hugoniot onditions),we need to introdue a soure term in the internal energy balane, whih webuild as follows. We �rst derive a disrete kineti energy balane. This relationinvolves soure terms, whih are then, in some way, ompensated in the internalenergy balane. Sine the kineti and internal energy equation are assoiatedto the primal and dual mesh respetively, they annot be summed to obtaina total energy balane. However, we theoretially prove, in the 1D ase, that,if the sheme onverges, the limit indeed satis�es a weak form of this latterequation. Finally, we present numerial results whih onfort this theory.
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IV.1 IntrodutionLet us onsider the ompressible Navier-Stokes equations, whih reads :
∂tρ+ div(ρu) = 0, (IV.1a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (IV.1b)
∂t(ρE) + div(ρE u) + div(pu) = div(τ (u) · u), (IV.1)
p = (γ − 1) ρ e, E =

1

2
|u|2 + e, (IV.1d)where t stands for the time, ρ, u, p, E and e are the density, veloity, pressure, total energy and internalenergy in the �ow, τ (u) stands for the shear stress tensor, and γ > 1 is a oe�ient spei� to theonsidered �uid. The problem is supposed to be posed over Ω × (0, T ), where Ω is a open boundedonneted subset of Rd, d ≤ 3 and (0, T ) is a �nite time interval. This system must be omplemented bysuitable boundary onditions, and initial onditions for ρ, e and u, whih are positive for ρ and e. Thelosure relation for τ (u) is assumed to be :

τ (u) = µ (∇u + ∇
tu) − 2µ

3
divu I, (IV.2)where µ stand for a (possibly depending on x) non-negative parameter.We suppose, for the sake of simpliity, that u is presribed to zero on the whole boundary ∂Ω.Let us suppose that the solution is regular. Taking the inner produt of the momentum balane equation(IV.1b) by u and using the mass balane equation, we obtain the so-alled the kineti energy balaneequation :

1

2
∂t(ρ |u|2) +

1

2
div(ρ |u|2u) + ∇p · u = div(τ (u)) · u. (IV.3)Subtrating this relation from the total energy balane, we obtain the internal energy balane equation :

∂t(ρe) + div(ρeu) + p div(u) = τ (u) : ∇u. (IV.4)Sine,
(i) from Equation (IV.2) (and from thermodynamial arguments), τ (u) : ∇u ≥ 0,

(ii) thanks to the mass balane equation, the �rst two terms in the left-hand side of (IV.4) may bereast as a transport operator : ∂t(ρe) + div(ρeu) = ρ [∂te+ u · ∇e],
(iii) and, �nally, beause, from the equation of state, the pressure vanishes when e = 0,this equation implies that e remains non-negative at all times.The aim of this paper is to build a numerial sheme for the Euler equations (i.e. System (IV.1) with
µ = 0) based on staggered spae disretizations, the motivation for this hoie being that we would liketo obtain a sheme taht is stable and aurate at all Mah numbers, and, in partiular, boils down to ausual sheme for inompressible �ows (or, more generally, for the asymptoti model of vanishing Mahnumber �ows [54℄) when the Mah number tends to zero. In inompressible models, the natural energybalane equation is the internal energy equation (IV.4). In addition, disretizing (IV.4) instead of thetotal energy balane (IV.1) presents two advantages :



114 Chapitre IV. Consistent staggered shemes for ompressible �ows � Euler equations.- �rst, it avoids the spae disretization of the total energy, whih is rather unatural for staggeredshemes sine the degrees of freedom for the veloity and the salar variables are not oloated,- seond, a suitable disretization of (IV.4) may yield, "by onstrution" of the sheme, the positivityof the internal energy.However, for solutions with shoks, Equation (IV.4) is not equivalent to (IV.1) ; more preisely speaking,one an show that, at the loations of shoks, positive measures should replae τ (u) : ∇u (whihformally vanishes sine µ = 0) at the right-hand side of Equation (IV.4). Disretizing (IV.4) insteadof (IV.1) may thus yield a sheme whih does not ompute the orret weak disontinuous solutions,the manifestation of this non-onsisteny being that the numerial solutions present shoks whih arenot onsistent with the Rankine-Hugoniot onditions assoiated to (IV.1). The essential result of thispaper is to provide solutions to irumvent this problem. To this purpose, we losely mimik the formalomputation performed above :- Starting from the disrete momentum balane equation, with an ad ho disretization of the onve-tion operator, we derive a disrete kineti energy balane ; residual terms are present in this relation,whih do no tend to zero with spae and time step (they are the disrete manifestations of the theabove mentionned measures).- These residual terms are then ompensated by soure terms in the internal energy balane.We provide a theoretial justi�ation of this proess by showing that, in the 1D ase, if the sheme isstable enough and onverges to a limit (in a sense to be de�ned), this limit satis�es a weak form of(IV.1) whih implies the orret Rankine-Hugoniot onditions. Then, we perform numerial tests whihsubstantiate this analysis. Two di�erent time disretizations are proposed : �rst, a fully impliit sheme (asolution to whih may be rather di�ult to obtain in pratie) and, seond, a pressure orretion sheme(the algorithm whih is indeed used in the tests presented here, and in the industrial open-soure odeISIS [40℄, developed at IRSN on the basis of the software omponents library PELICANS [63℄). Let usmention also that fully expliit versions may be built, and are now under study [59℄.This paper is organized as follows. We begin by desribing the spae disretizations (Setion IV.2). Wethen study the impliit sheme (Setion IV.3) : we �rst give the general form of the algorithm (SetionIV.3.1), then derive the kineti energy balane and dedue the soure terms to be inluded in the internalenergy balane (Setion IV.3.2), and, �nally, we pass to the limit in the sheme to prove (in 1D) theonsisteny of the sheme (Setion IV.3.3). Setion IV.4 follows the same lines for the pressure orretionsheme. Finally, we present some numerial tests in Setion IV.5.IV.2 Meshes and unknownsLet M be a deomposition of the domain Ω, supposed to be regular in the usual sense of the �nite elementliterature (eg. [9℄). The ells may be :- for a general domain Ω, either onvex quadrilaterals (d = 2) or hexahedra (d = 3) or simplies,both type of disretizations being possibly ombined in a same mesh,- for a domain the boundaries of whih are hyperplanes normal to a oordinate axis, retangles(d = 2) or retangular parallelepipeds (d = 3) (the faes of whih, of ourse, are then also neessarily



IV.3. An impliit sheme 115normal to a oordinate axis).By E and E(K) we denote the set of all (d−1)-faes σ of the mesh and of the element K ∈ M respetively.The set of edges inluded in the boundary of Ω is denoted by Eext and the set of internal ones (i.e. E \Eext)is denoted by Eint ; a fae σ ∈ Eint separating the ells K and L is denoted by σ = K|L. The outwardnormal vetor to a fae σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by |K| the measureof K and by |σ| the (d− 1)-measure of the fae σ. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E the subset of thefaes of E whih are perpendiular to the ith unit vetor of the anonial basis of Rd.The spae disretization is staggered, using either the Marker-And Cell (MAC) sheme [37, 36℄, or non-onforming low-order �nite element approximations, namely the Rannaher and Turek element (RT) [65℄for quadrilateral or hexahedri meshes, or the Crouzeix-Raviart (CR) element [11℄ for simpliial meshes.For all these spae disretizations, the degrees of freedom for the pressure, the density and the internalenergy are assoiated to the ells of the mesh M, and are denoted by :
{
pK , ρK , eK , K ∈ M

}
.Let us then turn to the degrees of freedom for the veloity.- Rannaher-Turek or Crouzeix-Raviart disretizations � The degrees of freedom for the velo-ities are loated at the enter of the faes of the mesh, and we hoose the version of the elementwhere they represent the average of the veloity through a fae. The set of degrees of freedomreads :

{uσ,i, σ ∈ E , 1 ≤ i ≤ d}.- MAC disretization � The degrees of freedom for the ith omponent of the veloity, de�ned at theentres of the fae σ ∈ E(i), are denoted by :
{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.

IV.3 An impliit shemeIV.3.1 The shemeLet us onsider a uniform partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), andlet δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the onstant time step. We onsider an impliit-in-time



116 Chapitre IV. Consistent staggered shemes for ompressible �ows � Euler equations.numerial sheme, whih reads in its fully disrete form :
∀K ∈ M,

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (IV.5a)For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC ase,
∀σ ∈ E otherwise,

|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε∈Ē(Dσ)

Fn+1
σ,ε un+1

ε,i + |Dσ| (∇pn+1)σ,i = 0, (IV.5b)
∀K ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ + |K| pn+1

K (div
(
un+1)

)
K

= Sn+1
K , (IV.5)

∀K ∈ M, pn+1
K = (γ − 1)ρn+1

K en+1
K . (IV.5d)Equation (IV.5a) is obtained by the disretization of the mass balane over the primal mesh, and Fn+1

K,σstands for the mass �ux aross σ outward K, given by :
∀σ ∈ Eint, σ = K|L, Fn+1

K,σ = |σ| ρ̃n+1
σ un+1

σ · nK,σ.In this relation, the notation un+1
σ · nK,σ stands the approximation of the normal veloity to the fae

σ outward K. For the MAC disretization, this quantity is given (up, possibly, to a hange of sign) bythe veloity degree of freedom loated at the fae ; for the RT and CR disretizations, it is omputed bytaking the inner produt of the (vetor valued) veloity on σ, un+1
σ , and the outward normal vetor nK,σ(i.e. doing exatly what the notation says). The density at the fae σ = K|L, ρ̃n+1

σ , is approximated bythe upwind tehnique :
ρ̃n+1
σ =

∣∣∣∣∣∣

ρn+1
K if un+1

σ · nK,σ ≥ 0,

ρn+1
L otherwise.We now turn to the disrete momentum balane (IV.5b). For the MAC disretization, but also for theRT and CR disretization, the time derivative and onvetion terms are approximated in (IV.5b) by a�nite volume tehnique over a dual mesh, whih we now de�ne :- Rannaher-Turek or Crouzeix-Raviart disretizations � For the RT or CR disretization, thedual mesh is the same for all the veloity omponents. When K ∈ M is a simplex, a retangles ora uboid, for σ ∈ E(K), we de�ne DK,σ as the one with basis σ and with vertex the mass enterof K. We thus obtain a partition of K in m sub-volumes, where m is the number of faes of themesh, eah sub-volume having the same measure |DK,σ| = |K|/m. We extend this de�nition togeneral quadrangles and hexahedra, with a partition still of equal-volume sub-ells, and with thesame onnetivities ; note that this is of ourse always possible, but that suh a volume DK,σ maybe no longer a one : indeed, if K is far from a pallelogram, it may not be possible to built a onehaving σ as basis, the opposite vertex lying in K and a volume equal to |K|/m. The volume DK,σis refered to as the half-diamond ell assoiated to K and σ.
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Dσ

Dσ′

σ′ = K|MK

L

M

|σ|σ
=
K
|L

ε = D
σ |D

σ ′

Fig. IV.1 � Primal and dual meshes for the Rannaher-Turek and Crouzeix-Raviart elements.For σ ∈ Eint, σ = K|L, we now de�ne the diamond ell Dσ assoiated to σ by Dσ = DK,σ ∪DL,σ ;for an external fae σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.- MAC disretization � For the MAC sheme, the dual mesh depends on the omponent of theveloity. For eah of them, its de�nition di�ers from the RT or CR dual mesh only by the hoieof the half-diamond ell, whih, for K ∈ M and σ ∈ E(K), is now the retangle of basis σ and ofmeasure |DK,σ| equal to half the measure of K.We denote by |Dσ| the measure of the dual ell |Dσ|, and by ε = Dσ|Dσ′ the fae separating two diamondells Dσ and Dσ′ (see Figure IV.1).To make the disretization of the time derivative term omplete, we must provide a de�nition for the
ρn+1
σ and ρnσ, whih approximate the density on the edge σ at time tn+1 and tn respetively. They aregiven by the following weighted average :

∀σ ∈ Eint, σ = K|L, |Dσ| ρnσ = |DK,σ| ρnK + |DL,σ| ρnL. (IV.6)We now turn to the onvetion term. The �rst task is to de�ne the disrete mass �ux through the dualedge ε outwardDσ, denoted by Fn+1
σ,ε , the guideline for its onstrution being that we need a �nite volumedisretization of the mass balane equation over the diamond ells to hold :

∀σ ∈ E , |Dσ|
ρn+1
σ − ρnσ
δt

+
∑

ε∈E(Dσ)

Fn+1
σ,ε = 0, (IV.7)in order to be be able to derive a disrete kineti energy balane (see Setion IV.3.2 below). For a dual edge

ε inluded in the primal ell K, this �ux is omputed as a linear ombination (with onstant oe�ients,i.e. independent of the edge and the ell) of the mass �uxes through the faes of K, i.e. the quantities
(Fn+1
K,σ )σ∈E(K) appearing in the disrete mass balane (IV.5a). We do not give here this set of oe�ients,and refer to [1, 38, 25℄ for a detailed onstrution of this approximation.
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ε,i stands for an approximation of un+1

i on ε wih may be hosen entered or upwind,so, for ε = Dσ|Dσ′ , reads :Centered ase : un+1
ε,i = (un+1

σ,i + un+1
σ′,i )/2. Upwind ase : un+1

ε,i =

∣∣∣∣∣∣

un+1
σ,i if Fn+1

σ,ε ≥ 0,

un+1
σ′,i otherwise.The last term (∇pn+1)σ,i stands for the i-th omponent of the disrete pressure gradient at the fae σ,whih reads : for σ ∈ Eint, σ = K|L, (∇pn+1)σ,i =

|σ|
|Dσ|

(pn+1
L − pn+1

K ) nK,σ · e(i).Finally, Equation (IV.5) is a approximation of the internal balane over the primal mesh K. To ensurethe positivity of the onvetion operator [50℄, we use an upwinding tehnique for this term :
en+1
σ =

∣∣∣∣∣∣

en+1
K if Fn+1

K,σ ≥ 0,

en+1
L otherwise.The divergene of the veloity, (div

(
un+1)

)
K
, is disretized ar follows :

(div
(
un+1)

)
K

=
1

|K|
∑

σ∈E(K)

|σ| un+1
σ · nK,σ.Note that this de�nition implies that the disrete gradient and divergene operators are dual with respetto the L2 inner produt :

∑

K∈M

|K| pK (div
(
u)
)
K

+
∑

E,i

|Dσ| uσ,i (∇pn+1)σ,i = 0,where the notation ∑E,i means that the summation is performed for 1 ≤ i ≤ d and, for a given index
i, on σ ∈ E(i) for the MAC sheme and on σ ∈ E for the RT or CR disretization. The right-hand side,
Sn+1
K , is derived using onsisteny arguments in the next setion.IV.3.2 The disrete kineti energy balane equation and the orretive souretermsLet δup be a oe�ient de�ned by δup = 1 if an upwind disretization is used for the onvetion term inthe momentum balane equation and δup = 0 in the entered ase. With this notation, the momentumbalane equation reads :
|Dσ|
δt

(ρn+1
σ un+1

σ,i − ρnσu
n
σ,i) +

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

+ δup
∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i ) + |Dσ| (∇pn+1)σ,i = 0. (IV.8)



IV.3. An impliit sheme 119We begin with deriving a disrete kineti energy balane equation. To this purpose, we multiply equation(IV.8) by the orresponding veloity unknown un+1
σ,i , whih yields T conv

σ,i + T up
σ,i + T∇

σ,i = 0, with :
T conv
σ,i =

[ |Dσ|
δt

(
ρn+1
σ un+1

σ,i − ρnσu
n
σ,i

)
+

∑

ε=Dσ |Dσ′

1

2
Fn+1
σ,ε (un+1

σ,i + un+1
σ′,i )

]
un+1
σ,i ,

T up
σ,i = δup

[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i ,

T∇
σ,i = |Dσ| (∇pn+1)σ,i u

n+1
σ,i .Lemma A.0.2 of the appendix yields :

T conv
σ,i =

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+
|Dσ|
2 δt

ρnσ
(
un+1
σ,i − unσ,i

)2
.Let us de�ne Rn+1

σ,i by the sum of −T up
σ,i and the opposite of the last term of this equation :

Rn+1
σ,i = −1

2

|Dσ|
δt

ρnσ
(
un+1
σ,i − unσ,i

)2 − δup
[ ∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i .With this notation, we thus obtain the following relation :

1

2

|Dσ|
δt

[
ρn+1
σ (un+1

σ,i )2 − ρnσ(u
n
σ,i)

2
]

+
1

2

∑

ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ,i un+1
σ′,i

+ |Dσ| (∇pn+1)σ,i u
n+1
σ,i = Rn+1

σ,i . (IV.9)We reognize at the left-hand side a onservative disrete kineti energy balane. The next step is now todeal with the residual term at the right-hand side. To this purpose, our guideline is to reover a onsistentdisretization of the total energy balane. The �rst idea to do this ould be just to sum the (disrete)kineti energy balane with the internal energy balane : we show in [59℄ that it is indeed possible fora oloated disretization But here, we fae the fat that the kineti energy balane is assoiated to thedual mesh, while the internal energy balane is disretized on the primal one. The way to irumvent thisdi�ulty is to remark that we do not really need a disrete total energy balane ; in fat, we only needto reover (a weak form of) this equation when the mesh and time steps tend to zero. To this purpose,we hoose Sn+1
K in suh a way to somewhat ompensate the terms (Rn+1

σ,i ) :
∀K ∈ M,

Sn+1
K =

1

2

∑

σ∈E(K)

|DK,σ|
δt

ρnK
(
un+1
σ − unσ

)2
+ δup

∑

ε∩K̄ 6=∅,

ε=D′

σ |Dσ′′

αK,ε
|Fn+1
σ,ε |
2

(un+1
σ′ − un+1

σ′′ )2. (IV.10)The oe�ient αK,ε is �xed to 1 if the fae ε is inluded in K, and this is the only situation to onsiderfor the RT and CR disretization. For the MAC sheme, some dual edges are inluded in the primal ells,



