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Résumé en français : Modélisation de
sous-filtre algébrique explicite pour des
méthodes de type DES et extension aux
écoulements à masse volumique variable

1.1 Contexte et objectifs

La prédiction des écoulements turbulents évoluant dans un milieu où une stratification stable est
présente (gradient de température, concentration) intéresse un grand nombre de domaines pour des
problématiques de sûreté dans des situations aussi bien naturelles qu’industrielles (conséquences
des éruptions volcaniques, pollution atmosphérique associée aux rejets des cheminées, ...). Dans le
cadre des études de sûreté menées par l’IRSN, une problématique importante concerne le risque
de formation d’une atmosphère explosive dans les locaux où une source d’hydrogène est présente
(conduit ou capacité) ainsi que dans l’enceinte de confinement en situation accidentelle. Dans la
deuxième situation, une quantité importante d’hydrogène provenant principalement de la réaction
d’oxydation des gaines en zircaloy peut en effet s’accumuler en partie supérieure de l’enceinte sous
l’effet des forces de flottabilité. La persistance d’une couche riche en hydrogène dans l’enceinte de
confinement est donc l’une des questions majeures dans l’évaluation du risque d’inflammation et
d’explosion.

Dans ces conditions, l’objectif de ce travail est de contribuer à l’amélioration des performances
prédictives des outils CFD dédiés au risque d’explosion, plus particulièrement au risque de forma-
tion d’une atmosphère explosive. Les développements, réalisés dans le code de calcul P2REMICS
(Partially PREMixed Combustion Solver) développé à l’IRSN, s’articulent autour de deux axes
complémentaires. Il s’agit d’une part d’améliorer les prédictions des approches RANS au travers
d’une fermeture algébrique des tensions de Reynolds et du flux de masse turbulent obtenue à partir
d’une hypothèse d’équilibre faible d’une modélisation au second ordre. La modélisation algébrique
retenue pour les tensions de Reynolds et le flux de masse turbulent est celle proposée par Wallin et
al. [22, 37, 82]. Ce choix a été motivé par la possibilité d’obtenir une solution directe pour le tenseur
d’anisotropie ainsi que pour le flux turbulent adimensionné et de proposer une méthode naturelle
de résolution du couplage dans le cas des écoulements où les effets de la flottabilité ne peuvent pas
être négligés. Par ailleurs, l’intérêt de cette approche réside également dans sa formulation qui peut
être étendue aux écoulements avec de forts écarts de masse volumique où le champ de vitesse n’est
plus à divergence nulle [22].

D’autre part, devant la faible prédictivité des approches RANS observée pour certains écoulements
et des limitations en termes de coût pour la simulation des grandes échelles, il s’agit de développer
une approche hybride RANS-LES non-zonale de type DES équivalente s’appuyant sur une fermeture
algébrique analogue pour les tensions et le flux de masse de sous-filtre.
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Les problématiques de sûreté mentionnées précédemment correspondent à une classe d’écoulements
turbulents à masse volumique variable sans effet de compressibilité. On se limite dans ce travail
dans un premier temps à des écoulements sans variation de masse volumique puis, dans le cas d’une
stratification stable, à des écoulements avec de faibles écarts de masse volumique pour lesquels
l’approximation de Boussinesq est justifiée.

1.2 Modélisation RANS et fermeture algébrique des flux turbulents

Les fermetures algébriques s’appuyant sur une hypothèse d’équilibre faible d’une modélisation au
second ordre des flux turbulents (tensions de Reynolds et flux turbulent d’un scalaire passif ou
actif) constituent une alternative attractive vis-à-vis des modèles au premier ordre basés sur une
fermeture de type loi de gradient et des modèles au second ordre pour lesquels les flux sont solutions
d’une équation de transport. Il s’agit d’améliorer les prédictions des modèles au premier ordre avec
des performances proches de celles d’une modélisation au second ordre, tout du moins lorsque
l’hypothèse d’équilibre faible n’est pas mise en défaut, tout en conservant la robustesse des modèles
à viscosité turbulente. On peut signaler dès à présent que cette alternative est particulièrement
attractive dans un contexte hybride RANS/LES étant donné le surcoût engendré la résolution
d’équations de transport pour chaque composante du flux de sous-filtre.

1.2.1 Ecoulements incompressibles

L’hypothèse d’équilibre faible [59], initialement proposée pour les tensions de Reynolds, revient à
négliger le transport et la diffusion du tenseur d’anisotropie a défini par

a =
u′iu
′
j

k
− 2

3
δ (1.1)

Afin d’obtenir une relation algébrique pour les tensions de Reynolds, la première étape consiste à
écrire le modèle au second ordre pour les tensions de Reynolds en fonction du tenseur d’anisotropie

k
Da

Dt
−
(
D −

u′iu
′
j

k
D
)

= −
u′iu
′
j

k
(P − ε) + P − ε+Π (1.2)

où D, P , Π et ε désignent respectivement les termes de diffusion, production, redistribution et de
dissipation des tensions de Reynolds. Les quantités scalaires D, P et ε correspondent à la demi-
trace des tenseurs et correspondent respectivement aux termes de diffusion, production et dissipation
d’énergie cinétique turbulente. L’hypothèse d’équilibre faible revient à négliger le membre de gauche
de l’équation précédente et conduit donc à la relation algébrique suivante

u′iu
′
j

k
(P − ε) = P +Π − ε (1.3)

En adoptant l’hypothèse classique d’isotropie de la dissipation, on peut montrer que la plupart
des modèles proposés pour le terme de redistribution permettent d’écrire la relation algébrique
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précédente sous la forme(
c1 − 1 +

P
ε

)
a = − 8

15
S +

7c2 + 1

11
(aΩ −Ωa)

− 5− 9c2

11

(
aS + Sa− 2

3
aSδ

)
(1.4)

où S etΩ désignent respectivement les tenseurs de cisaillement et de rotation moyens adimensionnés
par une échelle caractéristique de temps de la turbulence τ = k/ε

S =
τ

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, Ω =

τ

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(1.5)

En supposant connu le ratio P/ε, une solution algébrique explicite pour a peut être obtenue à partir
de la méthode directe proposée par Grigoriev et Lazeroms [28]. Afin de simplifier les développements,
on adopte ici la valeur c2 = 5/9 et on peut montrer que le tenseur d’anisotropie s’écrit sous la forme
initialement proposée par Wallin and Johansson [82] obtenue à partir de la projection du tenseur
d’anisotropie dans une base tensorielle. Dans le cas bidimensionnel, la relation algébrique s’écrit

a = β1S + β4(SΩ −ΩS) (1.6)

Les coefficients β1 et β4 sont fonction du ratio P/ε = −tr{aS} pour lequel une solution analy-
tique peut être obtenue dans le cas bidimensionnel en résolvant l’équation non-linéaire obtenue en
substituant a par son expression dans la définition du ratio. Dans le cas tridimensionnel, il n’est
plus possible d’obtenir une solution analytique pour le ratio P/ε et on adopte généralement en pre-
mière approximation la solution obtenue dans le cas bidimensionnel afin de conserver une relation
explicite.

Si la modélisation algébrique fournit une fermeture pour le tenseur d’anisotropie, elle nécessite égale-
ment comme les modèles de viscosité turbulente une fermeture pour l’énergie cinétique turbulente
k et l’échelle de temps τ . Ces deux échelles caractéristiques de la turbulence sont déterminées ici à
partir d’un modèle à deux équations de transport pour k et ω = ε/(β∗k), le modèle k-ω BSL [44]

dk

dt
= P − β∗ωk +

∂

∂xj

[
(ν + σk

k

ω
)
∂k

∂xj

]
(1.7)

dω

dt
=
γω

k
P − βω2 +

∂

∂xj

[
(ν + σω

k

ω
)
∂ω

∂xj

]
+ 2(1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
(1.8)

Nous avons adopté ici la méthodologie proposée par Wilcox [86] consistant à ne pas modifier la
modélisation initiale des flux de diffusion permettant ainsi de conserver les constantes de calibration
du modèle contrairement aux développements proposés par Hellsten [23].

Les performances du modèle ont été évaluées sur des cas classiques de la littérature de l’écoulement
turbulent pleinement développé entre deux plaques planes puis dans une conduite à section carrée.
Les résultats obtenus dans le premier cas sont quasi-identiques aux résultats obtenus à partir du
même modèle pour k et ω et une fermeture de type loi de gradient pour les tensions de Reynolds.
En revanche, les résultats obtenus dans le deuxième cas révèlent clairement la supériorité d’une
modélisation algébrique puisque dans ce cas un écoulement secondaire dû à l’anisotropie des ten-
sions de Reynolds est prédit par le modèle algébrique contrairement à son homologue basé sur une
fermeture de type loi de gradient.
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Figure 1.1. Profils de vitesse moyenne dans le cas du canal plan turbulent
Reτ = 550 (gauche) et de la conduite à section carrée Reτ = 600 (droite) pour

deux valeurs de la constante c2.

1.2.2 Extension au cas des écoulements à masse volumique variable

La modélisation algébrique des flux turbulents dans le cas des écoulements à masse volumique
variable s’appuie sur la même méthodologie que celle adoptée précédemment pour les tensions de
Reynolds dans le cas où les effets de flottabilité sont négligés. L’hypothèse d’équilibre faible pour
les tensions de Reynolds est complétée ici par une hypothèse d’équilibre faible pour le flux turbulent
adimensionné du scalaire défini par

ξi =
u′iθ
′

√
kkθ

(1.9)

où θ désigne le scalaire responsable des effets de flottabilité (concentration, température) et kθ sa
demi-variance. L’hypothèse d’équilibre faible pour les tensions de Reynolds et le flux turbulent
adimensionné du scalaire conduit ainsi aux relations algébriques suivantes

u′iu
′
j

k
(P − ε+ G) =Pij +Πij − εij + Gij (1.10)

u′iθ
′

2

(P − ε+ G
k

+
Pθ − εθ
kθ

)
=Pθi +Πθi − εθi + Gθi (1.11)

où Dθi, Pθi, Πθi et εθi désignent respectivement les termes de diffusion, production, redistribution
et de dissipation du flux turbulent associé au scalaire et où G et Gθi désignent les termes de pro-
duction/destruction par les effets de flottabilité. Comme précédemment, en adoptant l’hypothèse
classique d’isotropie des dissipations, on peut montrer que la plupart des modèles proposés pour les
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Figure 1.2. Ecoulement secondaire prédit par le modèle algébrique dans un
quadrant de la section droite de la conduite à section carrée.

termes de redistribution conduisent aux relations algébriques suivantes

Naij =− 8

15
Sij +

7c2 + 1

11
(aikΩkj −Ωikakj)
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3
akmSmkδij

)
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Γiξj + Γjξi −

2

3
Γkξkδij

)
(1.12)

Nθξi =− ((1− cθ2 − cθ3)Sik + (1− cθ2 + cθ3)Ωik) ξk

− (1− cθ4)

(
aik +

2

3
δik

)
Θk − (2− cθg)Γi (1.13)

où les vecteurs Θi et Γi sont définis par

Θi = τ

√
k

kθ

∂θ

∂xi
, Γi = τ

√
kθ
k
βθgi (1.14)

Dans les relations algébriques précédentes, les coefficients N et Nθ sont donnés par

N = c1 − 1 +
P + G
ε

= c1 − 1− akmSkm − Γkξk (1.15)
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1

2
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− 1 +

1
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(Pθ
εθ
− 1

))
= cθ1 +

1

2

(P + G
ε
− 1− 1

rτ

)
+

(
cθ5 −

1

2

)
ξkΘk (1.16)

Afin de simplifier les développements, on adopte ici les valeurs c2 = 5/9 et cθ5 = 1/2. Néanmoins,
les développements proposés dans ce travail ne se restreignent pas à ce choix particulier de valeurs.

Comme précédemment, en suivant la méthodologie proposée par Grigoriev et Lazeroms [28], on
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montre que l’on peut obtenir une relation algébrique explicite pour aij et ξi si on suppose que le
ratio (P + G)/ε est connu. Dans le cas où les effets de flottabilité peuvent être négligés, c’est-à-dire
Γi = 0, les développements proposés sont formellement équivalents au modèle proposé par Wikström
et al. [85] pour le cas du scalaire passif. Dans le cas du scalaire actif, on propose de résoudre le
couplage entre aij et ξi de manière itérative à partir de la relation

Nn = c1 − 1− akm(Nn−1)Skm − ξk(Nn−1)Γk (1.17)

En pratique, la première itération est initialisée avec la solution analytique obtenue dans le cas bidi-
mensionnel sans effets de flottabilité et les configurations étudiées révèlent qu’une solution convergée
est rapidement atteinte après trois itérations. L’intérêt de cette stratégie de résolution est triple :
(i) elle n’est pas restreinte à un choix particulier des constantes du modèles, (ii) elle conduit à une
solution consistante pour le ratio (P + G)/ε dans les cas bi- et tridimensionnels et (iii) elle peut
être étendue à des écoulements où la vitesse n’est plus nécessairement à divergence nulle (écarts de
masse volumique importants, . . . ) [22].

La mise en oeuvre de la fermeture algébrique s’appuie comme précédemment sur le modèle k-ω BSL
en adoptant la méthodologie proposée par Wilcox [86] pour la modélisation des flux de diffusion
pour k et ω. On adopte la même méthodologie pour l’équation de transport de la demi-variance du
scalaire, c’est-à-dire

dkθ
dt

= Pθ − εθ +
∂

∂xj

[
(κ+

1

σkθ

k

ω
)
∂kθ
∂xj

]
(1.18)

La dissipation εθ est estimée ici en adoptant l’hypothèse classique sur la donnée du rapport des
échelles de temps caractéristiques thermique et dynamique rτ = τθ/τ . Dans ce travail, la valeur
classique rτ = 0.55 a été retenue.

Les performances du modèle ont dans un premier temps été estimées dans le cas du scalaire passif
sur le cas de l’écoulement turbulent pleinement développé entre deux plaques planes. Les résultats
obtenus illustrent la supériorité d’une modélisation algébrique devant une modélisation de type loi
de gradient puisque dans ce cas, même si elle reste sous-estimée, la composante longitudinale du flux
turbulent du scalaire passif n’est pas identiquement nulle. Cette sous-estimation, particulièrement
marquée en proche paroi, est principalement le résultat d’absence d’une modélisation spécifique en
proche paroi, tant d’un point de vue des variances k et kθ que l’anisotropie des flux. Ce premier
cas a également permis d’estimer la validité de la correction proposée pour prendre en compte les
termes de diffusion dans la région centrale du canal où l’hypothèse d’équilibre faible est mis en
défaut.

Dans un deuxième temps, les performances du modèle dans le cas où les effets de flottabilité ne
peuvent plus être négligés ont été estimées sur la même configuration dans le cas de stratifications
stables. Si les résultats obtenus ne montrent pas clairement l’intérêt de la correction pour prendre
en compte les termes de diffusion en raison d’une laminarisation de l’écoulement au centre du canal
[37], la méthode de couplage proposée s’est avérée robuste et les effets de la stratification sont
qualitativement bien reproduits. La méthodologie et les résultats encourageants obtenus restent
à étendre à d’autres types de configuration, en particulier des configurations de type convection
naturelle avec une modélisation dédiée en proche paroi (pondération elliptique, . . . ).
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Figure 1.3. Profils du scalaire passif (haut), de la composante normale aux
parois (bas-gauche) et longitudinale (bas-droite) du flux turbulent.

1.3 Modélisation hybride RANS/LES et fermeture algébrique des
tensions de sous-filtre et du flux de masse de sous-filtre

Les approches hybrides RANS/LES constituent une alternative à la LES, moins gourmande en
termes de coût de calcul. En effet, elles permettent une coupure spectrale à des échelles plus
grandes que celles de la zone inertielle du spectre turbulent.

Nous nous focalisons ici sur les méthodes non-zonales, à transition continue. Il en existe pléthore,
dont le principe global est de s’appuyer sur un modèle RANS, auquel on apporte une modification
pour faire intervenir la coupure spectrale associée au maillage, afin de réduire la viscosité turbulente.
Cette modification sera appelée ci-après “fonction d’hybridation”. Ceci afin de permettre au terme
convectif des équations du mouvement, de transporter les fluctuations de grande échelle.
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Figure 1.4. Profils de vitesse moyenne (haut-gauche), de température
moyenne (haut-droite) et rapport production sur dissipation pour trois nom-

bres de Richardson.