120 Chapitre IV. Consistent staggered shemes for ompressible �ows � Euler equations.but some lie on their boundary ; for ε being in the latter ase, we denote by Nε the set of ells M suhthat M̄ ∩ ε 6= ∅ (the ardinal of this set being always 4), and ompute αK,ε by :
αK,ε =

|K|∑
M∈Nε

|M | .For a uniform grid, this formula yields αK,ε = 1/4.The expression of the (Sn+1
K )K∈M is justi�ed by the passage to the limit in the sheme (for a one-dimensional problem) performed in Setion IV.3.3. However, its expression may be antiipated, makingthe following remarks. First, we note that :

∑

K∈M

Sn+1
K +

∑

E,i

Rn+1
σ,i = 0. (IV.11)Indeed, the �rst part of SK , thanks to the expression (IV.6) of the density at the fae ρσ, results from adispathing of the �rst part of the residual over the two adjaent ells :

−1

2

|Dσ|
δt

ρnσ
(
un+1
σ,i − unσ,i

)2
= − 1

2

|DK,σ|
δt

ρnK
(
un+1
σ,i − unσ,i

)2
︸ ︷︷ ︸a�eted to K − 1

2

|DL,σ|
δt

ρnL
(
un+1
σ,i − unσ,i

)2
︸ ︷︷ ︸a�eted to L .For the seond part of the remainder (or of Sn+1

K ), a standard reordering of the sum yields :
∑

E,i

∑

ε=Dσ |Dσ′

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )

]
un+1
σ,i =

∑

Ē,i (ε=Dσ |Dσ′ )

1

2
|Fn+1
σ,ε | (un+1

σ,i − un+1
σ′,i )2,where the notation∑Ē,i (ε=σ|σ′) means that we perform the sum over the omponents 1 ≤ i ≤ d and thefaes of the dual mesh assoiated to the omponent i, and that the dual ells separated by a a generidual fae ε in the summation are denoted by Dσ and Dσ′ .However, we may wonder why we do not use in Sn+1

K the expression of this term as it is written in theremainder,i.e. , in other words, use the numerial di�usion mutiplied by u instead of the dissipation. A�rst answer is that we mimik what happens at the ontinuous level : the term whih appears in thekineti energy balane is div
(
τ (u)

)
· u and the orresponding term in the internal energy balane is

τ (u) : ∇u. A more involved argument is that the expression in Sn+1
K provides a positive soure term tothe internal energy balane, and we may hope that the di�erene between both expressions tends to zero(beause the numerial di�usion tends to zero) in the sense of distributions. To have an intuition of thisfat, let us onsider the toy ellipti problem, posed over Ω :

v − µ∆v = f,where µ is a positive parameter and f ∈ L2(Ω). Assuming homogeneous Dirihlet boundary onditions,we obtain by standard variational arguments ‖v‖L2(Ω) + µ1/2‖∇v‖ ≤ C, with C only depending on Ωand f . We thus get, with ϕ ∈ C∞
c (Ω) :

∫

Ω

[
µ(∆v)v + µ|∇v|2

]
ϕdx = µ

∫

Ω

div(v∇v)ϕdx = −µ
∫

Ω

v∇v · ∇ϕdx,and so, �nally, by the Cauhy-Shwarz inequality :
∣∣∣
∫

Ω

[
µ(∆u)u+ µ|∇u|2

]
ϕdx

∣∣∣ ≤ C‖∇ϕ‖L∞(Ω) µ
1/2.



IV.3. An impliit sheme 121A disrete analogue of this simple omputation is used to pass to the limit in the sheme in the nextsetion (with a ontrol on the unknown assumed and not proven).Sine, in the equation of state, the pressure vanishes for e = 0, and that Sn+1
K is a non-negative ontinuousfuntion of the unknowns ρ, u and p, adapting the proof of Chapter 3 to ope with this additional term,we obtain that the sheme admits at least one solution, whih satis�es p ≥ 0, ρ ≥ 0 and e ≥ 0. In addition,Equation (IV.11) shows that the sheme onserves the total energy.IV.3.3 Passing to the limit in the shemeThe objetive of this setion is to show, in the one dimensional ase, that, if a sequene of solutions isontrolled in suitable norms and onverges to a limit, this latter neessarily satis�es a (part of the) weakformulation of the ontinuous problem.We suppose given a sequene of meshes and time steps (M(m), δt(m))m∈N, suh that the time step andthe size h(m) of the mesh M(m), de�ned by :

h(m) = supK∈M(m) hK ,tend to zero as m → ∞, where hK stands for the diameter of K. Note that, sine we are dealing with a1D problem, hK = |K|.Let ρ(m), p(m), e(m) and u(m) be the solution given by the sheme (IV.5) with the mesh M(m) and thetime step δt(m), or, more preisely speaking, a 1D version of the sheme whih may be obtained by takingthe MAC variant, only one horizontal stripe of meshes, supposing that the vertial omponent of theveloity (the degree of freedom of whih are loated on the top and bottom boundaries) vanishes, andthat the measure of the faes is equal to 1. To the disrete unknowns, we assoiate pieewise onstantfuntions on time intervals and on primal or dual ells, so the density ρ(m), the pressure p(m), the internalenergy e(m) and the veloity u(m) are de�ned almost everywhere on Ω × (0, T ) by :
ρ(m)(x, t) =

N−1∑

n=0

∑

K∈M

ρnK XK X(n,n+1), p(m)(x, t) =

N−1∑

n=0

∑

K∈M

pnK XK X(n,n+1),

e(m)(x, t) =
N−1∑

n=0

∑

K∈M

enK XK X(n,n+1), u(m)(x, t) =
N−1∑

n=0

∑

σ∈E

unσ XDσ
X(n,n+1),where XK , XDσ

and X(n,n+1) stand for the harateristi funtion of K, Dσ and the interval (n, n + 1)respetively, and, for short, we have dropped the supersript (m) in M(m), E(m), N (m) and in the loalvalues of the disrete funtions.We suppose that the sequene (ρ(m), p(m), e(m), u(m)
)
m∈N

is uniformly bounded in L∞
(
(0, T )×Ω

), i.e. :
|(ρ(m))nK | + |(p(m))nK | + |(e(m))nK | ≤ C, ∀K ∈ M(m), for 0 ≤ n ≤ N (m), ∀m ∈ N, (IV.12)and :

|(u(m))nσ| ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N. (IV.13)



122 Chapitre IV. Consistent staggered shemes for ompressible �ows � Euler equations.We also suppose a uniform ontrol on the translates in spae and time, whih we now state. For disretefuntion q and v de�ned on the primal and dual mesh, respetively, we de�ne a disrete L1
(
(0, T ); BV(Ω)

)norm by :
‖q‖T ,x,BV =

N∑

n=0

δt
∑

σ∈E, σ=K|L

|qnL − qnK |, ‖v‖T ,x,BV =

N∑

n=0

δt
∑

ε∈Ē, σ=Dσ |D′
σ

|vnσ′ − vnσ |,and a disrete L1
(
Ω; BV((0, T ))

) norm by :
‖q‖T ,t,BV =

∑

K∈M

hK

N−1∑

n=0

|qn+1
K − qnK |, ‖v‖T ,t,BV =

∑

σ∈E

hσ

N−1∑

n=0

|vn+1
σ − vnσ |,where, for σ = K|L, hσ = (hK + hL)/2. We suppose that the sequene of solutions satis�es the followinguniform bounds with respet to these two norms :

‖ρ(m)‖T ,x,BV + ‖e(m)‖T ,x,BV + ‖u(m)‖T ,x,BV ≤ C, ∀m ∈ N. (IV.14)and :
‖u(m)‖T ,t,BV ≤ C, ∀m ∈ N, (IV.15)Of ourse, we are not able to prove the estimates (IV.12)�(IV.14) for the solutions of the sheme ; however,suh inequalities are satis�ed by the "interpolation" (for instane, by taking the ell average) of thesolution to a Riemann problem, and are observed in omputations (of ourse, as far as possible, i.e. witha limited sequene of meshes and time steps).A weak solution to the ontinuous problem satis�es, for any ϕ ∈ C∞

c

(
[0, T ) × Ω

) :
−
∫

Ω×(0,T )

[
ρ ∂tϕ+ ρ u ∂xϕ

]
dx−

∫

Ω

ρ(x, 0)ϕ(x, 0) dx = 0, (IV.16a)
−
∫

Ω×(0,T )

[
ρ u ∂tϕ+ (ρ u2 + p) ∂xϕ

]
dx −

∫

Ω

ρ(x, 0)u(x, 0)ϕ(x, 0) dx = 0, (IV.16b)
−
∫

Ω×(0,T )

[
ρE ∂tϕ+ (ρE + p)u ∂xϕ

]
dx −

∫

Ω

ρ(x, 0)E(x, 0)ϕ(x, 0) dx = 0, (IV.16)
p = (γ − 1)ρ e, E =

1

2
u2 + e. (IV.16d)Note that these relations are not su�ient to de�ne a weak solution to the problem, sine they do notimply anything about the boundary onditions. However, they allow to derive the Rankine-Hugoniotonditions ; so, if we show that they are satis�ed by the limit of a sequene of solutions to the disreteproblem, this implies, loosely speaking, that the sheme omputes the right shoks, whih is the result weseek. It is stated in the following theorem.Theorem IV.3.1Let Ω be an open bounded interval of R. Let (M(m), δt(m))m∈N be a sequene of meshes and timesteps, suh that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), e(m), u(m)

)
m∈N

bethe orresponding sequene of solutions. We suppose that this sequene satis�es (IV.12)�(IV.14) andonverges in Lr
(
(0, T )× Ω

)4, for 1 ≤ r <∞, to (ρ̄, p̄, ē, ū) ∈ L∞
(
(0, T )× Ω

)4.Then the limit (ρ̄, p̄, ē, ū) satis�es the system (IV.16).



IV.3. An impliit sheme 123Proof The fat that the limit (ρ̄, p̄, ū) satis�es (IV.16a) and (IV.16b) is proven in Chapter 2, usingmilder estimates and onvergene assumptions. On the other hand, the fat that (ρ̄, p̄, ē, ū) satis�es theequation of state is straightforward, in view of the supposed onvergene. We thus only need to provethat (ρ̄, p̄, ē, ū) satis�es (IV.16).Let ϕ ∈ C∞
c (Ω × [0, T )). Let m ∈ N, M(m) and δt(m) be given. Dropping for short the supersript (m),we de�ne ϕM and ϕE , an interpolate of ϕ on the primal and dual mesh respetively, by :

ϕM =
N−1∑

n=0

∑

K∈M

ϕnK XK X(tn,tn+1), ϕE =
N−1∑

n=0

∑

σ∈E

ϕnσ XDσ
X(tn,tn+1), (IV.17)where, for 1 ≤ n ≤ N , K ∈ M and σ ∈ E , we set :

ϕnK = ϕ(xK , t
n) and ϕnσ = ϕ(xσ, t

n),with xK the mass enter of K and xσ the absissa of the fae σ. We also de�ne the time disrete derivativeof these disrete funtions by :
ðtϕM =

N−1∑

n=0

∑

K∈M

ϕn+1
K − ϕnK

δt
XK X(tn,tn+1),

ðtϕE =

N−1∑

n=0

∑

σ∈E

ϕn+1
σ − ϕnσ
δt

XDσ
X(tn,tn+1),

(IV.18)and their spae disrete derivatives :
ðxϕM =

N−1∑

n=0

∑

σ∈E, σ=K<L

ϕnL − ϕnK
dσ

XDσ
X(tn,tn+1),

ðxϕE =

N−1∑

n=0

∑

K∈M, K=<σ,σ′>

ϕnσ′ − ϕnσ
hK

XK X(tn,tn+1),

(IV.19)where the notation σ = K < L means that σ = K|L with the orientation xK < xL, K =< σ, σ′ > meansthat K = (xσ, xσ′ ), with xσ < xσ′ and, for σ = K|L, dσ = (hK + hL)/2. Finally, we de�ne ðϕM,E by :
ðxϕM,E =

N−1∑

n=0

∑

K∈M, K=<σ,σ′>

ϕnK − ϕnσ
hK/2

XDK,σ
X(tn,tn+1),+

ϕnσ′ − ϕnK
hK/2

XDK,σ′
X(tn,tn+1). (IV.20)Thanks to the regularity of ϕ, the pieewise onstant funtions ϕM, ϕE , ðtϕM, ðtϕE , ðxϕM, ðxϕE and

ðxϕM,E onverge in Lr
(
Ω × (0, T )

), for r ≥ 1 (inluding r = +∞), to ϕ, ϕ, ∂tϕ, ∂tϕ, ∂xϕ, ∂xϕ and ∂xϕrespetively.On one hand, let us multiply the disrete kineti energy equation (IV.9) by δt ϕnσ and sum over the edgesand the time steps. On the other hand, let us multiply the disrete internal energy equation (IV.5) by
δt ϕnK , and sum over the primal ells and the time steps. Finally, let us sum the two obtained relations.
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T

(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 + T

(m)
5 = R(m), with :

T
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈E

|Dσ|
δt

[
ρn+1
σ (un+1

σ )2 − ρnσ(u
n
σ)

2
]
ϕnσ,

T
(m)
2 =

N−1∑

n=0

δt
∑

K∈M

|K|
δt

[
ρn+1
K en+1

K − ρnKe
n
K

]
ϕnK ,

T
(m)
3 =

1

2

N−1∑

n=0

δt
∑

σ∈E

∑

ε∈Ē(Dσ), ε=Dσ |Dσ′

Fn+1
σ,ε un+1

σ′ un+1
σ ϕnσ,

T
(m)
4 =

N−1∑

n=0

δt
∑

K

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ ϕnK ,

T
(m)
5 =

N−1∑

n=0

δt
∑

σ∈E

|Dσ| (∇pn+1)σ u
n+1
σ ϕnσ +

N−1∑

n=0

δt
∑

K∈M

|K| pn+1
K (div(un+1))K ϕnK ,

R(m) =

N−1∑

n=0

δt
∑

σ∈E

Rn+1
σ ϕnσ +

N−1∑

n=0

δt
∑

K∈M

Sn+1
K ϕnK .We �rst study T

(m)
1 . Sine the support of ϕ is ompat in Ω × (0, T ), for spae and time steps smallenough (or, equivalently, m large enough), the interpolates of ϕ vanish for n = N , and, at any time, onthe ells and faes loated in a neighbourhood of the boundaries ; we suppose that it is the ase for theelement m of the sequene under onsideration, for the term T

(m)
1 as well as for the remainder of theproof. Reordering of the sums and then using the de�nition (IV.6) of the density at the edges, we thusget :

T
(m)
1 = −1

2

N−1∑

n=0

δt
∑

σ∈E

|Dσ| ρn+1
σ (un+1

σ )2
ϕn+1
σ − ϕnσ
δt

− 1

2

∑

σ∈E

|Dσ| ρ0
σ (u0

σ)
2 ϕ0

σ

= −1

2

∫ T

0

∫

Ω

ρ(m) (u(m))2 ðtϕE dxδt− 1

2

∫

Ω

ρ(m)(x, 0) (u(m)(x, 0))2 ϕE(x, 0) dx.Sine, by assumption, the sequene of disrete solutions and of interpolates onverge in Lr
(
Ω × (0, T )

)for r ≥ 1, and by de�nition of the initial onditions, we get :
lim

m−→+∞
T

(m)
1 = −1

2

∫ T

0

∫

Ω

ρ̄ (ū)2∂tϕdxδt− 1

2

∫

Ω

ρ̄(x, 0) (ū(x, 0)2 ϕ(x, 0) dx.By a similar omputation, we get for T (m)
2 :

T
(m)
2 = −

N−1∑

n=0

δt
∑

σ∈E

|K| ρn+1
K en+1

K

ϕn+1
K − ϕnK

δt
−
∑

σ∈E

|K| ρ0
K e0K ϕ0

K

= −
∫ T

0

∫

Ω

ρ(m) e(m)
ðtϕM dxδt−

∫

Ω

ρ(m)(x, 0) e(m)(x, 0)ϕM(x, 0) dx,and therefore :
lim

m−→+∞
T

(m)
2 = −

∫ T

0

∫

Ω

ρ̄ ē ∂tϕdxδt−
∫

Ω

ρ̄(x, 0) ē(x, 0)ϕ(x, 0) dx.



IV.3. An impliit sheme 125Let us now turn to T (m)
3 . For K =< σ, σ′ > and ε the dual fae inluded in K, the dual mass �ux reads :

Fn+1
σ,ε =

1

2
(Fn+1
K,σ′ − Fn+1

K,σ ). (IV.21)We thus get, reordering the sums :
T

(m)
3 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

(
Fn+1
K,σ − Fn+1

K,σ′

)
un+1
σ′ un+1

σ

(
ϕnσ − ϕnσ′

)

= −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

(
ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′ ) un+1
σ′ un+1

σ

(
ϕnσ − ϕnσ′

)

= −1

2

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

|K| ρn+1
K

(un+1
σ )3 + (un+1

σ′ )3

2

ϕnσ − ϕnσ′

hK
+ R(m)

3 .Let us denote by T (m)
3 the �rst term. We have :

T (m)
3 = −1

2

∫ T

0

∫

Ω

ρ(m) (u(m))3 ðxϕE dxδt, so lim
m−→+∞

T (m)
3 = −1

2

∫ T

0

∫

Ω

ρ̄ ū3 ∂xϕdxδt.The residual term R(m)
3 reads :

R(m)
3 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>[(
ρ̃n+1
σ un+1

σ + ρ̃n+1
σ′ un+1

σ′

)
un+1
σ′ un+1

σ − ρn+1
K

(
(un+1
σ )3 + (un+1

σ′ )3
)]

(ϕnσ − ϕnσ′) (IV.22)Expanding the quantity (un+1
σ )3 + (un+1

σ′ )3 thanks to the identity a3 + b3 = (a + b)(ab + (a − b)2), andthen reordering the sums, we obtain R(m)
3 = R(m)

3,1 + R(m)
3,2 with :

R(m)
3,1 = −1

4

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

[
(ρ̃n+1
σ − ρn+1

K )un+1
σ + (ρ̃n+1

σ′ − ρn+1
K )un+1

σ′

]

un+1
σ un+1

σ′ (ϕnσ − ϕnσ′ )

R(m)
3,2 =

1

4

N∑

n=0

δt
∑

K

|σ| ρn+1
K (un+1

σ + un+1
σ′ ) (un+1

σ − un+1
σ′ )2 (ϕnσ − ϕn

σ′ )In the term R(m)
3,1 , the di�erenes ρ̃n+1

σ − ρn+1
K and ρ̃n+1

σ′ − ρn+1
K either vanish or ompare the density intwo adjaent ells. We thus get :

|R(m)
3,1 | ≤ hCϕ ‖u(m)‖3

L∞ ‖ρ(m)‖T ,x,BV ,and R(m)
3,1 tends to zero when m tends to +∞. By similar arguments :

|R(m)
3,2 | ≤ hCϕ ‖ρ(m)‖L∞ ‖u(m)‖2

L∞ ‖u(m)‖T ,x,BV ,and thus R(m)
3,2 also tends to zero when m tends to +∞.Expressing the mass �uxes as a funtion of the unknowns in T

(m)
4 , we get, hoosing for σ = K|L theorientation suh that Fn+1

K,σ ≥ 0, so ρ̃n+1
σ = ρn+1

K and en+1
σ = en+1

K :
T

(m)
4 =

N−1∑

n=0

δt
∑

σ∈E, σ=K→L

|Dσ| ρn+1
K en+1

K un+1
σ nσ

(ϕnK − ϕnL)

|dσ|
,



126 Chapitre IV. Consistent staggered shemes for ompressible �ows � Euler equations.where the quantity nσ is equal to +1 if xL ≥ xK and to −1 otherwise and the notation σ = K → Lmeans that σ = K|L, with a �ow leaving K and entering L. We deompose T (m)
4 = T (m)

4 + R(m)
4 , with :

T (m)
4 = −

N−1∑

n=0

δt
∑

σ∈E, σ=K→L

[
|DK,σ| ρn+1

K en+1
K + |DL,σ| ρn+1

L en+1
L

]
un+1
σ

ϕnL − ϕnK
dσ

nσ,

R(m)
4 =

N−1∑

n=0

δt
∑

σ∈E, σ=K→L

|DL,σ|
[
ρn+1
K en+1

K − ρn+1
L en+1

L

]
un+1
σ

ϕnK − ϕnL
dσ

nσ.We have :
T (m)

4 = −
∫ T

0

∫

Ω

ρ(m) e(m) u(m)
ðxϕM dxδt, so lim

m−→+∞
T (m)

4 = −
∫ T

0

∫

Ω

ρ̄ ē ū ∂xϕdxδt.Expanding the quantity (ρn+1
K en+1

K − ρn+1
L en+1

L ) in the residual term R(m)
4 thanks to the identity 2(ab−

cd) = (a+ c)(b − d) + (b+ d)(a− c), we get :
|R(m)

4 | ≤ Cϕh ‖u(m)‖L∞

[
‖ρ(m)‖L∞ ‖e(m)‖T ,x,BV + ‖e(m)‖L∞ ‖ρ(m)‖T ,x,BV

]
,so that R(m)

4 tends to zero when m tends to +∞.The term T
(m)
5 reads :

T
(m)
5 =

N−1∑

n=0

δt
∑

σ∈E

|Dσ| (∇pn+1)σ u
n+1
σ ϕnσ +

N−1∑

n=0

δt
∑

K∈M

|K| pn+1
K (div(un+1))K ϕnK

=

N−1∑

n=0

δt
[ ∑

σ∈E, σ=K<L

(pn+1
L − pn+1

K ) un+1
σ ϕnσ +

∑

K∈M,K=<σ,σ′>

pn+1
K (un+1

σ′ − un+1
σ ) ϕnK

]

=

N−1∑

n=0

−δt
∑

K∈MK=<σ,σ′>

pn+1
K (un+1

σ′ ϕnσ′ − un+1
σ ϕnσ) + pn+1

K (un+1
σ − un+1

σ′ ) ϕnKWe thus obtain :
T

(m)
5 = −

N−1∑

n=0

δt
∑

K∈M,K=<σ,σ′>

hK
2
pn+1
K un+1

σ

ϕnK − ϕnσ
hK/2

+
hK
2
pn+1
K un+1

σ′

ϕnσ′ − ϕnK
hK/2

= −
∫ T

0

∫

Ω

p(m) u(m)
ðxϕM,E dxδt.and so :

lim
m−→+∞

T
(m)
5 = −

∫ T

0

∫

Ω

p̄ ū ∂xϕdxδt.Finally we study R(m), whih we deompose in R(m) = R
(m)
c + R

(m)
up , the �rst part gathering the termswhih are not linked to a possible upwinding. We have for this residual :

R
(m)
c =

1

2

N−1∑

n=0

[∑

σ∈E

−|Dσ| ρnσ (un+1
σ − unσ)

2 ϕnσ +
∑

K∈M

∑

σ∈E(K)

|DK,σ| ρnK (un+1
σ − unσ)

2 ϕnK

]

=
1

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ| ρnK (un+1
σ − unσ)

2 (ϕnK − ϕnσ).



IV.4. A pressure orretion sheme 127We thus obtain :
R(m)
c ≤ hCϕ ‖ρ(m)‖L∞ ‖u(m)‖L∞ ‖u(m)‖T ,t,BV ,and R(m) tends to zero when m→ ∞. We now turn to the upwind ase. The orresponding terms read :

R(m)
up =

1

2

N−1∑

n=0

δt
[∑

σ∈E

∑

ε∈Ē(Dσ), ε=Dσ |Dσ′

−|Fn+1
σ,ε | (un+1

σ − un+1
σ′ ) un+1

σ ϕnσ

+
∑

K∈M

∑

ε⊂K, ε=Dσ |Dσ′

|Fn+1
σ,ε | (un+1

σ − un+1
σ′ )2 ϕnK

]As explained at the end of Setion IV.3.2, the general idea is now to reast this term as a disrete versionof the integral over spae and time of a quantity of the form −u ∂xu ∂xϕ saled by a numerial visosityvanishing with the spae step ; then, the supposed ontrols on the solution imply that the term tends tozero. We thus reorder the sums in R(m)
up , whih yields :

R(m)
up =

1

2

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>

∣∣Fn+1
σ,Dσ |Dσ′

∣∣ (un+1
σ − un+1

σ′ ) (un+1
σ′ ϕnσ′ − un+1

σ ϕnσ)

+
∣∣Fn+1
σ,Dσ |Dσ′

∣∣ (un+1
σ′ − un+1

σ )2ϕnK ,and thus :
R(m)
up =

1

2

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>

∣∣Fn+1
σ,Dσ |Dσ′

∣∣ (un+1
σ − un+1

σ′ )
[
un+1
σ (ϕnK − ϕnσ) + un+1

σ′ (ϕnσ′ − ϕnK)
]We thus get, using the de�nition (IV.21) of the mass �uxes at the dual faes :

|R(m)
up | ≤ hCϕ ‖ρ(m)‖L∞ ‖u(m)‖2

L∞ ‖u(m)‖T ,x,BV ,whih yields the desired ontrol.Gathering the expression of the limits of eah of the terms T (m)
1 to T (m)

5 and R(m) onludes the proof.
�IV.4 A pressure orretion shemeIV.4.1 The shemeWe derive in this setion a pressure orretion numerial sheme from the impliit sheme (IV.5). The�rst step, as usual, is to ompute a tentative veloity by solving the momentum balane equation with thebegining-of-step pressure. Then, the veloity is orreted and the other variables are advaned in time,here, whih is less standard, by a single oupled step ; this is motivated by stability reasons detailed inChapter 3. Still for stability reasons, or, in other words, to be able to derive a kineti energy balane, weneed that a mass balane over the dual ells (IV.7) holds ; sine the mass balane is not yet solved whenperforming the predition step, this leads us to perform a time shift of the density at this step.



128 Chapitre IV. Consistent staggered shemes for ompressible �ows � Euler equations.The algorithm reads :Predition step � Solve for ũn+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC ase,
∀σ ∈ E otherwise,

|Dσ|
δt

(ρnσũ
n+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i + |Dσ| (∇pn)σ,i = 0, (IV.23a)Corretion step � Solve for ρn+1, pn+1, en+1 and un+1 :For 1 ≤ i ≤ d,

∣∣∣∣∣∣

∀σ ∈ E(i) in the MAC ase,
∀σ ∈ E otherwise,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
[
(∇pn+1)σ,i − (∇pn)σ,i

]
= 0, (IV.23b)

∀K ∈ M,
|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0, (IV.23)

∀K ∈ M,

|K|
δt

(ρn+1
K en+1

K − ρnKe
n
K) +

∑

σ∈E(K)

Fn+1
K,σ e

n+1
σ + |K| pn+1

K (div
(
ũn+1)

)
K

= Sn+1
K , (IV.23d)

∀K ∈ M, pn+1
K = (γ − 1) ρn+1

K en+1
K . (IV.23e)

IV.4.2 The disrete kineti energy balane equation and the orretive souretermsWe repeat the same proess that we have followed for the impliit sheme, to determine the numerialterm soure SnK . We thus begin with deriving the disrete kineti energy equation. To this purpose, wesum the momentum balane equation (IV.23a) with the veloity orretion equation (IV.23b), whihyields :
|Dσ|
δt

(
ρnσu

n+1
σ,i − ρn−1

σ unσ,i
)

+
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i + |Dσ| (∇pn+1)σ,i = 0.Multiplying this equation by the orresponding degree of freedom of the predited veloity ũn+1

σ,i , weobtain :
|Dσ|
δt

(
ρnσu

n+1
σ,i − ρn−1

σ unσ,i
)
ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i + |Dσ| (∇pn+1)σ,i ũ
n+1
σ,i = 0.



IV.4. A pressure orretion sheme 129Let us reast the �rst two terms of this equation as T (1)
σ,i + T

(2)
σ,i , with :

T
(1)
σ,i =

|Dσ|
δt

(
ρnσũ

n+1
σ,i − ρn−1

σ unσ,i
)
ũn+1
σ,i +

∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i ũn+1

σ,i ,

T
(2)
σ,i =

|Dσ|
δt

ρnσ
(
un+1
σ,i − ũn+1

σ,i

)
ũn+1
σ,i .The term T

(1)
σ,i has the struture whih allows to apply Lemma A.0.2 of the appendix, and we get :
T

(1)
σ,i =

1

2

|Dσ|
δt

[
ρnσ(ũ

n+1
σ,i )2 − ρn−1

σ (unσ,i)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũ
n+1
σ,i ũn+1

σ′,i +R
(1)
σ,i ,with :

R
(1)
σ,i =

|Dσ|
2 δt

ρn−1
σ

(
ũn+1
σ,i − unσ,i

)2
+ δup

[ ∑

ε=Dσ |Dσ′

1

2
|Fnσ,ε|

(
ũn+1
σ,i − ũn+1

σ′,i

)]
ũn+1
σ,i .Using the identity 2 (a− b) a = a2 − b2 + (a− b)2, valid for any real numbers a and b, we get for T2 :

T
(2)
σ,i =

1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ,i )2 − ρnσ(ũ

n
σ,i)

2
]

+R
(2)
σ,i ,with :

R
(2)
σ,i = −|Dσ|

2 δt
ρnσ
(
un+1
σ,i − ũn+1

σ,i

)2
.Summing, we get the disrete kineti energy balane equation :

1

2

|Dσ|
δt

[
ρnσ(u

n+1
σ,i )2 − ρn−1

σ (unσ,i)
2
]

+
1

2

∑

ε=Dσ |Dσ′

Fnσ,ε ũ
n+1
σ,i ũn+1

σ′,i

+ |Dσ| (∇pn+1)σ,i ũ
n+1
σ,i = Rnσ,i, (IV.24)with :

Rn+1
σ,i = −R(1)

σ,i −R
(2)
σ,i .By the same arguments as in the impliit ase, we get :

∀K ∈ M,

Sn+1
K =

1

2

∑

σ∈E(K)

|DK,σ|
δt

ρn−1
K

∣∣ũn+1
σ − unσ

∣∣2 − 1

2

∑

σ∈E(K)

|DK,σ|
δt

ρnK
∣∣un+1
σ − ũn+1

σ

∣∣2

+ δup
∑

ε∩K̄ 6=∅,

ε=Dσ |Dσ′

αK,ε
|Fn+1
σ,ε |
2

|ũn+1
σ − ũn+1

σ′ |2. (IV.25)Note that, now, the term SK may be negative, whih we have indeed observed in omputations ; however,even in very severe ases (as, for instane, Test 3 of [68, hapter 4℄), at least with a reasonable time step,we still obtained a positive internal energy.



130 Chapitre IV. Consistent staggered shemes for ompressible �ows � Euler equations.IV.4.3 Passing to the limit in the shemeAs for the impliit sheme, we show in this setion, in the one dimensional ase, that, if a sequene ofsolutions is ontrolled in suitable norms and onverges to a limit, this limit neessarily satis�es a (partof the) weak formulation of the ontinuous problem.Let (M(m), δt(m))m∈N be a sequene of meshes and time steps, suh that δt(m) and h(m) tend to zeroas m → ∞. Let ρ(m), p(m), e(m), ũ(m) and u(m) be the assoiated solution of the pressure orretionsheme (IV.23), obtained, as in the impliit ase, with the 1D version of the sheme. We suppose thatthis solution satis�es similar ontrols as in the ase of the impliit sheme, so, in addition of the alreadywritten bounds for ρ(m), p(m), e(m) and u(m), we also assume :
|(ũ(m))nσ | ≤ C, ∀σ ∈ E(m), for 0 ≤ n ≤ N (m), ∀m ∈ N,and ‖ũ(m)‖T ,x,BV ≤ C, ‖ρ(m)‖T ,t,BV ≤ C, ∀m ∈ N. (IV.26)Note that we do not need any ontrol on ‖ũ(m)‖T ,t,BV . Then we get the following "passage to the limit"theorem.Theorem IV.4.1Let Ω be an open bounded interval of of R. Let (M(m), δt(m))m∈N be a sequene of meshes and timesteps, suh that h(m) and δt(m) tend to zero as m tends to in�nity. Let (ρ(m), p(m), e(m), ũ(m), u(m)

)
m∈Nbe the orresponding sequene of solutions. We suppose that this sequene satis�es (IV.12)�(IV.14) and(IV.26) and onverges in Lp

(
(0, T ) × Ω

)5, for 1 ≤ p <∞, to (ρ̄, p̄, ē, ¯̃u, ū) ∈ L∞
(
(0, T ) × Ω

)5.Then ¯̃u = ū and (ρ̄, p̄, ē, ū) satis�es the system (IV.16).Proof . Let ϕ ∈ C∞
c (Ω× (0, T )). Let m ∈ N, M(m) and δt(m) be given, and let the interpolates, and timeand spae disrete derivatives of ϕ assoiated to this disretization be de�ned, as in the impliit sheme,by (IV.17), (IV.18), (IV.19) and (IV.20).We begin with heking that ¯̃u = ū. To this purpose, it is su�ient to note that the orretion step yields :

|Dσ| |un+1
σ − ũn+1

σ | ≤ δt |pL − pK |, ∀σ = K|L ∈ E , and for 0 ≤ n ≤ N − 1,so :
‖u(m) − ũ(m)‖L1 ≤ δt ‖p(m)‖T ,x,BVwhih, passing to the limit when m→ +∞, yields the result.We now turn to the proof that the limit satis�es (IV.16). On one hand, lets us multiply the disretekineti energy equation (IV.24) by δt ϕnσ and sum over the edges and the time steps. On the other hand,let us multiply the disrete internal energy equation (IV.23d) by δt ϕnK , and sum over the primal elles



IV.4. A pressure orretion sheme 131and the time steps. Finally, let us sum the two obtained relations. We get :
T

(m)
1 + T

(m)
2 + T

(m)
3 + T

(m)
4 + T

(m)
5 = R(m), with :

T
(m)
1 =

1

2

N−1∑

n=0

δt
∑

σ∈E

|Dσ|
δt

[
ρnσ(u

n+1
σ )2 − ρn−1

σ (unσ)
2
]
ϕnσ,

T
(m)
3 =

1

2

N−1∑

n=0

δt
∑

σ∈E

∑

ε∈Ē(Dσ), ε=Dσ |Dσ′

Fnσ,ε ũ
n+1
σ′ ũn+1

σ ϕnσ,

R(m) =

N−1∑

n=0

δt
∑

σ∈E

Rn+1
σ ϕnσ +

N−1∑

n=0

δt
∑

K∈M

Sn+1
K ϕnK ,the terms T (m)

2 , T (m)
4 and T (m)

5 being the same as in the impliit sheme.The passage to the limit in the term T
(m)
1 is done as in the impliit ase, just remarking that ρ(m)(·, ·−δt)strongly onverges to ρ̄. For the term T

(m)
3 , still by a omputation similar to the impliit ase, we get :

Tm3 = −1

2

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>

|K| ρnK
unσ(ũ

n+1
σ )2 + unσ′(ũn+1

σ′ )2

2

ϕnσ − ϕnσ′

hK
+ R(m)

3 .Let us denote by T (m)
3 the �rst term. We get :
T (m)

3 = −1

2

∫ T

0

∫

Ω

ρ(m)(x, t− δt) u(m)(x, t− δt) ũ(m)(x, t)2 dxδt,so :
lim

m−→+∞
T (m)

3 = −1

2

∫ T

0

∫

Ω

ρ̄ ū3 ∂xϕdxδt.The residual term R(m)
3 reads :

R(m)
3 = −1

4

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>[(
ρ̃nσu

n
σ + ρ̃nσ′unσ′

)
ũn+1
σ′ ũn+1

σ − ρnK

(
unσ (ũn+1

σ )2 + unσ′ (ũn+1
σ′ )2

)]
(ϕnσ − ϕnσ′ ).We thus get :

R(m)
3 = −1

4

N−1∑

n=0

δt
∑

K∈M, K=<σ,σ′>[(
ρ̃nσũ

n+1
σ′ − ρnK ũ

n+1
σ

)

︸ ︷︷ ︸
D1

unσ ũ
n+1
σ +

(
ρ̃nσ′ ũn+1

σ − ρnK ũ
n+1
σ′

)

︸ ︷︷ ︸
D2

unσ′ ũn+1
σ′

]
(ϕnσ − ϕnσ′ ).Using the identity 2(ab− cd) = (a− c)(b + d) + (a+ c)(b − d) for D1 and D1, we onlude that :

|R(m)
3 | ≤ hCϕ ‖u(m)‖L∞ ‖ũ(m)‖L∞

[
‖ρ(m)‖T ,x,BV ‖ũ(m)‖L∞ + ‖ρ(m)‖L∞ ‖ũ(m)‖T ,x,BV

]
,and thus R(m)

3 tends to zero when m tends to +∞.