L’avantage de ces méthodes, est qu’outre la modification évoquée ci-dessus pour tenir compte de la
coupure spectrale, le modèle de fermeture turbulente est formellement identique à sa version RANS.
Les grandeurs transportées par le modèle de fermeture (par exemple énergie cinétique turbulente,
dissipation...) changent alors quelque peu de sens physique, pour devenir des grandeurs de sous-
filtre.

1.3.1 DES équivalente

Notre choix se tourne vers la DES équivalente, qui constitue un compromis entre la robustesse de
la DES et la justification théorique du PITM. Pour rappel, le principe de la DES est de modifier
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le terme puits (dissipation) de l’équation de transport de l’énergie cinétique turbulente, pour le
rendre sensible à la coupure spectrale : De son côté, la théorie du PITM a été développée dans
l’espace spectral et, dans le cas d’une fermeture de type k − ε, c’est le cœfficient Cε2 de l’équation
de transport de la dissipation, qui est rendu sensible à la coupure : via le ratio d’énergie r, qui
est le rapport de l’énergie cinétique turbulente modélisée sur l’énergie cinétique turbulente totale :
r = km/k, et qui est une fonction (subjective) de la coupure spectrale, qui vaut théoriquement 1 à
la limite RANS et 0 à la limite DNS.

Friess et al. [14] ont établi un critère d’équivalence statistique entre la DES et le PITM, aboutissant
sur la méthode hybride RANS/LES appelée DES équivalente. En bref, il s’agit d’une DES pour
laquelle on emploie non pas explicitement la taille de maille, mais le ratio d’énergie r :

Dks
Dt

= production + diffusion−max

(
1;Ψ(r)

k
3/2
s

(rktot)3/2

)
︸ ︷︷ ︸

ψ

εs (1.19)

avec
Ψ(r) = 1 +

(
Cε2
Cε1
− 1

)(
1− rCε1/Cε2

)
(1.20)

Dans la présente thèse, le modèle de fermeture k − ω BSL de Menter [46] est étendu au contexte
hybride. La fonction d’hybridation ψ apparaissant dans l’équation (1.19) est alors le fruit d’une
pondération entre les fonctions ψ de chacune des branches k − ε et k − ω.

1.3.2 Fermeture algébrique en contexte hybride RANS/LES

Cas général

En contexte hybride RANS/LES, se pose la question de l’applicabilité de l’hypothèse d’équilibre
faible sur la turbulence de sous-filtre.

Récemmment, Marstorp et al. [41] ont développé un modèle anisotrope de sous-maille, pour la LES,
en s’inspirant des travaux en RANS de Wallin et Johansson [82], aboutissant à une approche nommée
“explicit algebraic subgrid scale model (EASSM)”, donnant des résultats prometteurs, notamment
sur l’écoulement en conduite à section carrée.

Aussi, si l’hypothèse d’équilibre faible est une approximation raisonnable à la fois à la limite RANS,
et en LES, on peut alors présumer par interpolation qu’elle est acceptable entre ces deux limites,
bien que cela mériterait d’être démontré. C’est en tout cas l’hypothèse implicitement faite dans les
travaux de Weatheritt et al. [83] et de Weinmann et al. [84].

Cette hypothèse, associée à celle supposant l’identité formelle entre modèle RANS et fermeture de
sous-filtre, permet d’exploiter les résultats présentés en section 1.2.1, avec les nuances suivantes :

• les quantités moyennées du type φ sont remplacées par leurs équivalentes filtrées φ̃,

• les variables des modèles de fermeture turbulente (par exemple k) sont remplacées par leur
équivalent de sous-filtre (par exemple ks).

En effet, la fonction d’hybridation n’intervient que dans l’équation de transport de l’échelle carac-
téristique de temps de la turbulence de sous-filtre τ s.
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Cas avec scalaire

Lorsqu’un scalaire est transporté, en modélisation RANS il faut transporter sa demi-variance. En
hybride RANS/LES, c’est sa demi-variance de sous-filtre qui est transportée :

kθs = θ̃′θ′ . (1.21)

Comme en dynamique pure, il faut insérer une fonction d’hybridation dans l’équation de transport
de kθs. Ceci soulève la question d’un ratio d’énergie pour la turbulence scalaire. Or cela reviendrait
à construire des échelles supplémentaires de sous-filtre, ce qui alourdirait le modèle. Par souci de
simplicité, nous utilisons donc le même ratio d’énergie r qu’en dynamique.

En outre, similairement à ce qui est fait en RANS (voir section 1.2.2), on détermine la dissipation
scalaire de sous-filtre εθs via le rapport des échelles de temps caractéristiques scalaire et dynamique
(de sous-filtre), dont la valeur est discutée ci-dessous.

La fonction d’hybridation ψθ pour le scalaire, est un peu plus complexe à construire que son ho-
mologue dynamique. En effet, en dynamique, on construit aisément une échelle de longueur (et de
temps) à partir de ks et εs. Mais selon la nature du scalaire θ, il peut être dimensionnellement
impossible de construire une échelle de longueur à partir de kθs et εθs. Par contre, il est toujours
possible de construire une échelle de temps. On peut alors s’appuyer sur les travaux de Tran et
al. [76] en dynamique :

ψθ = max

(
1;

tθ,S
tθ,LES

)
, (1.22)

avec :
tθs =

kθs
εθs

and tθLES =
rkθ,tot

Ψ(r)εθ,tot
. (1.23)

On fait l’hypothèse heuristique que le cœfficient Ψ(r) utilisé en dynamique, peut être utilisé en
turbulence. En utilisant le rapport des échelles de temps scalaire et dynamique rτ et sa valeur
de sous-filtre rτ s, on peut définir tθs et tθLES à partir des variables turbulentes dynamique (en
supposant εtot ≈ εs):

ψθ = max

(
1;
rτ s
rτ

ks
rktot

Ψ(r)

)
. (1.24)

Le rapport de sous-filtre des échelles de temps rτ,S peut par exemple être défini comme dans les
travaux de Jimenez et al. (2015) [30] en LES :

rτ s ≈ Pr (1.25)

ou à l’aide d’une pondération entre rτ et l’expression ci-dessus, faisant intervenir le ratio d’énergie
r.
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Figure 1.5. Ecoulement périodique dans un canal à section carrée à Reτ =
600. Maillage grossier, modèles WALE et EAHSM.
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Figure 1.6. Vitesse (gauche) et température (droite) moyennes - Ri = 60.
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Figure 1.9. Champs instantanés de vitesse longitudinale (gauche) et tem-
pérature (droite) filtrées, prédites par le modèle EAHSM, pour les nombres de

Richardson Ri = 60 (haut), 120 (milieu) and 480 (bas).





1

Chapter 1

Introduction and Preliminaries

In this chapter, the need of using Computational Fluid Dynamics (CFD) tools for safety studies
dealing with hydrogen hazard related problems is presented. This is followed by an introduction
to the various levels of turbulence modeling present in the literature. The underlying principle of
DNS, RANS, LES and Hybrid RANS/LES methods along with their advantages and weaknesses are
briefly discussed. We then conclude by the structure of the proposed work that is interested in the
development of hybrid methods for the P2REMICS CFD software developed at IRSN.

1.1 Hydrogen hazard and the need of reliable CFD tools

As an energy carrier for many increasingly application-based processes, hydrogen is likely to gain
prominence especially if it facilitates the reduction of greenhouse gas emissions given that renewable
primary energy sources are employed to produce hydrogen in the first place. The safety issues
associated with hydrogen applications thus have to be investigated and fully understood for a safe
transition to their usage in public sector. The nature of hydrogen based reactions in industrial
applications where hydrogen may be present directly or indirectly as a product of a preceding
reaction, and subsequent methods to control its accumulation and prevention of return to critically
are studied with interest by the scientific community (e.g. [4, 72]). Of pertinent interest is the
maintenance of the local concentration levels of hydrogen well below its flammable limit which if
not paid specific attention to, might lead to unforeseen disasters.