132 Chapitre IV. Consistent staggered shemes for ompressible �ows � Euler equations.Finally we study R(m), whih we split in R(m) = R
(m)
c +R

(m)
up , the �rst part, namely R(m)

c , gathering theterms whih are not assoiated to the upwinding :
R(m)
c = −1

2

N−1∑

n=0

∑

σ∈E

|Dσ|
[
ρn−1
σ (ũn+1

σ − unσ)
2 − ρnσ (ũn+1

σ − un+1
σ )2

]
ϕnσ

+
1

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ|
[
ρn−1
K (ũn+1

σ − unσ)
2 − ρnK (ũn+1

σ − un+1
σ )2

]
ϕnKThanks to the de�nition of the density on the edges, we get :

R(m)
c =

1

2

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ|
[
ρn−1
K (ũn+1

σ − unσ)
2 − ρnK (ũn+1

σ − un+1
σ )2

]
(ϕnK − ϕnσ),so :

|R(m)
c | ≤ hCϕ

N−1∑

n=0

∑

K∈M

∑

σ∈E(K)

|DK,σ|
∣∣∣ρn−1
K (ũn+1

σ − unσ)
2 − ρnK (ũn+1

σ − un+1
σ )2

∣∣∣.Developping :
ρn−1
K (ũn+1

σ − unσ)
2 − ρnK (ũn+1

σ − un+1
σ )2 =

(ρn−1
K − ρnK) (ũn+1

σ − unσ)
2 + ρnK (un+1

σ − unσ)(2ũ
n+1
σ − unσ − un+1

σ )yields :
|R(m)
c | ≤ hCϕ ‖ρ(m)‖T ,t,BV

(
‖u(m)‖2

L∞ + ‖ũ(m)‖2

L∞

)

+ ‖ρ(m)‖L∞ ‖u(m)‖T ,t,BV
(
‖u(m)‖L∞ + ‖ũ(m)‖L∞

)
,and so R(m)

c tends to zero as m tends to +∞. Replaing u(m) by ũ(m), the term R
(m)
up takes the sameexpression as in the impliit ase, and so also tends to zero. Gathering all the limits yields the result weare seeking. �IV.5 Numerial testsIn this setion, we assess the behaviour of the sheme on a one dimensional Riemann problem. We hooseinitial onditions suh that the struture of the solution onsists in two shok waves, separated by theontat disontinuity, with su�iently strong shoks to allow to easily disrimate between onvergeneto the orret weak solution or not. These initial onditions are those proposed in [68, hapter 4℄, for thetest refered to as Test 5 :left state : ρLuL

pL


 =




5.99924

19.5975

460.894


 right state : ρRuR

pR


 =




5.99242

−6.19633

46.0950


The problem is posed over Ω = (−0.5, 0.5), and the disontinuity is initially loated at x = 0.We obtain a one dimensional sheme by simply taking one horizontal stripe of meshes (of onstant size)with the MAC disretization, and applying perfet slip boundary onditions at the top and bottom



IV.5. Numerial tests 133boundary. At the other boundaries, sine, in this test, the �ow is entering the domain, the solutionis presribed (whih, in fat, is unimportant, the solution being onstant at any time in a su�ientlylarge neighbourhood of these boundaries). Passed numerial experiments addressing barotropi �ows (seeChapter 1) showed that, at least for one dimensional omputations with shemes similar to the one understudy here, it was not neessary to use upwinding in the momentum balane equation ; onsequently, weonly employ a entered approximation of the veloity at the dual edges.The omputations are performed with the open-soure software ISIS [40℄, developed at IRSN on the basisof the software omponent library and programming environment PELICANS [63℄.The density �elds obtained with h = 1/2000 (or a number of ells n = 2000) at t = 0.035, with andwithout assembling the orretive soure term in the internal energy balane (SK)K∈M, together withthe analytial solution, are shown on Figure IV.2. The density and the pressure obtained, still with andwithout orretive terms, for various meshes, are plotted on Figure IV.3 and IV.3 respetively. For theseomputations, we take δt = h/20, whih yields a � number, with respet to the material veloity only,lose to one. The �rst onlusion is that both shemes seem to onverge, but the orretive term isneessary to obtain the orret solution. In this ase, for instane, we obtain the orret intermediatestate for the pressure and veloity up to four digits in the essential part of the orresponding zone :(analytial) intermediate state : [
p∗

u∗

]
=

[
1691.65

8.68977

] for x ∈ (0.028, 0.428)numerial results : ∣∣∣∣∣∣

p ∈ (1691.6, 1691.8)

u ∈ (8.689, 8.690)
for x ∈ (0.032, 0.417)Without orretive term, one an hek that the obtained solution is not a weak solution to the Eulersystem : indeed, the Rankine-Hugoniot ondition applied to the total energy balane, with the statesobtained numerially, yields a right shok veloity slightly greater than the analytial solution one, whilethe same shok veloity obtained numerially is learly lower.We also observe that the sheme is rather di�usive, speially for representing the ontat disontinuity,where the bene�ial ompressive e�et of the shoks does not apply. More aurate variants may ertainlybe derived, using for instane MUSCL-like tehniques. Finally, let us also mention that a fully expliitversion of the sheme is urrently under testing.
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AnnexeA Some results assoiated to �nitevolume onvetion operators
We gather in this setion some results onerning the disretization by the �nite volume method of twoonvetion operators :- the �rst one reads, at the ontinuous level, ρ→ C(ρ) = ∂tρ+ div(ρu), where u stands for a givenveloity �eld, whih is not assumed to satisfy any divergene onstraint,- the seond one is z → Cρ(z) = ∂t(ρz) + div(ρzu), where ρ and u stands for two given salar andvetor �elds, whih are supposed to satisfy ∂tρ+ div(ρu) = 0.Multiplying these operators by funtions depending on the unknown is urrently used to obtain onvetionoperators ating over di�erent variables, possibly with residual terms : one may think, for instane, tothe theory of renormalized solutions (for the �rst one), or, in mehanis, to the derivation of the so-alledkineti energy transport identity (for the seond one). The results provided in this setion are disretevariants of suh relations.We begin with a property of C, whih, at the ontinuous level, may be formally obtained as follows. Let
ψ be a regular funtion from (0,+∞) to R ; then :
ψ′(ρ) C(ρ) = ψ′(ρ) ∂t(ρ) + ψ′(ρ)u · ∇ρ+ ψ′(ρ) ρ divu

= ∂t(ψ(ρ)) + u · ∇ψ(ρ) + ρψ′(ρ) divu,so adding and subtrating ψ(ρ) divu yields :
ψ′(ρ) C(ρ) = ∂t

(
ψ(ρ)

)
+ div

(
ψ(ρ)u

)
+
(
ρψ′(ρ) − ψ(ρ)

)
divu. (A.1)Obtaining a proof of this last identity, in a weak sense and with minimal regularity assumptions for ρand u and inreasing properties of ψ is the objet of the theory of renormalized solutions. The followinglemma states a disrete analogue to (A.1).



138 Annexe A. Some results assoiated to �nite volume onvetion operatorsLemma A.0.1Let K ∈ M. Let ρ∗K and ρK be two positive real numbers. For σ ∈ E(K), let Fσ be a quantity assoiatedto the fae σ and the ontrol volume K, de�ned by
∀σ ∈ E(K), Fσ = ρσ Vσ.where ρσ and Vσ are a positive real number and a real number respetively, both assoiated to the edge

σ. Let ψ be a twie ontinuously di�erentiable funtion, de�ned over (0,+∞).Then the following identity holds :
[ |K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

Fσ

]
ψ

′

(ρK) =
|K|
δt

[
ψ(ρK) − ψ(ρ∗K)

]
+

∑

σ∈E(K)

ψ(ρσ) Vσ

+
[
ρKψ

′

(ρK) − ψ(ρK)
] ∑

σ∈E(K)

Vσ +Rσ,δt (A.2)where
Rσ,δt =

1

2

|K|
δt
ψ

′′

(ρK)(ρK − ρ∗K)2 − 1

2

∑

σ∈E(K)

Vσ ψ
′′(ρσ)(ρσ − ρK)2,and, ∀σ ∈ E(K), ρK ∈ [min(ρK , ρ

∗
K),max(ρK , ρ

∗
K)] and ρσ ∈ [min(ρσ, ρK),max(ρσ, ρK)]. If we supposethat the funtion ψ is onvex and that ρσ = ρK as soon as Vσ ≥ 0, then the residual Rσ,δt is non-negative.Proof Let be a twie ontinuously di�erentiable funtion, de�ned over (0,+∞), and K ∈ M. We have :

[ |K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

Fσ

]
ψ

′

(ρK) =
|K|
δt

(ρK − ρ∗K) ψ
′

(ρK) +
∑

σ∈E(K)

ψ(ρσ) Vσ

+
∑

σ∈E(K)

[
ρσψ

′

(ρK) − ψ(ρσ)
]
Vσ.By the regularity assumption for ψ, we may write Taylor expansions of ψ to obtain that there exists realsnumbers ρK ∈ [min(ρK , ρ

∗
K),max(ρ∗K , ρ

∗
K)] and, for all the faes σ ∈ E(K), ρσ ∈ [min(ρσ, ρK),max(ρσ, ρK)]suh that :

(ρK − ρ∗K)ψ
′

(ρK) = ψ(ρK) − ψ(ρ∗K) +
1

2
ψ

′′

(ρK)(ρK − ρ∗K)2,

ρσψ
′

(ρK) − ψ(ρσ) = ρKψ
′

(ρK) − ψ(ρK) − 1

2
ψ′′(ρσ)(ρσ − ρK)2,whih yields the result. �We now turn to the seond operator, for whih we have, at the ontinuous level and formally, using twiethe assumption ∂tρ+ div(ρu) = 0 :

ψ′(z) Cρ(z) = ψ′(z)
[
∂t(ρ z) + div(ρ z u)

]
= ψ′(z)ρ

[
∂tz + u · ∇z

]

= ρ
[
∂tψ(z) + u · ∇ψ(z)

]
= ∂t

(
ρψ(z)

)
+ div

(
ρψ(z)u

)
.Taking for z a omponent of the veloity �eld, this relation is the entral argument used to derive thekineti energy balane. The following lemma states a disrete ounterpart of this identity.



139Lemma A.0.2Let K ∈ M. Let ρ∗K and ρK be two positive real numbers. For σ ∈ E(K), let Fσ be a quantity assoiatedto the fae σ, suh that the following identity holds :
|K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

Fσ = 0. (A.3)Let u∗K and uK be two real numbers, and, to eah σ ∈ E(K), we assoiate a rela number uσ. Let ψ be atwie ontinuously di�erentiable funtion, de�ned over (0,+∞). Then the following relation holds :
[ |K|
δt

(
ρK uK − ρ∗K u

∗
K

)
+

∑

σ∈E(K)

Fσ uε

]
ψ′(uK)

=
|K|
δt

[
ρK ψ(uK) − ρ∗K ψ(u∗K)

]
+

∑

σ∈E(K)

Fσ ψ(uσ) +RK,δt (A.4)where :
RK,δt =

1

2

|K|
δt
ρ∗K ψ′′(uK)(uK − u∗K)2 − 1

2

∑

σ∈E(K)

Fσ ψ
′′(uσ) (uσ − uK)2,with, uK ∈ [min(uK , u

∗
K),max(uK , u

∗
K)] and, ∀σ ∈ E(K), uσ ∈ [min(uσ, uK),max(uσ, uK)]. If we supposethat the funtion ψ is onvex and that uσ = uK as soon as Fσ ≥ 0, then the residual Rσ,δt is non-negative.If we now take for ψ the funtion ψ(s) = s2/2 and write, ∀σ ∈ E(K), uσ = (uK + u

K |
σ
·)/2 (or, in otherwords, de�ne u

K |
σ
· as u

K |
σ
· = 2 uσ − uK), we get the following identity :

[ |K|
δt

(
ρK uK − ρ∗K u

∗
K

)
+

∑

σ∈E(K)

Fσ uε

]
uK

=
1

2

|K|
δt

[
ρK u

2
K − ρ∗K (u∗K)2

]
+

∑

σ∈E(K)

Fσ uK u
K |
σ
· +RK,δt, (A.5)with RK,δt =

1

2

|K|
δt
ρ∗K (uK − u∗K)2.Proof Let ψ be a twie ontinuously di�erentiable funtion, de�ned over (0,+∞). Using Equation (A.3),we obtain :

TK =
[ |K|
δt

(ρKuK − ρ∗Ku
∗
K) +

∑

σ∈E(K)

Fσ uσ

]
ψ′(uK) =

[ |K|
δt

ρ∗K (uK − u∗K) +
∑

σ∈E(K)

Fσ(uσ − uK)
]
ψ′(uK).By a Taylor expansion of ψ, then there exists a real number uK ∈ [min(u∗K , uK),max(u∗K , uK)] suh that :

ψ′(uK)
(
uK − u∗K

)
= ψ(uK) − ψ(u∗K) +

1

2
ψ′′(uK)

(
uK − u∗K

)2



140 Annexe A. Some results assoiated to �nite volume onvetion operatorsThen, using one again (A.3), we have :
TK =

|K|
δt

ρ∗K
(
ψ(uK) − ψ(u∗K)

)
+

1

2

|K|
δt
ρ∗K ψ

′′(uK) (uK − u∗K)2

+
∑

σ∈E(K)

Fσ (uσ − uK)ψ′(uK)

=
|K|
δt

(
ρKψ(uK) − ρ∗Kψ(u∗K)

)
+

∑

σ∈E(K)

Fσ
[
ψ(uK) + ψ′(uK)(uσ − uK)

]

+
1

2

|K|
δt
ρ∗K ψ

′′(uK) (uK − u∗K)2.One again by a Taylor expansion of ψ, for any fae σ ∈ E(K), there exists a real number uσ ∈
[min(uσ, uK),max(uσ, uK)] suh that :

ψ(uK) + ψ′ (uK)(uσ − uK) = ψ(uσ) −
1

2
ψ′′(uσ) (uσ − uK)2.Hene :

TK =
|K|
δt

ρ∗K
(
ψ(uK) − ψ(u∗K)

)
+

∑

σ∈σ(K))

Fσ ψ(uσ) +RK,δt,where RK,δt is given by the expression given in the statement of the lemma. This yields the �rst assertionof the lemma ; the last two ones are straightforward onsequenes of this equality. �



AnnexeB The Riemann problem for thehomegeneous model
In this setion, we show how to solve the RIemann problem for the homogeneous model.B.1 The system of onservation laws and its mathematial pro-pertiesThe model � We address in this setion a model for two-phase �ows (without phase hange), whihreads, in the one-dimensionnal ase :

∣∣∣∣∣∣∣∣∣∣∣∣

∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p) = 0,

∂t(ρy) + ∂x(ρyu) = 0,

(B.1)where u stands for the �uid veloity, p for the pressure, ρ for the �uid density and y stands for the gasmass fration. This system must be omplemented by an equation of state, whih takes the form :
ρ =

1
y

ρg
+

1 − y

ρl

, (B.2)where ρg and ρl stand for the (phasi) gas and liquid density respetively. We assume that the liquiddensity ρl is onstant, and that the gas phase obeys the perfet gas law ρg = p/(RT ), where where R isthe gas onstant and T is the absolute temperature. This allows to ompute the pressure from relation(B.2), in order to obtain an expression of the quantity ∂xp as a funtion of the onservative variables :
p =

RTρl (ρy)

ρl + (ρy) − ρ
. (B.3)



142 Annexe B. The Riemann problem for the homegeneous modelWe de�ne q = ρu, z = ρy, U = (ρ, q, z)t. With these de�nitions, the system (B.1) reads :
∂tU + ∂x

(
F (U)

)
= 0, with F (U) = (q,

q2

ρ
+ p(ρ, z), z)t, p(ρ, z) =

RTρlz

ρl + z − ρ
. (B.4)We suppose that the variable U belongs to the onvex subset of R3 (sometimes referred to as the set ofstates of the system) :

C =
{
(ρ, q, z) ∈ R

3, ρ > 0, 0 < z ≤ ρ, ρl + z − ρ > 0
}
,whih ensures in partiular that the equation of state makes sense. For a regular solution, System (B.4)may be set in non-onservative form :

∂tU + ∂xF (U) = ∂tU +A(U) · ∂xU = 0,with :
A =




0 1 0

− q
2

ρ2
+ ∂ρp

2q

ρ

q2

ρ2
+ ∂zp

−qz
ρ2

z

ρ

q

ρ



, (B.5)and, by (B.3) :

∂ρp =
RTρlz

(ρl + z − ρ)2
, ∂zp =

RTρl (ρl − ρ)

(ρl + z − ρ)2
.Hyperboliity, eigenvalues and eigenvetors of the systemDefinition B.1.1 (hyperboli problems)Let C be an open subset of Rn. We onsider the nonlinear system of onservation laws :

∂tU +B(U) · ∂x
(
F (U, x, t)

)
= 0, x ∈ R, t > 0, (B.6)where U ∈ C is a vetor funtion of x an t, and F ∈ Rn stands for a regular vetor funtion dependingon U as well as, possibly, on x and t. We denote by A the n×n-matrix assoiated to the di�erential of Fwith respet to U ; A depends on U as well as, possibly, on x and t. System (B.6) is said to be hyperboliif, for eah x, t and U , all the eigenvalues of the matrix A belong to R :

λ1(U) ≤ λ2(U) ≤ ... ≤ λn(U).To eah eigenvalue λk(U), we assoiate an eigenvetor rk(U) :
A(U) · rk(U) = λk(U) rk(U).The kth harateristi �eld is said to be genuinely nonlinear if :

Dλk(U) · rk(U) 6= 0, ∀U ∈ C,where D stands for the di�erential operator in Rn (i.e. Dλk stands for the derivative of λk with respetto U). The kth harateristi �eld is said to be linearly degenerate if :
Dλk(U) · rk(U) = 0, ∀U ∈ C.



B.1. The system of onservation laws and its mathematial properties 143Returning, to alleviate notations, to non-onservative variables, the matrix A reads :
A =




0 1 0

∂ρp− u2 2u u2 + ∂zp

−uy y u


 . (B.7)We denote by a the positive real number suh that :

a2 = ∂ρp+ y ∂zp =
RTρl z

(ρl + z − ρ)2
.This quantity a is referred to as the sound veloity of the mixture. The matrix A has three eigenvalues,whih, with this notation, read :

λ1(U) = u− a, λ2(U) = u, λ3(U) = u+ a,and the system is thus hyperboli. The orresponding eigenvetors are given by :
r1 =




1

u− a

y


 , r2 =




1

u

z/(ρ− ρl)


 , r3 =




1

u+ a

y


 .A tedious but straightforward omputation shows that the harateristi �elds assoiated to the eigenva-lues λ1 and λ3 are genuinely nonlinear, while the harateristi �eld assoiated to λ2 is linearly degenerate.Riemman invariantsDefinition B.1.2 (Riemann invariants)Fo 1 ≤ k ≤ n, a smooth funtion W : C → R is alled a k-Riemann invariant if it satis�es :

DW (U) · rk(U) = 0, ∀U ∈ C.A k-Rieman invariant W is onstant on a urve V : ξ ∈ R → V (ξ) ∈ Rn if :
d

dξ
W (V (ξ)) = DW (V (ξ)).V ′(ξ) = 0, (B.8)whih holds if V is an integral urve of rk, i.e. satis�es that V ′(ξ) is olinear to rk(V (ξ)). There existloally (n− 1) k-Rieman invariants whose gradients are linearly independent.Let us now searh for the Riemann invariants assoiated of the system equation (B.1). Aording to thede�nition B.1.2, we have two Riemann invariants for eah eigenvalue of A.� the 1-Riemann invariants are :

W1,1 = y, W1,2 = u+
√
RTy log(

ρ− z

ρl + z − ρ
). (B.9)� the 2-Riemann invariants are given by :

W2,1 = u, W2,1 = p. (B.10)� the 3-Riemann invariants are :
W3,1 = y, W3,2 = u−

√
RTy log(

ρ− z

ρl + z − ρ
). (B.11)



144 Annexe B. The Riemann problem for the homegeneous modelRarefation waves � System (B.4) satis�es the property of self-similarity, i.e. is invariant underthe transormation t 7→ αt, x 7→ αx, α > 0. If the intial data of the problem is also invariant under thetransformation x 7→ αx, we thus onlude that a regular solution to (B.4) must satisfy U(x, t) = U(αx, αt)whatever α > 0 may be, i.e. U(x, t) = U(x/t), for t > 0. Suh a (regular) solution is alled a rarefationwave.Let ξ = x/t, and V (ξ) = U(x/t), and substitute this expression for U in (B.4), to obtain :
A(V ) V ′(ξ) = ξ V ′(ξ).We dedue for this relation that either V ′ is zero, whih orresponds to the trivial ase of a onstantstate, or this vetor is neessarily olinear to an eigenvetor rk(V ) of the matrix A(V ) :

V ′(ξ) = β rk
(
V (ξ)

)
, λk

(
V (ξ)

)
= ξ. (B.12)The rarefation waves are always assoiated to genuinely nonlinear �elds, so, for the problem at hand,there are two possible families of rarefation waves, the �rst one assoiated to λ1 and the seond one to

λ3 ; a solution of the �rst lass is alled a 1-rarefation wave, and a solution of the seond lass is alleda 3-rarefration wave. Thanks to (B.8), Riemann invariants are kept onstant in rarefation waves, so an1-wave satis�es :
W1,1(x, t) = y = cste, W1,2(x, t) = u+

√
RTy log(

ρ− z

ρl + z − ρ
) = cste, (B.13)and a 3-wave satis�es :

W3,1(x, t) = y = cste, W3,2(x, t) = u−
√
RTy log(

ρ− z

ρl + z − ρ
) = cste. (B.14)Disontinuous solutions and entropy ondition � It is wellknown that hyperboli problems donot always have ontinuous solutions. This leads to introdue the notion of "weak solution", de�nedas a solution in the distribution sense of the problem in onservative form, here System (B.1). Let ussuppose that suh a solution is pieewise onstant, onsisting (loally) in two onstant states separatedby a disontinuity. Exploiting the de�nition of weak solutions yields algebrai relations (one per equation)whih links the jump through the disontinuity of the solution, the assoiated �uxes and the veloity ofthe disontinuity, de�ned by σ = d(xs)/dt, where xs stands for the disontinuity loation ; suh a relationis alled a Rankine-Hugoniot ondition, and the system onstituted by these relations reads :

σ[U ] = [F (U)], (B.15)where [U ] (resp. [F (U)]) stands for the jump of U (resp. F (U)) through the disontinuity. Unfortunately,this algebrai system is not su�ient to ensure the uniqueness of the solution (of ourse, in the lass ofpieewise onstant funtions). Hene, we need to introdue some riterion that enables us to hoose the"physially relevent" solution among all the weak solutions of the problem. This riterion is alled the"Lax entropy onditions".



B.2. Solution of the Riemann problem 145Definition B.1.3 (Lax entropy onditions)Let U be de�ned by U = UL if x < σt, and U = UR if x > σt, where UL and UR are two onstant states(i.e. two onstant vetors of Rn). We say that the disontinuity satis�es the Lax entropy onditions ifthere exists an index k ∈ {1, 2 . . . , n} suh that we have either :
λk−1(U

L) < σ < λk(U
L) and λk(UR) < σ < λk+1(U

R), (B.16)if the kth harateristi �eld is genuinely nonlinear (setting, in this relation, λ0 = −∞ and λn+1 = +∞),or :
λk(U

L) = σ = λk(U
R) (B.17)if the kth harateristi �eld is linearly degenerate.Shoks � For System (B.1), we have two lass of disontinuities assoiated to genuinely nonlinear �elds,whih we all shoks : a 1-shok is assoiated to λ1 and a 3-shok is assoiated to λ3. Exploiting theRankine-Hugoniot and Lax entropy onditions, we �nd that the quantity y is left onstant through theshoks, and that a state (u, p) may be onneted to UL and UR respetively by a 1-shok wave and a3-shok wave if :� 1-shok wave :

u = uL − p− pL√
p

√
ρlRT yL

ρlRT ρL yL + pL ρL (1 − yL)
, pL ≤ p. (B.18)� 3-shok wave :

u = uR +
p− pR√

p

√
ρlRT yR

ρlRT ρR yR + pR ρR (1 − yR)
, pR ≤ p. (B.19)Contat disontinuity � The possible disontinuity assoiated to the linearly degenerated �eld isalled a ontat disontinuity. The Riemann invariants are known to be kept onstant through suh adisontinuity, so suh is the assoiated eingenvalue of the system. The Lax ondition thus implies that theveloity of the disontinuity is neessarily equal to this onstant value. Here, the ontat disontinuity isassoiated to the seond eigenvalue λ2 = u, and thus, thanks to (B.10) :

σ = UL = UR, pL = pR.B.2 Solution of the Riemann problemA Riemann problem onsists in searhing for the solution to an hyperboli problem with a pieewiseonstant initial data, with a single disontinuity, usually loated at the origin. For �uid mehanis problem,it is often alled a "shok tube problem", sine it an be thought of as an in�nitely long (in order to avoidre�etions) tube where the left and the right regions are separated by a diaphragm, and �lled by thesame �uid in two di�erent physial states. At the bursting of the diaphragm, the disontinuity betweenthe two initial states breaks into leftward and rightward moving waves, wih are separated by a ontatsurfae.For the system under onsideration, aording to the wave struture desribed in the previous setion,eah wave pattern is omposed by a ontat disontinuity (C) in the middle, and a shok (S) or a



146 Annexe B. The Riemann problem for the homegeneous model
x= 0

L Rtwo-�uidFig. B.1 � Geometry of tuberarefation wave (R) at the left and right hand sides separating uniform states (see Figure B.2). All theavailable ombinations produe four wave patterns ; RCR, RCS, SCR,SCS, whih are self-similar, that isonly depend on x/t.Let UL be the left state and UR be the right one. The unknown region between the left and right wavesis divided by the middle wave (ontat disontinuity) into two intermediate states U1 and U2 suh that :� U2 is onneted to the state UL by a 1-wave,� U1 is onneted to the state U2 by a 2-wave,� UR is onneted to the state U1 by a 3-wave.We use the fat that the pressure p and the veloity u are onstant through the ontat disontinuity,and the gas mass fration y is a Riemann invariant for both the 1-wave and the 3-wave, to obtain :
u1 = u2 = u∗, p1 = p2 = p∗, y1 = yL, y2 = yR.where (p∗, u∗) stands for the pressure and veloity in the two intermediate states. The problem thusboils down to determine this pair of values. To this purpose, we use the results obtained in the previoussetion :

ontat disontinuity
UL UR

1-rarefationor1-shok wave 3-rarefationor3-shok wave
onstant state U1onstant state

U2

t

x
0

λ1(UL)

λ1(U2)

λ2(U2)

λ3(U1)

λ3(UR)

Fig. B.2 � Solution of the Riemann problem in (x, t) spae.



B.2. Solution of the Riemann problem 147� 1-wave � If p∗ > pL, the 1-wave is a shok, and the pair (u∗, p∗) satis�es (B.18) with UL = UL :
u∗ = uL − p∗ − pL√

p∗

√
ρlRT yL

ρlRT ρL yL + pL ρL (1 − yL)
, p∗ ≥ pL.Otherwise, the 1-wave is a rarefation wave, and, using the expression (B.9) of the seond assoiatedRiemann invariant, we obtain that (u∗, p∗) satis�es :

u∗ = uL +
√
RTyL log(

pL
p∗

), with p∗ ≤ pL.Equation (B.18) and this latter relation de�ne a urve C1 in the plane (u, p), representative of a funtionof p∗, p∗ ∈ (0,+∞) ; for yL > 0, this funtion is stritly inreasing, and one-to-one from (0,+∞) to R(limp∗→0 u
∗ = +∞, and limp∗→+∞ u∗ = −∞).� 3-wave � Similarly, If p∗ > pL, the 3-wave is a shok, and the pair (u∗, p∗) satis�es (B.19) with

UR = UR :
u∗ = uR +

p∗ − pR√
p∗

√
ρlRT yR

ρlRT ρR yR + pR ρR (1 − yR)
, p∗ ≥ pR.Otherwise, the 3-wave is a rarefation wave, and, using the expression (B.11) of the seond assoiatedRiemann invariant, we obtain that (u∗, p∗) satis�es :

u∗ = uR −
√
RTyR log(

pR
p∗

), with p∗ ≤ pR.Equation (B.19) and this latter relation also de�ne a urve C3 in the plane (u, p), representative ofa funtion of p∗, p∗ ∈ (0,+∞) ; for yR > 0, this funtion is stritly dereasing, and one-to-one from
(0,+∞) to R (limp∗→0 u

∗ = −∞, and limp∗→+∞ u∗ = +∞).The pair (u∗, p∗) is loated at the (unique) intersetion of the urves C1 and C3.We give below two exemples of appliation of this strategy to �nd the solution of partiular Riemannproblems.B.2.1 Sod shok tubeWe assume here that the gas mass fration is set to y ≡ 1 (one phase problem) ; the equation of state isgiven by p = ρRT , and the two-phase problem just boils down to the isothermal Euler equations. Thetwo initial onstant states are given by :
(
ρ

u

)

L

=

(
1

0

)
,

(
ρ

u

)

R

=

(
0.125

0

)
.The parameters R and T are adjusted to produe RT = 1.We start by determining the intermediate states by drawing the set of aessible states from the left andright in the spae (p, u) (see Figure B.3), and we determine the intersetion :

(p∗, u∗) = (0.34, 1.06).The wave struture of this system onsists in a shok travelling to the right with a veloity equal to 1.66and a rarefation wave travelling to the left, whih reads :
p(x) =

1

ex+1
and u(x) = x+ 1, for − t 6 x 6 0.061 t.This solution is drawn in Fig B.4.
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Fig. B.3 � urves of the shok-rarefation in the spae (p, u)

Fig. B.4 � Sod shok tube problem � Exat solution at t = 1B.2.2 Two-�uid shok tubeWe now address a two-phase problem, the equation of state (B.3) of whih we reall :
p =

RTρℓρy

ρℓ + ρy − ρ
.The parameters R and T are adjusted to produe RT = 10 and the liquid density is onstant and set to

ρℓ = 0.8. The two initial onstant states are given by :



ρ

u

y




L

=




1.

5.

0.3


 ,




ρ

u

y




R

=




2.

1.

0.8


 .We determine the intermediates states by drawing the set of aessible states from the left and right in
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Fig. B.5 � Curves of the shok-rarefation in the spae (p, u)the spae (p, u) (see Figure B.5), and then ompute the intersetion :
(u∗, p∗) = (3.14 , 67.06).The assoiated waves are a 1-shok and a 3-shok. The wave struture of this system thus onsists ina shok wave travelling to the left and a shok wave travelling to the right, separated by a ontatdisontinuity in the middle, see Figure B.6. The solution reads :� (uL, pL) is onneted to (u∗, p∗) by 1-shok with a shok veloity equal to −18.16, and (u∗, p∗) isonneted to uR by a 3-shok with a shok veloity equal to 9.18,� y = yL up to the ontat disontinuity, and then equal to yR ; the ontat disontinuity veloity isequal to u∗ = 3.14.� ρL is onneted to ρ1 by the 1-shok (shok veloity equal to −18.16), then ρ1 is onneted to ρ2 by theontat disontinuity (veloity equal to u∗ = 3.14), then, �nally, ρ2 is onneted to ρR by the 3-shok(shok veloity equal to 9.18).
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Fig. B.6 � Two-phase : shok � ontat disontinuity � shok - Exat solution at t = 0.1.



AnnexeC Staggered disretizations,pressure orretions shemesand all speed barotropi �ows

W
e present in this paper a lass of shemes for the solution of thebarotropi Navier-Stokes equations. These shemes work on ge-neral meshes, preserve the stability properties of the ontinuousproblem, irrespetively of the spae and time steps, and boil down, when theMah number vanishes, to disretizations whih are standard (and stable) inthe inompressible framework. Finally, we show that they are able to apturesolutions with shoks to the Euler equations.

151



Plan du Chapitre CC.1 Introdution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153C.2 The shemes : general form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153C.2.1 Meshes and unknowns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153C.2.2 The shemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155C.3 The stability issue and onsequenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157C.3.1 A stability result for the onvetion . . . . . . . . . . . . . . . . . . . . . . . . 157C.3.2 Disretization of the onvetion term . . . . . . . . . . . . . . . . . . . . . . . . 158C.3.2.a MAC sheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158C.3.2.b Rannaher-Turek element . . . . . . . . . . . . . . . . . . . . . . . . . 159C.4 Shemes and stability estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161C.5 Euler equations and solutions with shoks . . . . . . . . . . . . . . . . . . . . . . . . 164C.6 Disussion and perspetives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



C.1 IntrodutionThe problem addressed in this paper is the system of the so-alled barotropi ompressible Navier-Stokesequations, whih reads :
∂tρ̄+ div(ρ̄ū) = 0, (C.1a)
∂t(ρ̄ū) + div(ρ̄ū ⊗ ū) + ∇p̄− div(τ (ū)) = 0, (C.1b)
ρ̄ = ℘(p̄), (C.1)where t stands for the time, ρ̄, ū and p̄ are the density, veloity and pressure in the �ow, and τ (u)stands for the shear stress tensor. The funtion ℘(·) is the equation of state used for the modelling ofthe partiular �ow at hand, whih may be the atual equation of state of the �uid or may result fromassumptions onerning the �ow ; typially, laws as ℘(p̄) = p̄1/γ , where γ is a oe�ient whih is spei�to the onsidered �uid, are obtained by making the assumption that the �ow is isentropi. This systemof equations is posed over Ω× (0, T ), where Ω is a domain of R

d, d ≤ 3 supposed to be polygonal (d = 2)or polyhedral (d = 3), and the �nal time T is �nite. We suppose that the boundary of Ω is split into
∂Ω = ∂ΩD ∪ ∂ΩN , and we suppose that the veloity and density are presribed on ∂ΩD, while Neumannboundary onditions are presribed on ∂ΩD. The �ow is assumed to enter the domain on ∂ΩD and toleave it on ΩN . This system must be supplemented by initial onditions for ρ̄ and ū.The objetive of this paper is to present a lass of shemes whih enjoy three essential features. First, theseshemes work on quite general two and three dimensional meshes, inluding loally re�ned non-onforming(i.e. with hanging nodes) disretizations. Seond, they respet the (expeted) stability properties ofthe ontinuous problem at hand, irrespetively of the spae and time step : positivity of the density,onservation of mass, energy inequality. Third, they boil down, for vanishing Mah numbers, to usualstable oupled or pressure orretion shemes, whih means that the disretization enjoys a disrete inf-sup ondition. Note, even if this aspet is left beyond the sope of this paper, that this implies that aontrol of the pressure will be obtained through a ontrol of its gradient ; this property is used as a entralargument to obtain onvergene results on model problems [21, 18, 17℄.This paper is organized as follows. First, we desribe the general form of the shemes (Setion C.2).Then we show how stability requirements are taken into aount to design the disretization of theveloity onvetion term (Setion C.3). The �nal expression for the shemes is given in Setion C.4, andtheir stability properties are stated. Finally, we disuss their apability to apture solutions of the Eulerequations with shoks (Setion C.5).C.2 The shemes : general formC.2.1 Meshes and unknownsA �nite volume mesh of Ω is de�ned by a set M of non�empty onvex open disjoint subsets K of Ω (theontrol volumes), suh that Ω̄ =