The 1983 Stockholm hydrogen accident [80] in central Stockholm, Sweden is a major example of
an explosion incident where hydrogen was involved. The accidental release of approximately 13.5
kg of hydrogen from a rack of 18 interconnected industrial pressure vessels being transported by
a delivery truck led to an explosion. Similarly, the hazards associated with hydrogen gas leakage
within a building, for instance as in a vehicle parked in a residential garage, would lead to the
mixing of the leaked unignited hydrogen with indoor air forming a flammable mixture which might
cause an explosion [1]. A recent reminder of the potential consequences of the release and ignition
of hydrogen during severe accident conditions in a nuclear power plant is the Fukushima Daiichi
accident [5]. During the course of this severe accident, chemical reactions between the fuel cladding,
in this case the Zirconium alloy and water generated large quantities of hydrogen, which from the
containment escaped into reactor’s primary containment vessel and then further into the reactor
building where it mixed with air. This subsequently raised a combustion hazard and ultimately led
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to a series of explosions, damaging the reactor containment and leading to the release of radioactive
materials into the reactor building and eventually to the environment.

The role of IRSN is to carefully analyze and understand the risk of hydrogen explosion in nuclear
facilities as it poses a potential threat to the reactor (breakdown of safety equipments, failure of
containment) and the environment (diffusion of radioactive materials in the environment) which
can be catastrophic. Fukushima Daiichi nuclear disaster also led to complementary research and
development projects [4, 5] to better understand the phenomena associated with the combustion
hazard and to address issues such as explosion hazard in the venting system, dispersion of the
radioactive particles beyond the primary containment and motivated further work to develop and
validate Computational Fluid Dynamics (CFD) tools [3], which are growing into useful analysis
tools for supporting safety management. The safety issues related to the explosion hazards are
usually segregated into three linked yet separate phases

(i) The first phase corresponds to the release and dispersion of the explosive gases leading to a
partially premixed explosive atmosphere from the turbulent mixing of the gases,

(ii) A possible chemical reaction between the gases could lead to an explosion, regarded as the sec-
ond phase. The challenges posed here constitute the understanding of the rate of combustion
and of the flame-front structure along with turbulence coupling,

(iii) The final phase involve the propagation of the blast wave and its effects on the structural
integrity of the reactor facility.

The P2REMICS (Partially PREMixed Combustion Solver) is an in-house CFD software developed
at IRSN dedicated to the computation of the three phases listed above, the formation of explosive
atmospheres (i), their deflagration or detonation (ii) and the subsequent propagation of blast waves
(iii). Phase one addressing the release and dispersion of the explosive gases is focused in this work
where turbulence modeling plays a central role as discussed in the next section. As a first step, the
following thesis focuses on slightly variable density flows that reflect most of the phenomena involved
in variable density flows with large density differences and deals with the predictive capability of
hybrid RANS-LES approaches.

1.2 Governing Equations and turbulence modeling approaches

The Navier-Stokes equation, representing the conservation of momentum, governs the motion of
fluids and can be interpreted as Newton’s second law of motion for fluids. For an incompressible
Newtonian fluid, the conservation of momentum for an instantaneous local velocity field, u(x, y, z, t)
is

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi. (1.1)

where ui is the i-th component of the velocity vector, p is the fluid pressure, ρ and ν are the density
and the kinematic viscosity of the fluid respectively, and fi is an external bulk force acting on the
fluid, e.g. gravity. The set of Navier-Stokes equations along with the mass-conservation equation
for an incompressible flow

∇ · u =
∂ui
∂xi

= 0. (1.2)
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form a closed system for the evolution of velocity and pressure, provide the starting point of any
journey into turbulence.
In the present context, the mixing process associated in the release and dispersion of explosive
gases is to be studied and an analytical solution do not exist to properly deal with such complex
phenomena. Further, the governing set of equations can only be solved for very simple cases of
flow in the computational standpoint. Hence, for most of the cases, to predict the evolution of
turbulence flows and the phenomenon attributed to it, one uses CFD tools consisting of turbulence
models. These models are simplified constitutive equations that predict the evolution (depending
on the modeling technique) of certain quantities of turbulent flows. The construction and use of a
model to predict the effects of turbulence is dealt under the subject turbulence modeling. In this
thesis, the first three chapters strictly deal with incompressible flows. Effects of compressibility will
be addressed in Chapter 4.
Before plunging into the mathematics of turbulence, it is worthwhile to discuss some physical aspects
of turbulence. Turbulence is not easy to define but not hard to find examples. The flow of the smoke
arising from a cigarette, the whirl of the milk added to a cup of tea and external flow over vehicles
are some examples of turbulent flows. Also, all flows of practical engineering interest are turbulent.
From these examples, certain common characteristics1 of a turbulent flow persists:

Figure 1.1. The turbulence energy cascade [62]. The large energy containing
eddies, given by lengthscale L break down into smaller eddies down until a
length scale (Kolmogorov microscale, Lκ) at which point the energy is con-

verted into heat under the effect of molecular viscosity.

(i) Disorder: The flow is never reproducible in detail. Although, averages over a suitably large
space or time may be well defined.

(ii) Efficient mixing: It is an essential feature of a turbulent motion. Mixing can either lead to a
complete blending of the fluids in a confined volume (milk + tea) or dilution (smoke arising
from a cigarette).

(iii) Vorticity: Irregularly distributed in 3D.
1Refer [75] for a more detailed explanation on the various characteristics of a turbulent flow.
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The irregular nature of turbulence is characterized by the presence of a continuous spectrum of
scales ranging from largest to smallest length scales. Figure. 1.1 show the various length scales in a
turbulent flow and also the energy cascade. The large-scale vortices of characteristic length L ( in
Figure. 1.1) are created by the flow and influenced by the geometry the flow is engaged with. They
are the energy-containing vortices, which contain the highest part of the turbulent kinetic energy,
described by the Taylor scale.
The Taylor microscale, named after Geoffrey Ingram Taylor, is sometimes called the turbulence
length scale, is a length scale used to characterize a turbulent fluid flow. The Taylor microscale is
the intermediate length scale at which fluid viscosity significantly affects the dynamics of turbulent
eddies in the flow. This length scale is traditionally applied to turbulent flow which can be char-
acterized by a Kolmogorov spectrum of velocity fluctuations. In such a flow, length scales which
are larger than the Taylor microscale are not strongly affected by viscosity. These larger length
scales in the flow are generally referred to as the inertial range. Below the Taylor microscale the
turbulent motions are subject to strong viscous forces and kinetic energy is dissipated into heat.
These shorter length scale motions are generally termed the dissipation range.
These large-scale vortices are broken down into smaller vortices through the process of vortex
stretching. This moves the energy from large-scale vortices to small-scale vortices and further to
smaller-scales. This region corresponds to the inertial range, where vortex stretching can be de-
scribed by inertial effects of the vortex breakup with negligibble viscous effects. The energy cascade
continues until the length-scale is of the order of Kolmogorov microscales (Lκ). Although the small
vortices contain low proportion of overall kinetic energy, they contribute to most of dissipation of
the kinetic energy into heat through the action of molecular viscosity. The Kolmogorov microscale
is the smallest relevant scale in turbulence. Due to this nature of turbulence, we say that turbulent
flows are always dissipative.

Direct Numerical Simulation (DNS)
In principle, the governing equations (Eqs. 1.1-1.2) contains all of the physics of a given turbulent
flow. Unfortunately, no known analytical solution exist in turbulent regime. This is why engineers
need computation codes, in which the problem is discretized and solved numerically. The approach
of solving directly the set of equations of motion with initial and boundary conditions appropriate
to the flow considered without any use of a turbulence model is termed as DNS. The whole range
of scales is solved explicitly.
It is the simplest approach and when it can be applied, it is unrivaled in accuracy and the level
of description achieved. However, it is an exceedingly expensive method for any but simple, low-
speed flows because the range of eddy size broadens in proportion to the Reynolds number, given
by Re3/4. Here, Re = UL/ν being the Reynolds number, based on a mean flow velocity U and a
length scale L characteristic of the flow in question (ν = µ/ρ is the kinematic viscosity). When per-
forming a numerical simulation, analysis has shown that the number of computational grid points
required increases as Re9/4 and the number of time-steps in proportion to Re3/4 [54]. As a result,
performing DNS of turbulent flows with the complete details of different turbulence length scales
(from the largest turbulent structures down to the smallest structures) is beyond reach for industrial
applications which mostly deal with high Reynolds number flows.