⋃
K∈M K̄. We denote by E the set of edges (in 2D) or faes (in 3D), by

E(K) ⊂ E the set of faes of the ell K ∈ M, by Eext and Eint the set of boundary and interior faes,respetively. The set of external faes Eext is split in EN and ED, whih stand for the set of the faesinluded in ∂ΩN and ∂ΩD, respetively. Eah internal fae, denoted by σ ∈ Eint, is supposed to haveexatly two neighboring ells, say K, L ∈ M, and K̄ ∩ L̄ = σ̄ whih we denote by σ = K|L. By analogy,



154 Annexe C. Staggered disretizations, pressure orretions shemes and all speed barotropi �owswe write σ = K|ext for an external fae σ of K, even if this notation is somewhat inorret, sine K mayhave more than one external edge. The mesh M will be referred to hereafter as the "primal mesh".The outward normal vetor to a fae σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by
|K| the measure of K and by |σ| the (d− 1)-measure of the fae σ.Then, for σ ∈ E and K ∈ mesh suh that σ ∈ E(K) (in fat, the only ell if σ ∈ Eext and one amongthe two possible ones if σ ∈ Eint), we denote by DK,σ a subvolume of K having σ as a fae (see FigureC.1), and by |DK,σ| the measure of DK,σ. For σ ∈ Eint, σ = K|L, we set Dσ = DK,σ ∪ DL,σ, so
|Dσ| = |DK,σ|+ |DL,σ| (see Figure C.1), and for σ ∈ Eext, σ = K|ext, Dσ = DK,σ, so |Dσ| = |DK,σ|. Theset of faes of the dual ell Dσ is denoted by Ē(Dσ), and the fae separating two adjaent dual ells Dσand Dσ′ is denoted by ε = σ|σ′.For 1 ≤ i ≤ d, the degree of freedom for the ith omponent of the veloity are assumed to be assoiatedto a subset of E , denoted by E(i) ⊂ E , and are denoted by :

{
uσ,i, σ ∈ E(i)

}
.The sets of internal, external, Neumann and Dirihlet faes assoiated to the omponent i are denotedby E(i)

int, E(i)
ext, E(i)

N and E(i)
D (so, for instane, E(i)

int = Eint ∩ E(i)). We onsider the following assumption :(H1) for 1 ≤ i ≤ d, ∀K ∈ M, ∪σ∈E(i)∩E(K)DK,σ = Kand ∑

σ∈E(i)∩E(K)

|DK,σ| = |K|,whih means that the volumes DK,σ, σ ∈ E(i), are disjoint, and that, for 1 ≤ i ≤ d, (Dσ)σ∈E(i) is apartition of Ω. The sets of faes, internal faes and Neumann faes of this dual mesh are denoted by Ē(i),
Ē(i)
int and Ē(i)

N respetively.We suppose that the degrees of freedom for the pressure and the density are assoiated to primal ells,so they read
{
pK , K ∈ M

}
,
{
ρK , K ∈ M

}
.We denote by V the approximation spae for the veloity, by V (i), 1 ≤ i ≤ d the approximation spaesfor the veloity omponents and by Q the approximation spae for the pressure and the density, and weidentify the disrete funtions to their degrees of freedom :

∀v ∈ V , vi ∈ V (i), 1 ≤ i ≤ d and vi = (vσ,i)σ∈E(i) ; ∀q ∈ Q, q = (qK)K∈M.For the veloity, sine the onerned degrees of freedom at loated on the boundary, the Dirihlet boundaryonditions are enfored in the approximation spae :For 1 ≤ i ≤ d, ∀σ ∈ E(i)
D , uσ,i =

1

|σ|

∫

σ

uD,i dγ,where uD,i stands for the ith omponent of the presribed veloity.
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Dσ

Dσ′

σ
′=K|MK

σ
=
K

|L

L

M

ε=D
σ |D

σ′

Fig. C.1 � Notations for ontrol volumes and diamond ells.C.2.2 The shemesWe now introdue the following notations and assumptions :� for K ∈ M and σ ∈ E(K), by u ·nK,σ, we denote an approximation of the normal veloity to thefae σ outward K,� for v ∈ V , 1 ≤ i ≤ d and σ ∈ E(i), we denote by (divτ(v))
(i)
σ an approximation of the visous termassoiated to σ and to the omponent i, and we suppose that the following assumption is satis�ed :(H2) d∑

i=1

∑

σ∈E(i)

|Dσ| (divτ(v))(i)σ vσ,i ≥ 0.� for q ∈ Q, 1 ≤ i ≤ d and σ ∈ E(i), we denote by (∇q)
(i)
σ the omponent i of the disrete gradientof q at the fae σ, and we suppose that the following assumption is satis�ed for any q ∈ Q and

v ∈ V : (H3) d∑

i=1

∑

σ∈E(i)

|Dσ| (∇q)(i)σ vσ,i =
∑

K∈M

qK
∑

σ∈E(K)

|σ| v · nK,σ.With these notations, we are able to write the general form of the impliit sheme :
∀K ∈ M,

|K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

FK,σ = 0. (C.2a)For 1 ≤ i ≤ d, ∀σ ∈ E(i)
int ∪ E(i)

N ,

|Dσ|
δt

(ρσuσ,i − ρ∗σu
∗
σ,i) +

∑

ε∈Ē(Dσ)

Fσ,εuε,i

+|Dσ| (∇p)
(i)
σ + |Dσ| (divτ(u))

(i)
σ = 0,

(C.2b)
∀K ∈ M, ρK = ℘(pK), (C.2)where FK,σ stands for the mass �ux leaving K through σ, ρσ stands for an approximation of the densityat the fae, and Fσ,ε is a mass �ux leaving Dσ through ε. For the �ux FK,σ at the internal edge σ = K|L,we hoose an upwind approximation of the density :

FK,σ = |σ| u · nK,σ ρup
σ , with ρup

σ = ρK if FK,σ ≥ 0, ρup
σ = ρL otherwise. (C.3)



156 Annexe C. Staggered disretizations, pressure orretions shemes and all speed barotropi �owsOn σ ∈ ED, the density ρup
σ is given by the boundary ondition, and, on σ ∈ EN , σ = K|ext, ρup

σ = ρK ,whih, sine the �ow is supposed to enter the domain on ∂ΩD and to leave the domain on ∂ΩN , isonsistent with the upwind hoie. For the veloity omponents at the dual edges, uε,i, we hoose eitherthe entered or upwind approximation on the internal faes, and the value at the fae for the out�owones.A pressure orretion sheme is obtained from (C.2) by splitting the resolution in two steps :1- Veloity predition step � Solve for ũ ∈ V the momentum balane equation with the beginning-of-step pressure :For 1 ≤ i ≤ d, ∀σ ∈ E(i)
int ∪ E(i)

N ,

|Dσ|
δt

(ρσũσ,i − ρ∗σu
∗
σ,i) +

∑

ε∈Ē(Dσ)

Fσ,εũε,i

+|Dσ| (∇p∗)
(i)
σ + |Dσ| (divτ(ũ))

(i)
σ = 0,

(C.4)2 - Corretion step � Solve for u ∈ V and p ∈ Q :
∀K ∈ M,

|K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

FK,σ = 0. (C.5a)For 1 ≤ i ≤ d, ∀σ ∈ E(i)
int ∪ E(i)

N ,

|Dσ|
δt

ρσ (uσ,i − ũσ,i) + |Dσ|
(
∇(p− p∗)

)(i)
σ

= 0,
(C.5b)

∀K ∈ M, ρK = ℘(pK), (C.5)The equations of the orretion step are ombined to produe a nonlinear paraboli problem for thepressure, whih reads, ∀K ∈ M :
|K|
δt

(
℘(pK) − ρ∗K

)
+
∑

σ=K|L

ρup
σ

ρσ

|σ|2
|Dσ|

(φK − φL) +
∑

σ∈E(K)∩EN

ρup
σ

ρσ

|σ|2
|Dσ|

φK

=
1

δt

∑

σ∈E(K)

|σ| ρup
σ ũ · nK,σ,

(C.6)where φ ∈ Q is de�ned by φ = p−p∗. Note that the seond and third terms at the left-hand side look likea �nite volume disretization of a di�usion operator, with homogeneous Neumann boundary onditionson ED and Dirihlet boundary onditions on EN for the pressure inrement, as usual in pressure orretionshemes (see [12℄ for a disussion on the e�et on these spurious boundary onditions).The standard disretizations entering the present framework are either low-degree non-onforming �niteelements, namely the Crouzeix-Raviart element [11℄ for simpliial meshes or the Rannaher-Turek element[65℄ for quadrangles and hexahedra, or, for strutured artesian grids, the MAC sheme [37, 36℄. Wedesribe here the onstrution of the di�usion and pressure gradient term for the �nite element shemes,supposing for the sake of simpliity that the veloity obeys homogeneous Dirihlet boundary onditionson ∂Ω. Let σ ∈ Eint and ϕσ be the �nite element shape funtion assoiated to σ. In Rannaher-Turek or



C.3. The stability issue and onsequenes 157Crouzeix-Raviart elements, a degree of freedom for eah omponent of the veloity is assoiated to eahedge, so E(i)
int = Eint, for 1 ≤ i ≤ d. Let 1 ≤ i ≤ d be given, let e(i) be the ith vetor of the anonial basisof Rd and let us de�ne ϕ

(i)
σ by :

ϕ(i)
σ = ϕσ e(i).Then the usual �nite element disretization reads, for a onstant visosity Newtonian �uid (so supposing

divτ (u) = µ∆u + (µ/3)∇div(u), with µ the visosity) :
(divτ (u))(i)σ =

∑

K∈M

µ

∫

K

∇u : ∇ϕ(i)
σ dx +

u

3

∫

K

divu divϕ(i)
σ dx.The pressure gradient term at the internal fae σ = K|L reads :

(∇p)(i)σ =
∑

K∈M

∫

K

p divϕ(i)
σ dx = |σ| (pL − pK) nK,σ · e(i).C.3 The stability issue and onsequenesC.3.1 A stability result for the onvetionAt the ontinuous level, let us assume that the mass balane ∂tρ + div(β) = 0 holds, with β a regularvetor-valued funtion. Then, for all salar regular funtions u and v, we have :

∫

Ω

[
∂t(ρu) + div(uβ)

]
v dx =

∫

Ω

[
∂t(ρu) −

1

2
(∂tρ)u

]
v dx + s(u, v) +

1

2

∫

∂ΩN

u vβ · ndγ (C.7)where s is the following skew-symmetri bilinear form :
s(u, v) =

1

2

∫

Ω

vβ · ∇udx − 1

2

∫

Ω

uβ · ∇v dx.Taking u = v = ui and summing over i, the �rst term gives the time derivative of the kineti energy, theseond one vanishes and the last one orresponds to the kineti energy �ux through the boundary of thedomain. The following Lemma, proven in [48℄, states a disrete ounterpart of this omputation (see also[1℄ and [22℄ for a diret estimate of the kineti energy, for an impliit and expliit sheme respetively).Lemma C.3.1Let us suppose that, for an index i, 1 ≤ i ≤ d, the following disrete mass balane holds over the dualells assoiated to the ith omponent of the veloity :
∀σ ∈ E(i)

int ∪ E(i)
N ,

|Dσ|
δt

(ρσ − ρ∗σ) +
∑

ε∈Ē(Dσ)

Fσ,ε = 0. (C.8)Let u, v ∈ V (i), and let us suppose that these disrete funtions obey homogeneous Dirihlet boundary.Then we have :
∑

E∈E
(i)
int∪E

(i)
N

vσ

[ |Dσ|
δt

(ρσuσ − ρ∗σu
∗
σ) +

∑

ε∈Ē(Dσ)

Fσ,εuε

]

≥ TΩ,k(u, v) + TΩ,s(u, v) + T∂Ω(u, v), (C.9)
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TΩ,k(u, v) =

∑

E∈E
(i)
int∪E

(i)
N

|Dσ|
δt

(ρσuσ − ρ∗σu
∗
σ) vσ − 1

2
(ρσ − ρ∗σ)uσ vσ,

TΩ,s(u, v) = S(u, v) − S(v, u), S(u, v) =
1

2

∑

ε∈Ē
(i)
int , ε=Dσ |Dσ′

Fσ,ε vε (uσ′ − uσ),

T∂Ω(u, v) =
1

2

∑

ε∈Ē
(i)
N
, σ=Dσ |ext

Fσ,ε uε vε.Of ourse, TΩ,s(u, u) = 0, and an easy omputation shows that :
TΩ,k(u, v) =

1

2δt

∑

E∈E
(i)
int∪E

(i)
N

|Dσ|
[
ρσu

2
σ − ρ∗σ(u

∗
σ)

2
]
.Applying Lemma C.3.1 to eah omponent of the veloity, the obtained term is thus the disrete time-derivative of the kineti energy, and may be used to obtain stability estimates for the sheme (see SetionC.4).Remark 9 (Non-homogeneous Dirihlet boundary onditions)The limitation to homogeneous Dirihlet boundary onditions may be seen, from the proof, to stem fromthe fat that no balane equation is written on the dual ells assoiated to edges lying on ∂ΩD. Theproblem thus may be �xed by keeping these degrees of freedom and using a penalization tehnique.Remark 10 (Arti�ial boundary onditions)Lemma C.3.1 may be used to derive arti�ial boundary onditions allowing the �ow to enter the domainthrough ∂ΩN , by �rst olleting the boundary terms in the variational form of the momentum balaneequation (i.e. adding to T∂Ω(u, v) the terms issued from the di�usion and the pressure gradient) andthen imposing that the result may be written as a linear form ating on the test funtion (see [6℄ for asimilar development in the inompressible ase). The so-built boundary ondition is observed in pratieto give quite good results when modelling external �ows [48℄.C.3.2 Disretization of the onvetion termThe problem to takle is now the following one : on one side, the disrete mass balane over the dualells (C.8) is neessary for the stability of the sheme ; on the other side, the mass balane is only writtenby the sheme(s) for the primal ells (Equation (C.2a) or (C.5a)). We are thus lead to express the mass�uxes (Fσ,ε) through the dual edges as a funtion of the mass �uxes (FK,σ) through the primal ones, insuh a way that the disrete balane over the primal ells implies the same property over the dual ones.We desribe in this setion how this may be done, �rst for the MAC (strutured) mesh and seond forthe Rannaher-Turek element on general quadrangles.C.3.2.a MAC shemeWe desribe a possible onstrution of the momentum onvetion operator for the MAC sheme [38℄. Intwo spae dimensions and with the loal notations introdued on Figure C.2, the mass balane on the
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FO FC FE

FNW

FSW

FNE

FSE

K L

Fig. C.2 � Loal notations for the de�nition of the mass �uxes at the dual edges with the MAC sheme.primal ells reads :
K :

|K|
δt

(̺K − ̺∗K) − FO − FSW + FC + FNW = 0,

L :
|L|
δt

(̺L − ̺∗L) − FC − FSE + FE + FNE = 0.Multiplying both equations by 1/2 and summing them yields, for σ = K|L :
|Dσ|
δt

(̺σ − ̺∗σ)

− 1

2

[
FW + FC

]
− 1

2

[
FSW + FSE

]
+

1

2

[
FC + FE

]
+

1

2

[
FNW + FNE

]
= 0, (C.10)with the usual de�nition of the dual ell Dσ, whih implies that |DK,σ| = |K|/2 and |DL,σ| = |L|/2, andwith the following de�nition of the density on the fae :

|Dσ| ̺σ = |DK,σ| ̺K + |DL,σ| ̺L. (C.11)Equation (C.10) thus suggests the following de�nition for the mass �uxes at the dual faes :left fae : Fσ,ε = −1

2

[
FW + FC

]
; right fae : Fσ,ε =

1

2

[
FC + FE

]
;bottom fae : Fσ,ε = −1

2

[
FSW + FSE

]
; top fae : Fσ,ε =

1

2

[
FNW + FNE

]
.Note that this de�nition is rather non-standard : for instane, the �ux at the left fae of DK|L, whihis inluded in K, may involve densities of the neighbouring primal ells. The extension of the aboveonstrution to the three-dimensional ase is straightforward.C.3.2.b Rannaher-Turek elementA onstrution similar to the MAC sheme one may be performed for retangular meshes. For K and

L two neighboring ells of M, the half-diamond ell DK,σ (resp. DL,σ) assoiated to the ommon fae
σ = K|L is de�ned as the one having the mass enter of K (resp. L) as a vertex and σ as basis, thedensity ρσ is de�ned by the weighted average (C.11), and the dual mass �uxes are obtained by multiplyingthe mass balanes over K and L by 1/4 and summing. With the loal notations of Figure C.3, this yields,for the dual mass �uxes, expressions of the form :

Fσ,ε = −1

8
FW +

3

8
FN − 3

8
FE +

1

8
FS . (C.12)



160 Annexe C. Staggered disretizations, pressure orretions shemes and all speed barotropi �ows
FW FE

FN

FS

Fσ,ε

Fig. C.3 � Loal notations for the de�nition of the mass �uxes at the dual edges with the Rannaher-TurekelementWe now explain how to extend this formulation to general meshes.Let us suppose that we are able to de�ne the �uxes through the dual faes in suh a way that :(A1) The mass balane over the half-diamond ells is proportional to the mass balane over the primalells, in the following sense :
∀K ∈ M, ∀σ ∈ E(K), FK,σ +

∑

ε∈Ē(Dσ), ε⊂K

Fσ,ε = ξσK
∑

σ∈E(K)

FK,σ,with, for any ell K ∈ M, ∑

σ∈E(K)

ξσK = 1 and, for any σ ∈ E(K), ξσK ≥ 0.(A2) The dual �uxes are onservative, i.e. for any dual fae ε = Dσ|D′
σ, we have Fσ,ε = −Fσ′,ε.(A3) The dual �uxes are bounded with respet to the (FK,σ)σ∈E(K) :

∀K ∈ M, ∀σ ∈ E(K), ∀ε ∈ Ē(Dσ) |Fσ,ε| ≤ C max
{
|FK,σ|, σ ∈ E(K)

}
.In addition, let us de�ne |DK,σ| as :

|DK,σ| = ξσK |K|, (C.13)and ρσ, one again, by the weighted average (C.11). Then the dual �uxes satisfy the required massbalane. Indeed, for σ ∈ Eint, σ = K|L, we have :
|Dσ|
δt

(ρσ − ρ∗σ) +
∑

ε∈E(Dσ)

Fσ,ε

=
|DK,σ|
δt

(ρK − ρ∗K) + FK,σ +
∑

ε∈Ē(Dσ), ε⊂K

Fσ,ε

+
|DL,σ|
δt

(ρL − ρ∗L) + FL,σ +
∑

ε∈Ē(Dσ), ε⊂L

Fσ,ε

= ξσK

[ |K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

FK,σ

]
+ ξσL

[ |L|
δt

(ρL − ρ∗L) +
∑

σ∈E(L)

FL,σ

]
= 0.A similar omputation leads to the same onlusion for the (half-)dual ells assoiated to the Neumannboundary faes.The next issue is to hek whether Assumptions (A1)-(A3) are su�ient for the onsisteny of the sheme.In this respet, the following lemma brings a deisive argument.



C.4. Shemes and stability estimates 161Lemma C.3.2Let Assumptions (A1)-(A3) hold. For v ∈ V and K ∈ M, let vK be de�ned by vK =
∑

σ∈E(K) ξ
σ
K vσ. Let

u ∈ V , and R(u, v) be the quantity de�ned by :
R(u, v) =

∑

σ∈Eint

vσ
∑

ε∈Ē(Dσ),

ε=Dσ |D′

σ

Fσ,ε
uσ + uσ′

2
−
∑

K∈M

vK
∑

σ∈E(K)

FK,σ uσ.Let us suppose that the primal �uxes are assoiated to a onvetion momentum �eld β, i.e. :
∀K ∈ M, ∀σ ∈ E(K), FK,σ = |σ| βσ · nK,σ.For the shemes used here, of ourse, β is a ombination of the density and the veloity, as introduedin Setion C.2 and made preise in Setion C.4. Then there exists C depending only on the regularity ofthe mesh suh that :

|R(u, v)| ≤ C h ‖β‖l∞ ‖u‖1 ‖v‖1,with ‖β‖l∞ = maxσ∈E |βσ| and the disrete H1-norm on the dual mesh is de�ned by :
∀v ∈ V, ‖v‖1 =

∑

K∈M

hd−2
K

∑

σ,σ′∈E(K)

(uσ − uσ′)2.The quantity R(u, v) ompares two disrete analogue to ∫Ω v div(uβ) dx, the �rst one being de�ned withthe divergene taken over the dual meshes, and the seond one with the divergene over the primal ells.The disrete H1-norm of the solution is ontrolled by the di�usion term. Thus, when making a onvergeneor error analysis study in the linear ase (i.e. with a given regular onvetion �eld β), Lemma C.3.2 allowsto replae the �rst formulation by the seond one, thus substituting well de�ned quantities to quantitiesonly de�ned through (A1)-(A3). It is used in [39℄ to prove that the sheme is �rst-order for the stationaryonvetion-di�usion equation. The onvergene for the onstant density Navier-Stokes equations (so with
β = u has also been proven, ontrolling now ‖u‖l∞ by ‖u‖1 thanks to an inverse inequality.The last task is now to build �uxes satisfying (A1)-(A3), whih is easily done by hoosing ξσK = 1/4, andkeeping for the expression of the dual �uxes as a funtion of the primal ones the same linear ombination(C.12) as in the retangular ase. Note that this impliitly implies that the geometrial de�nition of thedual ells has been generalized, sine it is not possible in general to split a (even onvex) quadrangle infour simplies of same measure. Extension to three dimensions only needs to deal with the retangularparallelepipedi ase, whih is quite simple [1℄. Finding diretly a solution to (A1)-(A3) may also be analternative route, to deal with more omplex ases, as done in [39℄ to extend the sheme to loally re�nednon-onforming grids.C.4 Shemes and stability estimatesTo obtain the omplete formulation of the onsidered shemes, we now have to �x the time-marhingproedure. This is straightforwart for the impliit sheme, and we onentrate here on the pressureorretion sheme. The problem whih we fae in this ase is that the mass balane is not yet solvedwhen dealing with the predition step. In our implementations [40℄, it is irumvented by just shiftingin time the density ρσ, and the mass balane on the dual ells is reovered from the mass balane on



162 Annexe C. Staggered disretizations, pressure orretions shemes and all speed barotropi �owsthe primal ells at the previous time step. This has essentially two drawbaks. First, the trik indeedworks only if the time step is onstant ; when it hanges, one has to hoose between loosing stability oronsisteny (loally in time, so fortunately, without observed impat in pratie). Seond, the sheme isonly �rst order in time.In addition, stability seems to require an initial pressure renormalization step, whih is an algebraivariant of the one introdued in [28℄. It seems however that this step may be omitted in pratie.The algorithm (keeping in this presentation the pressure renormalization step) reads, assuming that un,
pn, ρn and the family (FnK,σ) are known :1- Pressure renormalization step � Let (λσ)σ∈Eint be a family of positive real numbers, and let

−div(λ∇)M be the disrete ellipti operator from Q to Q de�ned by, ∀K ∈ M and q ∈ Q :
[
−div(λ∇)M(q)

]
K

=
∑

σ=K|L

λσ
|σ|2
|Dσ|

(qK − qL) +
∑

σ∈EN ,σ=K|ext

λσ
|σ|2
|Dσ|

qK .Then p̃n+1 ∈ Q is given by :
−div(

1

ρn
∇)M (p̃n+1) = −div(

1

[ρn ρn−1]1/2
∇)M (pn), (C.14)the weights (ρnσ)σ∈Eint∪EN

and (ρn−1
σ )σ∈Eint∪EN

being the densities involved in the time-derivativeterm of the momentum balane equation (next step of the algorithm).2- Veloity predition step � Solve for ũn+1 ∈ V , for 1 ≤ i ≤ d and ∀σ ∈ E(i)
int ∪ E(i)

N :
|Dσ|
δt

(ρnσũn+1
σ,i − ρn−1

σ unσ,i) +
∑

ε∈Ē(Dσ)

Fnσ,εũ
n+1
ε,i

+ |Dσ| (∇p̃n+1)(i)σ + |Dσ| (divτ(ũn+1))(i)σ = 0, (C.15)where the quantity (Fnσ,ε)ε∈Ē(Dσ) are built as explained in the previous setion, from the primal�uxes at time tn.3 - Corretion step � Solve for un+1 ∈ V and pn+1 ∈ Q :
∀K ∈ M,

|K|
δt

(ρn+1
K − ρnK) +

∑

σ∈E(K)

Fn+1
K,σ = 0. (C.16a)For 1 ≤ i ≤ d, ∀σ ∈ E(i)

int ∪ E(i)
N ,

|Dσ|
δt

ρnσ (un+1
σ,i − ũn+1

σ,i ) + |Dσ|
(
∇(pn+1 − p̃n+1)

)(i)
σ

= 0,
(C.16b)

∀K ∈ M, ρn+1
K = ℘(pn+1

K ), (C.16)The algorithm must be initialized by the data of u0 ∈ V , ρ−1 ∈ Q, ρ0 ∈ Q satisfying the disretemass balane equation, and with the orresponding mass �uxes (F 0
K,σ). A possible way to obtain thesequantities is to evaluate u0 and ρ−1 from the initial onditions, and, as a preliminary step, to solve for

ρ0 the mass balane equation.



C.4. Shemes and stability estimates 163The upwinding in the disretization of the mass balane equation has for onsequene that any densityappearing in the algorithm is positive (provided that the initial density is positive). The existene anduniqueness of a solution to Steps 1 and 2 is then lear : these are linear problems with oerive operators(for Step 2, thanks to the stability of the onvetion term). The existene of a solution to Step 3 may beobtained by a Brouwer �xed point argument, using the fat that the onservativity of the mass balaneyields an estimate for ρ, so for p, and �nally for u (in any norm, sine we work on �nite dimensionalspaes). The algorithm is thus well-posed.Let us now turn to the energy estimate. At the ontinuous level, this relation is obtained for the barotropiNavier-Stokes equations by hoosing the veloity u in the variational form of the momentum balaneequation, writing the onvetion term as the time derivative of the kineti energy, and setting the pressurework, namely− ∫Ω p div(u) dx, under a onvenient form. This is done by the following formal omputation.Let b(·) be a regular funtion from (0,+∞) to R, and let us multiply the mass balane by b′(ρ) :
b′(ρ)

[
∂tρ+ div(ρu)

]
= 0.Using :

b′(ρ)div(ρu) = b′(ρ)[u · ∇ρ+ ρdiv(u)] = u · ∇b(ρ) + ρb′(ρ)div(u)

= div(b(ρ)u) +
[
ρb′(ρ) − b(ρ)

]
div(u),we get :

∂t
[
b(ρ)

]
+ div

[
b(ρ)u

]
+
[
ρb′(ρ) − b(ρ)

]
div(u) = 0.Choosing now the funtion b(·) in suh a way that ρb′(ρ) − b(ρ) = ℘−1(p), integrating over Ω and usingthe boundary onditions yields :

−
∫

Ω

p div(u) dx =
d

dt

∫

Ω

b(ρ) dx.The following lemma [20℄ states a disrete ounterpart of this omputation.Lemma C.4.1Let b(·) be a regular onvex funtion from (0,+∞) to R, and (ρ⋆K)K∈M be a positive family of realnumbers. Then, with the upwind disretization (C.3) of the mass balane equation, the family (ρK)K∈Mis also positive, and we get :
∑

K∈M

b′(ρK)
[ |K|
δt

(ρK − ρ∗K) +
∑

σ∈E(K)

FK,σ

]
≥ 1

δt

∑

K∈M

|K|
[
b(ρK) − b(ρ∗K)

]
.We are now in position to state the following stability result.Theorem C.4.2The sheme (C.14)-(C.16) satis�es the following energy identity, for 1 ≤ n ≤ N :

d∑

i=1

∑

σ∈E
(i)
int

|σ| ρn−1
σ (unσ,i)

2 + δt

n∑

k=1

∑

σ∈E(i)

|Dσ| (divτ(uk))(i)σ ukσ,i

+
∑

K∈M

|K| b(ρnK) ≤
d∑

i=1

∑

σ∈E
(i)
int

|σ| ρ(−1)
σ (u0

σ,i)
2 +

∑

K∈M

|K| b(ρ0
K)



164 Annexe C. Staggered disretizations, pressure orretions shemes and all speed barotropi �owsThe proof of this theorem is based on Lemma C.3.1 and Lemma C.4.1, and may be found, for the essentialarguments, in [20℄.Remark 11Let us suppose that the equation of state reads p = ργ , with γ ∈ (1,+∞). Then an easy omputation yields
b(ρ) = ργ/(γ − 1) = p/(γ − 1). Theorem C.4.2 thus yields an estimate for the pressure in L∞(0, T ; L1)-norm. Note that this estimate is however not su�ient to ensure that a sequene of pressures obtainedas disrete solutions onverges to a funtion, whih explains that the pressure has to be ontrolled fromestimates of its gradient, in onvergene studies of numerial shemes as well as in mathematial analysisof the ontinuous problem [51℄.C.5 Euler equations and solutions with shoksIn this setion we brie�y disuss the apability of the onsidered numerial shemes to ompute irregular(i.e. with disontinuities) solutions of invisid �ows.The results obtained with the above desribed pressure orretion sheme for the so-alled one-dimensionalSod shok-tube problem are displayed on Figure C.4 (see [45℄ for a more detailed presentation). From nu-merial experiments, it seems that this sheme onverges when the veloity spae translates are ontrolled,either by upwinding the disretization of the veloity onvetion term, or by keeping a residual visosityin the (disrete) momentum balane equation. Numerial experiments reported in [45℄ (addressing alsoan extension of this algorithm to the barotropi homogeneous two-phase �ow model [26℄) on�rm thestability of the sheme, and show that the qualitative behaviour of the solution is aptured up to verylarge values of the CFL number (typially, in the range of 50).From the theoretial point of view, for Euler equations (i.e. , preisely speaking, with a di�usion vanishingwith the spae step), the ontrol that we are able to prove on the solution of ourse does not yield (weakor strong) onvergene in strong enough norms to pass to the limit in the sheme. We an however provethe following result : supposing onvergene for the density in Lp(Ω), p ∈ [1,+∞) and for the veloity in
Lp(Ω), p ∈ [1, 3], it is possible to pass to the limit in the disrete equations, provided that the visosityvanishes as hα, α ∈ (0, 2) for both the impliit and the pressure orretion sheme. In this ase, the limitof a sequene of disrete solutions is proven to satisfy the weak form of the Euler equations, and so, inpartiular, the Rankine-Hugoniot onditions at the shoks.C.6 Disussion and perspetivesThe analysis of the shemes presented here has been undertaken, for the present time for model stationaryproblems : in [21, 18℄, we prove the onvergene for the Crouzeix-Raviart disretization of the Stokesequations (however, with the addition, for tehnial reasons, of a stabilization term) ; in [17℄, we provethe same result for the (this time, standard) MAC sheme. Extension, still for the MAC disretization,to the stationary Navier-Stokes equations is underway.From a pratial point of view, a next step for the barotropi Navier-Stokes equations should be to derivean upwind expliit version of the sheme presented here ; in this diretion, an extension of Lemma C.3.1(stability of the veloity onvetion term) to the expliit ase may be found in [22℄.
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Fig. C.4 � Solution for the Sod shok-tube problem, obtained with a uniform mesh of 800 ells, with aresidual visosity � left : veloity, right : pressure.The main objetive is however to deal with the full (i.e. non barotropi, so inluding an energy balane)Navier-Stokes equations. An unonditionally stable pressure orretion sheme has been derived for thisproblem (see Chapter 3 of this doument), but extensive tests of this sheme remain to be done. Inpartiular, stability requires that the internal energy remains non-negative (in pratie, positive), andthe way we obtained this property was to solve the internal energy balane, with a sheme able topreserve the sign of the unknown . . .but it is ommonly agreed that, for the sheme to onverge towardthe orret weak solution, a onservative disretization of the total energy balane should be used. Theatual ourrene of this problem, and the possibility to irumvent it, possibly by adding stabilizingvisous terms, will deserve investigations in the next future ; a preliminary step on this route may befound in [23℄.





AnnexeD Disretization of the visousdissipation term with the MACsheme

W
e propose a disretization for the MAC sheme of the visousdissipation term τ (u) : ∇u (where τ (u) stands for the shearstress tensor assoiated to the veloity �eld u), whih is sui-table for the approximation of this term in a onservation equation for a sa-lar variable. This disretization enjoys the property that the integral over theomputational domain Ω of the (disrete) dissipation term is equal to what isobtained when taking the inner produt of the (disrete) momentum balaneequation by u and integrating over Ω. As a onsequene, it may be used asan ingredient to obtain an unonditionally stable sheme for the ompressibleNavier-Stokes equations. It is also shown, in some model ases, to ensure thestrong onvergene in L1 of the dissipation term.
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D.1 IntrodutionLet us onsider the ompressible Navier-Stokes equations, whih may be written as :
∂tρ+ div(ρu) = 0, (D.1a)
∂t(ρu) + div(ρu ⊗ u) + ∇p− div(τ (u)) = 0, (D.1b)
∂t(ρe) + div(ρeu) + pdivu + div(q) = τ (u) : ∇u, (D.1)
ρ = ℘(p, e), (D.1d)where t stands for the time, ρ, u, p and e are the density, veloity, pressure and internal energy in the�ow, τ (u) stands for the shear stress tensor, q for the temperature di�usion �ux, and the funtion ℘is the equation of state. This system of equations is posed over Ω × (0, T ), where Ω is a domain of Rd,

d ≤ 3. This system must be supplemented by a losure relation for τ (u) and for q, assumed to be :
τ (u) = µ(∇u + ∇

tu) − 2µ

3
divu I, q = −λ∇e, (D.2)where µ and λ stand for two (possibly depending on x) positive parameters.Let us suppose, for the sake of simpliity, that u is presribed to zero on the whole boundary, and thatthe system is adiabati, i.e. ∇q ·n = 0 on ∂Ω. Then, formally, taking the inner produt of (D.1b) with ūand integrating over Ω, integrating (D.1) over Ω, and, �nally, summing both relations yields the stabilityestimate :

d

dt

∫

Ω

[1
2
ρ |u|2 + ρe

]
dx ≤ 0. (D.3)If we suppose that the equation of state may be set under the form p = f(ρ, e) with f(·, 0) = 0 and

f(0, ·) = 0, Equation (D.1) implies that e remains positive (still at least formally), and so (D.3) yieldsa ontrol on the unknown. Mimiking this omputation at the disrete level neessitates to hek somearguments, among them :
(i) to have at disposal a disrete ounterpart to the relation :

∫

Ω

[
∂t(ρu) + div(ρu ⊗ u)

]
· u dx =

d

dt

∫

Ω

1

2
ρ |u|2 dx.