1.3 Statistical modeling: Reynolds Averaged Navier-Stokes

Statistical approaches are used in an attempt to reduce the complexity and cost of the numeri-
cal simulation by focusing the attention on the velocity and pressure at any one spatial location,
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averaged over some period of time, yielding averaged equivalents of the respective instantaneous
variables. Thus, if the mean/averaged velocity is denoted by Ui, then the instantaneous velocity is
represented as ui = Ui + u′i. Here, u′i denotes the fluctuating part of the velocity. This procedure
of expressing the instantaneous quantity is called as Reynolds averaging, initially introduced by
Reynolds [58].
The Reynolds averaging operator for an instantaneous quantity a is

A = a = lim
N→∞

(
1

N

N∑
k=1

ak

)
. (1.3)

Here, N corresponds to the sample size. Reynolds average operation is usually performed over a
period of time but it may be taken over space or over an ensemble of realizations, denoted by N .
To derive a mathematical framework for determining the time-averaged velocity, the Reynolds
decompositions ui = Ui + u′i and p = P + p′ are inserted into the Navier–Stokes (1.1) and mass-
conservation (1.2) equations. Further, time averaging the equations lead to:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂P

∂xi
+ fi + ν

∂2Ui
∂xj∂xj

−
∂u′iu

′
j

∂xj︸ ︷︷ ︸ . (1.4)

∂Ui
∂xi

= 0. (1.5)

Through Reynolds averaging, the interest from the instantaneous behavior (ui, p) of the flow is
shifted to its mean behavior (Ui, P ). Looking at turbulent flow, it may be steady in the mean in
spite of turbulent fluctuations.
In Eq. 1.4, an additional term (the underbraced term) in the form of the divergence of a tensor arises
from the influence of the averaging operator on the non-linear term. The correlation R = u′iu

′
j is

called the turbulent stresses or the Reynolds stresses, which is a new unknown. It is a second rank
symmetric tensor, interpreted as the turbulence equivalent of the viscous stress term in a Newtonian
fluid.
In order to compute the mean-flow properties, we need to prescribe u′iu

′
j , which is an unknown.

This is the ’Closure problem’: with 10 unknowns (three velocity components, pressure and six
stresses) larger than the number of equations; four (continuity equation and three components of
the Navier-Stokes equations).

1.3.1 Boussinesq hypothesis

In order to tackle the closure problem, Joseph Valentin Boussinesq in 1877 introduced the concept
of an eddy viscosity by developing a mathematical description of turbulent stresses to the mean
flow following the gradient-diffusion hypothesis.

u′iu
′
j = −2νtS +

2

3
kδ. (1.6)



6 Chapter 1. Introduction and Preliminaries

νt is the turbulent viscosity, S is the mean rate of strain tensor, k = 1
2u
′
iu
′
i is the turbulent kinetic

energy (half trace of the Reynolds stress tensor) and δ is the Kronecker delta.

S =
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
. (1.7)

Unlike laminar viscosity, the turbulent viscosity is a flow property which remains to be specified.
The problem reduces to finding νt as a function of the solution. Based on the number of additional
transport equations utilized, the models can be classified into three popular categories constructed
on the Boussinesq closure.

Algebraic models
The simplest of all models are the algebraic models because they are constructed using basic al-
gebraic relationships for turbulent viscosity. These models do not require additional transport
equations other than the NS equations. Prandtl put forth the mixing-length model of the following
form:

νt = l2mix

∣∣∣∣∂Ui∂xj

∣∣∣∣ , (1.8)

where lmix is the empirical mixing length, in the case of a channel flow given by:

lmix = min(κy; 0.1h). (1.9)

The mixing length model fails to provide close agreement with measured skin friction for boundary
layer flows following which several key modifications have been performed. See [88] for a more-
complete history of the mixing length model.

One equation model
A popularly utilized model is the one equation model developed by Spalart and Allmaras [69]
which was originally developed to tackle aerodynamic flows. A modeled transport equation for the
kinematic turbulent viscosity is solved in this model:

∂ν̃

∂t
+ Uj

∂ν̃

∂xj
= cb1Sν̃ − cw1fw

(
ν̃

d

)2

+
1

σ

∂

∂xj

[
(ν + ν̃)

∂ν̃

∂xj

]
+
cb2
σ

∂ν̃

∂xj

∂ν̃

∂xj
, (1.10)

with the kinematic turbulent viscosity given by

νt = fν1ν̃. (1.11)

with the following relationships:

fν1 =
ξ3

ξ3 + c3
ν1

, fν2 = 1− ξ

1 + ξfν1
, fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

ξ =
ν̃

ν
, g = r + cw2(r6 − r), r =

ν̃

S̃κ2d2

S̃ = S +
ν̃

κ2d2
fν2, S =

√
2ΩΩ
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along with the closure coefficients

cb1 = 0.1355, cb2 = 0.622, cν1 = 7.1, σ = 2/3

cw1 =
cb1
κ2

+
1 + cb2
σ

, cw2 = 0.3, cw3 = 2, κ = 0.41

Here, d is the distance to the closest wall which plays a major role in determining the level of
production and destruction of turbulent viscosity. Ω corresponds to the rotation tensor which is
given by

Ω =
1

2

(
∂Ui
∂xj
− ∂Uj
∂xi

)
. (1.12)

To enhance the model prediction for industrial flows, several improvements have been performed [88].
To have a more universal model, transport effects on the turbulence length scale must also be ac-
counted for.

Two equation model
Two-equation models has been extensively used for much of the turbulence model research. This
approach consists of solving transport equations for the turbulence lengthscale (l) and a timescale
(τ).
The first model of this type was introduced by Kolmogorov. One transport equation for the turbu-
lent kinetic energy (k) and a second transport equation to compute the specific dissipation rate (ω)
was utilized with

νt =
k

ω
. (1.13)

to close the system of equations.
Most of the commercially available CFD codes at present have a broad range of two equation mod-
els. A brief description of the most widely utilized models are presented here.

Standard k-ε model
This model includes two additional transport equations to represent the turbulent properties of
flow. The two transported variables are turbulent kinetic energy (k) and the dissipation rate (ε).
The transport equations of the standard k-ε model by Launder and Sharma [36] is presented below.

∂k

∂t
+ Uj

∂k

∂xj
= P − ε+

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(1.14)

∂ε

∂t
+ Uj

∂ε

∂xj
=
ε

k
(Cε1P − Cε2ε) +

∂

∂xj

[
(ν + σενt)

∂ε

∂xj

]
(1.15)

where the turbulent eddy viscosity νt is,

νt = Cµ
k2

ε
(1.16)

The production term P is
P = 2νtSS (1.17)
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with the model constants2

Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 0.769, Cµ = 0.09 (1.18)

In spite of the success of the k-ε model, this model has a number of well known shortcomings. It
performs poorly, for example, flows with adverse pressure gradient and flows involving separation.
Another shortcoming is the numerical stiffness of the model arises when equations are integrated
through the viscous sub-layer which are treated with damping functions that have stability issues.

Distinct k-ω models
Alternative models have been developed to overcome some of the shortcomings of the k-ε model.
One such model is Wilcox’s k-ω model [88]. Similar to the k-ε model, the first transported variable
is the turbulent kinetic energy, k. The second transported variable in this case is the specific
dissipation rate, ω which determines the scale of the turbulence, whereas k determines the energy
in the turbulence. The transport equations for Wilcox’s k-ω model [88] are (excluding the CDkω

term in Eq. 1.20).
dk

dt
= P − β∗ωk +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(1.19)

dω

dt
= γ

ω

k
P − βω2 +

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ 2(1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj︸ ︷︷ ︸
CDkω

(1.20)

with the model constants

σk1 = 0.4968, σω1 = 0.5, β1 = 0.075, β∗ = 0.09, γ1 = 0.55 (1.21)

The production term P is specified by Eq. 1.17. The turbulent eddy viscosity νt is defined as,

νt =
Cµ
β∗

k

ω
(1.22)