(ii) to identify the integral of the dissipation term at the right-hand side of the disrete ounterpartof (D.1) with what is obtained from the (disrete) L2 inner produt between the veloity and thedi�usion term in the disrete momentum balane equation (D.1b).
(iii) to be able to prove that the right-hand side of (D.1) is non-negative, to preserve the positivityof the internal energy.The point (i) is extensively disussed in [25℄ (see also [38℄), and will not be treated here. Desribing away, implemented in the ISIS free software developed at IRSN [40℄, to obtain the two other issues withthe usual Marker and Cell (MAC) disretization [37, 36℄ is the objetive of this paper. We omplete thepresentation by showing how (ii) may also be used, in some model problems, to prove the onvergenein L1 of the dissipation term.
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Fig. D.1 � Dual ell for the x-omponent of the veloityD.2 Disretization of the dissipation termD.2.1 The two-dimensional aseLet us begin with a two-dimensional ase, for the sake of simpliity, let us suppose that :
τ (u) = µ(x)(∇u + ∇

tu),the extension of the present material to the other term in (D.2) being straightforward.The �rst step is to propose a disretization for the di�usion term in the momentum equation. We beginwith the x-omponent of the veloity, for whih we write a balane equation on Kx
i− 1

2 ,j
= (xi−1, xi) ×

(yj− 1
2
, yj+ 1

2
) (see Figure D.1 for the notations). Integrating the projetion of the momentum balaneequation onto Ox over Kx

i− 1
2 ,j

, we get for the di�usion term :
T̄ dif
i− 1

2 ,j
= −

[∫

Kx

i− 1
2

,j

div
[
τ (u)] dx

]
· e(x) = −

[∫

∂Kx

i− 1
2

,j

τ (u) ndγ
]
· e(x), (D.4)where e(x) stands for the �rst vetor of the anonial basis of R2. We denote by σxi,j the left fae ofKx

i− 1
2 ,j

,i.e. σxi,j = {xi} × (yj− 1
2
, yj+ 1

2
). Splitting the boundary integral in (D.4), the part of T̄ dif

i− 1
2 ,j

assoiatedto σxi,j , also referred to as the visous �ux through σxi,j , reads :
−
[∫

σx
i,j

τ (u) ndγ
]
· e(x) = −2

∫

σx
i,j

µ ∂xu
x dγ,and the usual �nite di�erene tehnique yields the following approximation for this term :

−2

∫

σx
i,j

µ ∂xu
x dγ ≈ 2µi,j

hyj
hxi

(uxi− 1
2 ,j

− uxi+ 1
2 ,j

),



D.2. Disretization of the dissipation term 171where µi,j is an approximation of the visosity at the fae σxi,j . Similarly, let σx
i− 1

2 ,j+
1
2

= (xi, xi+1)×{yj+ 1
2
}be the top edge of the ell. Then :

−
[∫

σx

i− 1
2

,j+ 1
2

τ (u) ndγ
]
· e(x) = −

∫

σx

i− 1
2

,j+ 1
2

µ (∂yu
x + ∂xu

y) dγ

≈ µxy
i− 1

2 ,j+
1
2

[hx
i− 1

2

hy
j+ 1

2

(uxi− 1
2 ,j

− uxi− 1
2 ,j+1) +

hx
i− 1

2

hx
i− 1

2

(uy
i−1,j+ 1

2

− u
y

i,j+ 1
2

)
]
,where µxy

i− 1
2 ,j+

1
2

stands for an approximation of the visosity at the edge σx
i− 1

2 ,j+
1
2

.Let us now multiply eah disrete equation for ux by the orresponding degree of freedom of a veloity �eld
v (i.e. the balane over Kx

i− 1
2 ,j

by vx
i− 1

2 ,j
) and sum over i and j. The visous �ux at the fae σxi,j appearstwie in the sum, one multiplied by ux

i− 1
2 ,j

and the seond one by −ux
i+ 1

2 ,j
, and the orresponding termreads :

T dis
i,j (u,v) = 2µi,j

hyj
hxi

(uxi− 1
2 ,j

− uxi+ 1
2 ,j

) (vxi− 1
2 ,j

− vxi+ 1
2 ,j

)

= 2µi,j h
y
jh
x
i

ux
i− 1

2 ,j
− ux

i+ 1
2 ,j

hxi

vx
i− 1

2 ,j
− vx

i+ 1
2 ,j

hxi
. (D.5)Similarly, the term assoiated to σx

i− 1
2 ,j+

1
2

appears multiplied by vx
i− 1

2 ,j
and −vx

i− 1
2 ,j+1

, and we get :
T dis
i− 1

2 ,j+
1
2
(u,v) = µxy

i− 1
2 ,j+

1
2

hxi− 1
2
hy
j+ 1

2

[ux
i− 1

2 ,j
− ux

i− 1
2 ,j+1

hy
j+ 1

2

+
u
y

i−1,j+ 1
2

− u
y

i,j+ 1
2

hx
i− 1

2

] vx
i− 1

2 ,j
− vx

i− 1
2 ,j+1

hy
j+ 1

2

. (D.6)Let us now de�ne the disrete gradient of the veloity as follows :� The derivatives involved in the divergene, ∂Mx ux and ∂My uy, are de�ned over the primal ells by :
∂Mx ux(x) =

ux
i+ 1

2 ,j
− ux

i− 1
2 ,j

hxi
, ∂My uy(x) =

u
y

i,j+ 1
2

− u
y

i,j− 1
2

hyj
, ∀x ∈ Ki,j . (D.7)� For the other derivatives, we introdue another mesh whih is vertex-entered, and we denote by

Kxy the generi ell of this new mesh, with Kxy

i+ 1
2 ,j+

1
2

= (xi, xi+1) × (yj , yj+1). Then :
∂My ux(x) =

ux
i+ 1

2 ,j+1
− ux

i+ 1
2 ,j

hy
j+ 1

2

, ∂Mx uy(x) =
u
y

i+1,j+ 1
2

− u
y

i,j+ 1
2

hx
i+ 1

2

,

∀x ∈ Kxy

i+ 1
2 ,j+

1
2

. (D.8)With this de�nition, we get :
T dis
i,j (u,v) = 2µi,j

∫

Ki,j

∂Mx ux ∂Mx vx dx,and :
T dis
i− 1

2 ,j+
1
2
(u,v) = µxy

i− 1
2 ,j+

1
2

∫

Kxy

i− 1
2

,j+ 1
2

(∂My ux + ∂Mx uy) ∂My vx dx.
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Fig. D.2 � Dual ell for the y-omponent of the veloityLet us now perform the same operations for the y-omponent of the veloity. Doing so, we are lead tointrodue an approximation of the visosity at the edge σy
i− 1

2 ,j+
1
2

= {xi+ 1
2
}× (yj , yj+1) (see Figure D.2).Let us suppose that we take the same approximation as on σx

i− 1
2 ,j+

1
2

. Then, the same arguments yieldthat multiplying eah disrete equation for ux and for uy by the orresponding degree of freedom of aveloity �eld v, we obtain a dissipation term whih reads :
T dis(u,v) =

∫

Ω

τM(u) : ∇
Mv dx, (D.9)with the above de�ned gradient and :

τM(u) =




2µ ∂Mx ux µxy (∂My ux + ∂Mx uy)

µxy (∂My ux + ∂Mx uy) 2µ ∂My uy


 , (D.10)where µ is the visosity de�ned on the primal mesh by µ(x) = µi,j , ∀x ∈ Ki,j and µxy is the visosityde�ned on the vertex-entered mesh, by µ(x) = µi+ 1

2 ,j+
1
2
, ∀x ∈ Kxy

i+ 1
2 ,j+

1
2

.Then, �nally, to disretize the visous dissipation term in the internal energy balane, we just set on eahprimal ell Ki,j :
(τ (u) : ∇u)i,j =

1

|Ki,j|

∫

Ki,j

τM(u) : ∇
Mudx, (D.11)whih, thanks to (D.9), yields the onsisteny property (ii) we are searhing for, namely :

T dis(u,u) =
∑

i,j

|Ki,j | (τ (u) : ∇u)i,j .In addition, we get from De�nition (D.10) that τM(u)(x) is a symmetrial tensor, for any i, j and
x ∈ Ki,j, so an elementary algebrai argument yields :

(τ (u) : ∇u)i,j =
1

|Ki,j|

∫

Ki,j

τM(u) : ∇
Mudx

=
1

2 |Ki,j|

∫

Ki,j

τM(u) :
[
∇

Mu + (∇Mu)t
]
dx ≥ 0.
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Fig. D.3 � The xy-staggered ell Kxy

i+ 1
2 ,j+

1
2 ,k

, used in the de�nition of ∂My ux, ∂Mx uy, and τM(u)x,y =

τM(u)y,x.Remark 12 (Approximation of the visosity)Note that, for the symetry of τM(u) to hold, the hoie of the same visosity at the edges σx
i− 1

2 ,j+
1
2

and
σy
i− 1

2 ,j+
1
2

is ruial. . .and that other hoies may appear natural. For instane, suppose that the visosityis a funtion of the temperature ; then the following onstrution is reasonable :1. de�ne, from the disrete temperature, a onstant value for µ over the primal meshes,2. assoiate a value of µ to the primal edges, by taking the average between the value at the adjaentells,3. �nally, split the integral of the shear stress over σx
i− 1

2 ,j+
1
2

in two parts, one for the part inludedin the (top) boundary of Ki−1,j and the seond one in the boundary of Ki,j .Then the visosities on σx
i− 1

2 ,j+
1
2

and σy
i− 1

2 ,j+
1
2

oinide only for uniform meshes, and, in the general ase,the symetry of τM(u) is lost.D.2.2 Extension to the three-dimensional aseExtending the omputations of the preeding setion to dimension three yields the following onstrution.� First, de�ne three new meshes, whih are "edge entered" : Kxy

i+ 1
2
,j+ 1

2
,k

= (xi, xi+1 × (yi, yj + 1)×
(zk− 1

2
, zk+ 1

2
) is staggered from the primal mesh Ki,j,k in the x and y diretion (see Figure D.3),

Kxz
i+ 1

2 ,j,k+
1
2

in the x and z diretion, and Kyz

i,j+ 1
2 ,k+

1
2

in the y and z diretion.� The partial derivatives of the veloity omponents are then de�ned as pieewise onstant funtions,the value of whih is obtained by natural �nite di�erenes :- for ∂Mx ux, ∂My uy and ∂Mz uz , on the primal mesh,- for ∂My ux and ∂Mx uy on the ells (Kxy

i+ 1
2 ,j+

1
2 ,k

),- for ∂Mz ux and ∂Mx uz on the ells (Kxz
i+ 1

2 ,j,k+
1
2

),- for ∂My uz and ∂Mz uy on the ells (Kyz

i,j+ 1
2 ,k+

1
2

).



174 Annexe D. Disretization of the visous dissipation term with the MAC sheme� We then de�ne four families of values for the visosity �eld, µ, µxy, µxz and µyz, assoiated to theprimal and the three edge entered meshes respetively.� The shear stress tensor is obtained by the extension of (D.10) to d = 3.� And, �nally, the dissipation term is given by (D.11).D.3 A strong onvergene resultWe �nally onlude this paper by showing how the onsisteny property (ii) may be used, in somepartiular ase, to obtain the strong onvergene of the dissipation term. To this purpose, let us justaddress �rst the model problem :
−∆u = f in Ω = (0, 1) × (0, 1), u = 0 on ∂Ω, (D.12)with u and f two salar funtions, f ∈ L2(Ω). Let us suppose that this problem is disretized by the usual�nite volume tehnique, with the uniform MAC mesh assoiated to the x-omponent of the veloity. Wede�ne a disrete funtion as a pieewise onstant funtion, vanishing on the left and right sides of thedomain (so on the left and right stripes of (half-)staggered meshes adjaent to these boundaries), and wede�ne the disrete H1-norm of a disrete funtion v by :

‖v‖2
1 =

∫

Ω

(∂Mx v)2 + (∂My v)2 dx.Let (M(n))n∈N be a sequene of suh meshes, with a step hn tending to zero, and (u(n))n∈N the orres-ponding sequene of disrete solutions. Then, with the variational tehnique employed in the preedingsetion (i.e. multiplying eah disrete equation by the orresponding equation and summing), we get,with the usual disretization of the right-hand side :
‖u(n)‖2

1 =

∫

Ω

(∂Mx u(n))2 + (∂My u(n))2 dx =

∫

Ω

fu(n) dx. (D.13)Sine the disrete H1-norm ontrols the L2-norm (i.e. a disrete Poinaré inequality holds, [16℄), thisyields a uniform bound for the sequene (u(n))n∈N in disrete H1-norm. We know [16℄ that this impliesthat the sequene (u(n))n∈N onverges in L2(Ω) to a funtion ū ∈ H1
0(Ω), and that the disrete derivatives

(∂Mx u(n))n∈N and (∂My u(n))n∈N weakly onverge in L2(Ω) to ∂xū and ∂yū respetively. This allows to passto the limit in the sheme, and we obtain that ū satis�es the ontinuous equation (D.12), so, taking ū astest funtion in the variational form of (D.12) :
∫

Ω

(∂xū)
2 + (∂yū)

2 dx =

∫

Ω

fūdx.But, passing to the limit in (D.13), we get :
lim
n7→∞

∫

Ω

(∂Mx u(n))2 + (∂My u(n))2 dx = lim
n7→∞

∫

Ω

fu(n) dx =

∫

Ω

fū dx,whih, omparing to the preeding relation, yields :
lim
n→∞

∫

Ω

(∂Mx u(n))2 + (∂My u(n))2 dx =

∫

Ω

(∂xū)
2 + (∂yū)

2 dx.



D.3. A strong onvergene result 175So the disrete gradient weakly onverges and its norm onverges to the norm of the limit : the disretegradient strongly onverges in L2(Ω)2 to the gradient of the solution. Let us now imagine that Equation(D.12) is oupled to a balane equation for another variable, the right-hand side of whih is |∇u|2 ; thissituation ours in several physial situations, as the modelling of Joule e�et [5℄, or RANS turbulenemodels [49, 24℄. Then using the expression (D.11) for the disretization of the dissipation term in the ell
K, whih reads here :

(
|∇u(n)|2

)
K

=
1

|K|

∫

K

(∂Mx u(n))2 + (∂My u(n))2 dx,yields a onvergent right-hand side, in the sense that, for any regular funtion ϕ ∈ C∞
c (Ω), we have :

lim
n→∞

∑

K

∫

K

(
|∇u(n)|2

)
K
ϕdx =

∫

Ω

|∇u|2ϕdx.(A delination of) this argument has been used to prove the onvergene of numerial shemes in [5, 49, 24℄.
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Méthodes de orretion de pression pour les éoulements ompressiblesRésumé : Cette thèse porte sur le développement de shémas semi-impliites à pas frationnaires pour les équations deNavier-Stokes ompressibles ; es shémas entrent dans la lasse des méthodes de orretion de pression. La disrétisationspatiale hoisie est de type "à mailles déalées" : éléments �nis mixtes non onformes (éléments �nis de Crouzeix-Raviartou Rannaher-Turek) ou shéma MAC lassique. Une disrétisation en volumes �nis déentrée amont du bilan de massegarantit la positivité de la masse volumique. La positivité de l'énergie interne est obtenue en disrétisant le bilan d'énergieinterne ontinu, par une méthode de volumes �nis déentrée amont, et en ouplant e bilan d'énergie interne disret à l'étapede orretion de pression. Une disrétisation partiulière en volumes �nis sur un maillage dual du terme de onvetion devitesse dans le bilan de quantité de mouvement et l'adjontion d'une étape de renormalisation de la pression permettentde garantir le ontr�le au ours du temps de l'intégrale de l'énergie totale sur le domaine. L'ensemble de es estimations apriori implique en outre, par un argument de degré topologique, l'existene d'une solution disrète.L'appliation de e shéma aux équations d'Euler pose une di�ulté supplémentaire. En e�et, l'obtention de hos orretsnéessite que le shéma soit onsistant ave l'équation de bilan d'énergie totale, propriété que nous obtenons omme suit.Tout d'abord, nous établissons un bilan disret (loal) d'énergie inétique. Ce dernier omporte des termes soures, quenous ompensons ensuite dans le bilan d'énergie interne. Les équations d'énergie inétique et interne sont assoiées auxmaillages dual et primal respetivement, et ne peuvent don être additionnées pour obtenir un bilan d'énergie totale ; ettedernière équation est toutefois retrouvée, sous sa forme ontinue, à onvergene : si nous supposons qu'une suite de solutionsdisrètes onverge lorsque le pas de temps et d'espae tendent vers 0, nous montrons en e�et, en 1D au moins, que la limiteen satisfait une forme faible. Ces résultats théoriques sont onfortés par des tests numériques.Des résultats similaires sont obtenus pour les équations de Navier-Stokes barotropes.Mots lefs : Méthodes de orretion de pression, équations de Navier-Stokes ompressibles, shéma MAC, éléments �nismixtes non onformes, stabilité, onvergene, tests numériques.Pressure orretion shemes for ompressible �owsAbstrat : This thesis is onerned with the development of semi-impliit frational step shemes, for the ompressibleNavier-Stokes equations ; these shemes are part of the lass of the pressure orretion methods. The hosen spatial dis-retisation is staggered : non onforming mixed �nite elements (Crouzeix-Raviart or Rannaher-Turek) or the lassi MACsheme. An upwind �nite volume disretisation of the mass balane guarantees the positivity of the density. The positivityof the internal energy is obtained by disretising the internal energy balane by an upwind �nite volume sheme and byoupling the disrete internal energy balane with the pressure orretion step. A speial �nite volume disretisation on dualells is performed for the onvetion term in the momentum balane equation, and a renormalisation step for the pressureis added to the algorithm ; this ensures the ontrol in time of the integral of the total energy over the domain. All these apriori estimates imply the existene of a disrete solution by a topologial degree argument.The appliation of this sheme to Euler equations raises an additional di�ulty. Indeed, obtaining orret shoks requiresthe sheme to be onsistent with the total energy balane, property whih we obtain as follows. First of all, a loal disretekineti energy balane is established ; it ontains soure terms whih we somehow ompensate in the internal energy balane.The kineti and internal energy equations are assoiated with the dual and primal meshes respetively, and thus annot beadded to obtain a total energy balane ; its ontinuous ounterpart is however reovered at the limit : if we suppose that asequene of disrete solutions onverges when the spae and time steps tend to 0, we indeed show, in 1D at least, that thelimit satis�es a weak form of the equation. These theoretial results are onforted by numerial tests.Similar results are obtained for the barotropi Navier�Stokes equations.Key words : Pressure orretion sheme, ompressible Navier-Stokes equations, MAC sheme, mixed non-onforming �niteelements, stability, onvergene, numerial tests.Disipline - Spéialité dotorale : Mathématiques.Adresse de laboratoires : IRSN/DPAM/SEMIC/LIMSI/, BP 3, 13115 St-Paul-Lez-Durane,LATP, 39 rue F. Joliot Curie, 13453 Marseille edex 13.