Inspite of its success, the major shortcoming of the k-ω model is its sensitivity to freestream bound-
ary conditions for free shear flows [43]. This has motivated the development of Menter’s Baseline
(BSL) k-ω model [43] which is analogous to Wilcox’s k-ω model [87] in the inner 50% of the
boundary-layer and changes progressively to the standard k-ε model (in a k-ω formulation) towards
the boundary-layer edge (outer wake region). This is achieved by first transforming the standard
k-ε model into a k-ω formulation, giving rise to an additional term in the k-ω equation (CDkω term
in Eq. 1.20). This allows one to perform the computations with a single set of equations (k-ω).
Following which a blending function F1 is utilized to perform a blend between the two regions. The
original k-ω model is multiplied by F1 and the transformed model by the function F2 = 1 − F1.
Adding both equation gives rise to Menter’s BSL model, Eqs. 1.19-1.20. The model constants are
given through the equation

φ = F1φ1 + F2φ2 (1.23)

where, φ1 represents any constant in the original model, φ2 represents its counterpart constant in
the transformed model and φ is the corresponding constant in the new model. The function F1 is
designed to take a value of one in the near wall region (activating the original k-ω model) and zero

2Arguments based on physical reasoning are involved in the determination of the value of these constants.
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away from the wall, usually in the outer wake region. F1 is written as

F1 = tanh(arg4
1) (1.24)

with,

arg1 = min

(
max

( √
k

β∗ωy
;
500ν

y2ω

)
;

4ρσω2k

CDkωy2

)
(1.25)

The first term in Eq. 1.25 corresponds to the ratio of turbulent length scale, Lt to the shortest
distance to the wall, y. In the logarithmic region, the ratio Lt/y is found to be 2.5. It is found by
using the relations, k = u2

τ/
√
β∗ and ω = uτ/

√
β∗κy which is applicable in the logarithmic region.

Lt
y

=
k

1
2

β∗ωy
=

κ

(β∗)
3
4

= 2.5 (1.26)

As we move farther from the logarithmic region of the boundary-layer to the boundary-layer edge,
this ratio goes from 2.5 to zero (the ratio becomes smaller and smaller with increasing y). The second
argument provides a lower limit for the function F1 ensuring that this function does not go to zero
in the viscous sublayer. The third argument is an additional safeguard against the "degenerate"
solution of the original k-ω model with small freestream values for ω in free shear flows where the
inclusion of a lower limit for ω is impossible [45].

CDkω = max

(
2σω2

1

ω

∂k

∂xj

∂ω

∂xj
, CDkω,min

)
(1.27)

CDkω is the positive portion of the cross-diffusion term present in the transformed ε equation.
Menter has used 10−20 as the value for CDkω,min. Hellsten [23] states that the choice of having
such a small value for CDkω,min may lead to a bad numerical behavior of CDkω and can introduce
undesirable rise of the blending function F1 back to a value of 1 around the outer edge of the
boundary layer. To obtain a better behavior Hellsten has made CDkω,min proportional to the
maximum value of the cross-diffusion term in each grid-block instead of the maximum value of the
whole flow field. This maximum value is multiplied by a factor of 10−8 to obtain a proper value for
CDkω,min.

The performance of this model is similar to that of the Wilcox’s k-ω model for flows with adverse
pressure gradient, without the undesirable freestream dependency of Wilcox’s k-ω model. Also,
damping functions are not necessary in comparison to the standard k-ε model. For free shear
layers, the BSL model is identical to the k-ε model and significantly better than k-ω model in
predicting spreading rates thereby keeping advantages of both k-ε and k-ω models. The BSL model
is not more complicated than the other existing two equation eddy-viscosity models and requires
only a small additional computational time. Furthermore, this model has shown to have the same
numerical robustness as the original model [45].
Although Menter’s BSL model outperforms the original k-ε model in predicting flows with adverse
pressure gradient, they still underpredict the flow separation for severe adverse pressure gradient
flows. The levels of principal turbulent shear-stress is overpredicted by the LEVMs (the ratio
P/ε >> 1).
Thus, Menter in his Shear Stress Transport (SST) formulation introduces an upper bound for the
principal shear-stresses. The SST model is similar to the BSL model except for a limiter introduced
in the SST formulation. The limiter is based on Bradshaw’s assumption, i.e., the shear stress (τ)
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in a boundary layer is proportional to the turbulent kinetic energy (k).

τ = ρa1k =⇒ |u′v′| = a1k (1.28)

a1 being a constant. Usually in two-equation models, the shear-stress is computed by

|u′v′| = νtS (1.29)

with S =
√

2SS for simple shear flows with S being the strain-rate tensor. Rearranging the above
equation gives

νt =
|u′v′|
S

=
a1k

S
=

a1k√
2SS

(1.30)

Eq. 1.30 is called the SST limitation for νt. The SST limitation is suitable only for wall-bounded
flows, i.e., for high values of S. But in case of free shear flows, the SST limitation has to be switched
off. Similar to F1, a blending function F2 is used in the SST model. F2 is given by

F2 = tanh(arg2
2) (1.31)

with,

arg2 = max

(
2
√
k

β∗ωy
;
500ν

y2ω

)
(1.32)

with νt given as,

νt =
a1k

max(a1ω;F2S)
(1.33)

The SST model is the most widely utilized k-ω model.

Defects of linear Eddy viscosity models
The deficiencies of the two-equation models mostly come from the linear stress-strain relationship,
the Boussinesq hypothesis. The dependence of anisotropy on system rotation is also excluded by
considering this linear relationship. Moreover, the eddy-viscosity assumption completely fails in
predicting all but one of the components in the Reynolds stress anisotropy tensor in the simplest
possible equilibrium shear flows, or in the logarithmic region of the boundary layer. For shear
flows, in order to properly capture the near wall behavior, certain limiters or damping functions are
necessary, e.g. the SST limiter.
These models lack realizability of the normal stresses. For flows with strong acceleration, this results
in negative normal stresses prediction. The normal stresses should always be positive which is one
of the necessary constraint according to the Schwarz’ inequality.
In case of the scalar fluxes, the linear models does not capture the scalar fluxes, even in a simple
shear layer.

1.3.2 Reynolds stress models

Instead of depending on the Boussinesq hypothesis for the Reynolds stresses, the most accurate
way of finding the Reynolds stress tensor is by solving transport equation for the same. Transport
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equation for Reynolds stress is derived in a manner similar to the derivation of the Reynolds-
averaged Navier-Stokes equation. However, it introduces six additional transport equations de-
scribing Reynolds stress and one additional equation describing the turbulence length scale. The
equation for the Reynolds stress tensor (R = u′iu

′
j) is derived from the fluctuating momentum

equation and is given by

∂u′iu
′
j

∂t
+ Uj

∂u′iu
′
j

∂xj
= P − ε+ Π +

∂T

∂xj
, (1.34)

where P is the production of the Reynolds stress, ε is the dissipation rate tensor, Π is the pres-
sure strain-rate correlation and the diffusive transport of the Reynolds stress is given by T . The
production term requires no modeling and is given by

P = −u′iu′k
∂uj
∂xk
− u′ju′k

∂ui
∂xk

. (1.35)

Various Reynolds stress transport models have been proposed based on the closure approach used
for the turbulent dissipation rate tensor ε and pressure strain-rate tensor Π which are represented
in terms of some known mean quantities. An isotropic assumption for the dissipation rate tensor is
usually assumed,

ε =
2

3
δε (1.36)

Moving to the pressure strain-rate, one traditionally adopt a decomposition into two parts, the rapid
and the slow part. Rapid part contains the mean flow field which enables it to respond directly to
changes in the mean flow while the slow part does not contain any mean flow field information. The
linear return-to-isotropy model proposed by Rotta is usually adopted for the slow part

Πs = −c1
ε

k

(
u′iu
′
j −

2

3
kδ

)
(1.37)

On the other hand, following the general linear model of Launder, Reece and Rodi [35] known as
the LRR model, the rapid part reads

Πr =− c2 + 8

11

(
P − 1

3
Pδ
)
− 30c2 − 2

55
k

(
∂ui
∂xj

+
∂uj
∂xi

)
− 8c2 − 2

11

(
−u′iu′k

∂uk
∂xj
− u′ju′k

∂uk
∂xi
− 2

3
Pδ
)

(1.38)

The set of values for the constants differ from model to model. The LRR model utilizes c1 = 1.8
and c2 = 5/9. The diffusive transport of the Reynolds stresses is given by

T = − ∂

∂xk

[
u′iu
′
ju
′
k + p′δiju′i + δiju′j

]
+ ν

∂u′iu
′
j

∂xk
. (1.39)

Shortcoming of Reynolds stress transport models
The use of Reynolds stress models in commercial software packages has not been completely possible
because of various reasons. Firstly, RSM’s are mathematically complex as it involves seven coupled
partial differential equations. Secondly, model coefficients have to be optimized in order to correctly
represent the wall-asymptotic variations of the stresses. Apart from the complexity of the modeling
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task, solving six differential transport equations for the stress components makes it computationally
expensive and numerically less robust in comparison to the two-equation models. They also require
the specification of boundary conditions for all stress components.

1.3.3 Non linear Eddy viscosity models

In the late 70’s, the task of solving six differential transport equations for the stress components,
instead of one for the turbulence energy, was considered to be too resource intensive. This could
have motivated Rodi (1976) to approximate the transport of the stresses by the algebraically scaled
transport of the turbulence kinetic energy, called the weak equilibrium assumption.
Making use of this assumption allows for an alternative representation of the Reynolds stress tensor.
Such models retain the differential formulation of a two-equation model and also to some extent
the Reynolds stress anisotropy a associated with Reynolds stress tensor. Such level of closures
are termed as nonlinear eddy viscosity models(NLEVMs). Within the NLEVM lies the traditional
algebraic Reynolds stress model (ARSM). The cost and effort to compute the implicit relation of
a used in the ARSM model is excessively large as a result of which the advantages of using ARSM
instead of the RSM is lost. Hence, an explicit expression to represent the Reynolds stress anisotropy
a consisting of the mean strain rate S and rotation rate Ω tensors is built where a,S and Ω are
second-rank tensors. NLEVM models will be assessed in detail in Chapter 2.

1.4 Scale resolving simulation models

The alternative to RANS models are models that resolve at least a portion of the turbulence in
the flow domain. Such models are generally termed as scale resolving models. Recent rise in the
computer power has shifted the focus of researchers on methods where length scales larger than
the resolution of the grid are resolved. Whereas a model is utilized for the eddies with lengthscales
smaller than the grid resolution. Consequently, the turbulence model should be sensitive to the
grid resolution such that on a very coarse grid the model should be capable to model all the scales.
Conversely, when the grid is fine enough, all the scales should be resolved.
These models help to capture certain flow phenomena where the time dependency of the flow is
important. For example, capturing the detached flow over an airfoil.

1.4.1 Large Eddy Simulation

Large Eddy Simulation (LES) is the most widely used scale resolving modeling approach. In such a
method, the large, non-universal, energy containing scales of the flow are computed explicitly, as in
DNS, while the small scales are modeled assuming that these scales are independent of the particular
flow and isotropic enough for a single model to be able to represent them in all situations.
Large eddies are the most effective transporters of conserved quantities (mass, momentum and
energy) and are anisotropic in nature. Small eddies are weaker and show a universal behavior.
They are isotropic irrespective of the Reynolds number and geometry of the flow. In an LES
prediction the size of the mesh defines the size of the resolved scales. Normally, LES requires lower
grid resolution in comparison to DNS. We obtain accurate time history for highly separated flows.
In order to resolve the large scales and model the small scales, one has to separate the two. The
separation between the large scales and the small scales is achieved with the help of spatial filters.
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Having a filter size smaller than the size of the mesh is meaningless. Hence the most common
relationship for a structured mesh is given by

∆ = 3
√

∆x∆y∆z (1.40)

Here, ∆x, ∆y and ∆z corresponds to the local mesh spacing along the three axes. The governing
equations for the filtered quantities in LES are similar to the governing equations for the mean
quantities in RANS. The filtered equations are

∂Ũi
∂t

+ Ũj
∂Ũi
∂xj

= −1

ρ

∂P̃

∂xi
+ fi + ν

∂2Ũi
∂xj∂xj

− ∂τij,S
∂xj

. (1.41)

∂Ũi
∂xi

= 0. (1.42)

where the tilde denotes a filtered quantity and it has been assumed that the filtering operation
commutes with temporal and spatial derivatives. Here, the term τ s is the subgrid stress (SGS)
which needs to be modeled.

τ s = ũiuj − ũiũj . (1.43)

The motivation behind a SFS model is to express the subfilter stresses in terms of the resolved
velocity. Analogous to the Boussinesq hypothesis (Eq.1.6), the SFS stresses can be written in terms
of the resolved rate of strain tensor through the relationship:

τ s = −2νsS̃. (1.44)

where S̃ is the resolved rate of strain tensor given by:

S̃ =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (1.45)

νs is the SFS turbulent viscosity and it should be sensitive to the grid resolution. Typical LES
models in use are of Smagorinsky model type, with either a fixed coefficient (Smagorinsky mode)
or a dynamic coefficient (Dynamic Smagorinsky mode).

Smagorinsky model
The Smgorinsky model [67] was originally proposed for simulating atmospheric flows and has be-
come one of the most successful methodology for simulating turbulent flows with the improvement
of computing power. The eddy viscosity is expressed as follows:

νs = (cs∆)2
√
S̃S̃. (1.46)

alongwith cs = 0.17, calibrated using numerical experimentation of the decay of isotropic turbu-
lence. Lilly derived a value of 0.23 for homogeneous isotropic turbulence in the inertial subrange.
However, the optimum value of cS varies from flow to flow and its value should vary such that near
solid walls, the amount of dissipation introduced by the SGS model must be reduced.

Dynamic Smagorinsky model
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This model is an extension of the Smagorinsky model. The coefficient cs3 is no more a constant
rather a parameter that is dynamically computed based on the information provided by the resolved
scales of motion [62]. The dynamic procedure therefore obviates the need for users to specify the
model constant in advance.

WALE model
In the Wall-Adapting Local Eddy-Viscosity (WALE) model [52], the eddy viscosity is modeled by

νs = L2
s(cs∆)

(S̃S̃)3/2

(S̃S̃)5/2 + (S̃S̃)5/4
. (1.47)

with,

Ls = min(κd,CwV
1/3). (1.48)

with Cw = 0.325 and V is the volume of the cell. The WALE model is designed to return the correct
wall asymptotic behavior for wall bounded flows. Another advantage of the WALE model is that
it returns a zero turbulent viscosity for laminar shear flows. The WALE model is therefore prefer-
able compared to the Smagorinsky-Lilly model as the Smagorinsky-Lilly model produces nonzero
turbulent viscosity.

LEVM as SFS models
Various SGS models have been proposed and most of them utilize the Boussinesq’s hypothesis to
model the SGS stress tensor as in typical RANS models. Such advanced models introduce some
transport effects by either solving a transport equation for the sub-filter kinetic energy, ks or by
solving multiple transport equations like the two-equation model.
The application of LES can now be used to simulate complex engineering flows. However, its ap-
plication is limited to simple geometries with low-to-moderate Reynolds number because of high
demands on grid resolution for industrial computations. Further, use of LES for simulating near
wall turbulence has been a problem. The reason being that near wall turbulence length scales are
very small. Hence, a mesh size fine enough to capture these length scales must be utilized leading
to an increase in the computational cost.

Higher order SFS models
More recent works have included a better description of the SGS model by introducing the effects
of anisotropy throught the use of an explicit algebraic stress models (EASM). Marstorp et al. [41],
developed a SGS model for simulating complex flows. They put to use an explicit algebraic model,
involving the strain rate (S̃) and rotation rate (Ω̃) tensors to predict the anisotropy of the SFS in
a more realistic way than the models based on the eddy viscosity assumption. The authors have
performed turbulent plane and rotating channel flow simulations from moderately-to-high Reynolds
number. They have shown that by utilizing a higher order SFS model, the grid resolution can be
1/5th of the guidelines present in the literature for this test case [50].

1.4.2 Hybrid RANS/LES methods

Many approaches have been suggested to optimize the computational cost for simulating wall
bounded flows. Recently, techniques have evolved to bridge RANS and LES models to maintain

3cs is not a constant but ranges between 0.1 < cs < 0.24.
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accuracy with a reduced cost of computation [15]. Such methods are termed as Hybrid RANS/LES
methods (HRLM). In these methods, LES is restricted for the simulation of the outer flow eddies to
circumvent the requirement of very fine grids in the near wall region. For this region, a pure RANS
turbulence model is utilized. In recent years HRLM has received increased attention [62].
The Hybrid model should be capable to tend towards a RANS model when the grid resolution is
very coarse. Conversely, at sufficiently high grid resolution, the model should tend towards a DNS.
HRLM can be broadly classified into two categories.

Zonal hybrid RANS/LES methods (zHRLM)
The first category falls into zHRLM where a part of the domain is set to be computed using RANS
equations and the rest is computed with LES (see [10, 77]). These models are complicated to use
when dealing with complex geometries as the transition zone has to be specified by the user.

Seamless hybrid RANS/LES methods (sHRLM)
The second method is to make the subfilter stress model sensitive to the local grid resolution and
turbulence properties. This enables to have a smooth and continuous transition from the RANS
to LES regions. These methods are called sHRLM. Such methods utilize a single set of transport
equations to model turbulence in the RANS and LES regions by adapting itself to the local grid
resolution. A detailed description on how the turbulence model adapts itself according to the grid
resolution is presented in detail in Chapter 3. Detached Eddy Simulation (DES) [68], Partially
Integrated Transport Modeling (PITM) [64], Equivalent-Detached Eddy Simulation (E-DES) [14]
are some examples of sHRLM.
The focus in the following thesis is on improving the predictive capabilities of the SFS model in a
continuous-HRLM framework.

1.5 Thesis Outline

The demand of CFD methods for the analysis of fluid flows is increasing. Role of IRSN is to build
a generic CFD code to conduct safety studies concerning hydrogen hazards. The aim of this study
is to improve the predictive capabilities of hybrid RANS/LES methods through the development
of a subfilter scale model which considers an explicit algebraic relation for the the non-isotropic
turbulent subfilter stress and turbulent scalar fluxes thus contributing to the improvement of the
safety analysis concerning hydrogen hazards. This chapter provides an introduction to the different
turbulence modeling strategies available. While there are a plethora of turbulence models, emphasis
is made on selected models most relevant to this work. Chapters 2 and 3 are limited to incompressible
flows while chapter 4 deals with variable density flows.

The development of an explicit algebraic Reynolds stress model in a RANS framework is presented
in Chapter 2 arrived at through a direct solution method. The coupling between the explicit
algebraic model and Menter’s BSL model is achieved without the need of a full recalibration. The
performance of the developed model is accessed on the flow in a fully developed turbulent channel
and the flow in a pipe of square cross-section.

Chapter 3 is precisely dedicated to seamless hybrid RANS/LES methods. Starting from E-DES
ks-εs, E-DES based on Menter’s BSL-like model is developed. For the closure, the explicit algebraic
model developed in Chapter 2 is extended within a seamless hybrid RANS/LES framework. A
calibration of the model on the decaying isotropic turbulence is conducted to find the optimum
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value of the model coefficient. Following which, three-dimensional simulations are performed using
the EAHSM on two grids: ’fine’ and ’coarse’.

In continuation to what is developed in Chapter 2 for an incompressible flow, the first part of
Chapter 4 deals with the development of an explicit algebraic model for slightly variable density
flows in a RANS framework. The development of an explicit algebraic model for the Reynolds
stresses and the scalar flux is performed using the direct solution method. The model is accessed
on the stably stratified homogeneous shear and the stably stratified channel flow. In the latter half
of this chapter the resulting explicit algebraic model is extended to a seamless hybrid RANS/LES
method following Chapter 3. Performance of the model is accessed on the two test cases like for
RANS.

Finally the open ends within the scope of this work is presented with certain solution strategies.
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Chapter 2

Explicit Algebraic Reynolds Stress
Modeling

In this chapter, the development of the EARSM model is presented starting from the transport
equation for the Normalized Reynolds stresses followed by the weak equilibrium assumption which
provides the foundation for the development of the algebraic models. One arrives at the Implicit
Algebraic Reynolds Stress Models through the utilization of this assumption on the transport of the
Normalized Reynolds stresses. Rather than using a particular tensor basis projection method as used
in the primary work [53] and most of the contributions that followed (e.g [24, 82]), we follow here
the direct solution method proposed by Grigoriev [28] to arrive at an explicit algebraic relationship
from the implicit relationship. The interest of using such a direct solution method will be highlighted
in Chapter 4 when dealing with variable density flows.
Coupling EARSM with any of the existing two-equation models usually requires a full calibration of
the coefficients (e.g Hellsten [24]). As a result, the generality of the platform two-equation model is
lost. Instead, we follow a very simple procedure for adapting EARSM with the k-ω model following
Wilcox [86] thereby eliminating the need for a complete recalibration of the model coefficients. Vali-
dation is performed on the canonical test case of the fully developed channel flow at Reτ = 550 and
a more challenging case of the fully developed flow in a square pipe at Reτ = 600.

2.1 Transport equation for the Normalized Reynolds stresses

Following the exposition on various levels of turbulence modeling approaches in Chapter 1, the
Second Moment Closures, in general distinguished as the Reynolds stress models (RSM) are at par
better in comparison to the Linear Eddy Viscosity Models (LEVM). The advection and diffusion
terms in RSM account for the transport effects of the individual stress components whereas the
LEVM address such effects for the trace of the Reynolds stress tensor. Yet, RSM have not received
much attention for industrial applications in comparison to the LEVM due to their mathemati-
cal complexity (the task of solving six differential transport equations for the stress components
complemented by closure models for pressure-strain rate correlation and triple-velocity correlations,
instead of one for the turbulence energy) and the consequential cost of computation.

Inevitably, in the late 60s, when computer power was a tiny fraction of what it is today, it was
considered inappropriate to apply emerging RSMs (e.g. Launder, Reece and Rodi [35]) to anything
more complex than two-dimensional boundary layers. This motivated Rodi [59] to make the pio-
neering proposal to approximate the transport of the stresses by the algebraically scaled transport
of the turbulence energy leading to an alternative representation of the Reynolds stress tensor. Such
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models retain the differential formulation of a two-equation model and also include the Reynolds
stress anisotropy effects associated with the Reynolds stress tensor.

The first step in the development of the algebraic models consists thus writing the transport equa-
tions for the Reynolds stresses in terms of the dimensionless anisotropy tensor defined by

a =
u′iu
′
j

k
− 2

3
δ (2.1)

The LHS of Reynolds stress transport equation minus the turbulent transport term (Eq. 1.34) along
with Eq. 1.14 can be written as

Du′iu
′
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′
j
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′
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−D

= k
D
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(
u′iu
′
j

k

)
+
u′iu
′
j

k
(P − ε+D)−D (2.2)

Substituting Eq. 2.2 in Eq. 1.34 and utilizing Eq. 2.1 leads to

k
Da

Dt
−
(
D −

u′iu
′
j

k
D
)

= −
u′iu
′
j

k
(P − ε) + P − ε+Π (2.3)

where D, P , Π and ε refer respectively to diffusion, production, pressure redistribution and dissi-
pation of the Reynolds stresses and given by Eqs. 1.35 - 1.39.

2.2 Weak Equilibrium assumption

The classical assumption on which the algebraic models are built is the weak equilibrium assumption
by Rodi [59].

Da

Dt
−
(
D −

u′iu
′
j

k
D
)

=
∂a

∂t
+ uj

∂a

∂xj
−
(
D −

u′iu
′
j

k
D
)

= 0 (2.4)

This is to say that the advection and diffusion terms in the exact transport equation for the Reynolds
stress anisotropy a, are neglected, i.e., the LHS of Eq. 2.3 is neglected. The dimensionless quantities
only vary slowly in space and time.

The assumption is based on the expectation that the transport of the Reynolds stresses occurs at
the same rate as the transport of the turbulent energy. This may be a reasonable assumption for
the normal-stress components — which are, after all, components of the turbulence energy. This
might appear to be on weaker ground for the shear-stress components. Using the weak-equilibrium
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assumption, the resulting algebraic equation read

u′iu
′
j

k
(P − ε) = P +Π − 2

3
εδ (2.5)

The above class of models are termed as algebraic stress models as it only requires the solution of
an implicit algebraic equation for the Reynolds stresses. The production and pressure-strain terms
on the right hand side of the above equation can be expressed in terms of a, S and Ω where S
and Ω are the normalized mean strain tensor and the normalized mean rotation tensor respectively
given as

S =
τ

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, Ω =

τ

2

(
∂ui
∂xj
− ∂uj
∂xi

)
(2.6)

Where τ = (k/ε) is the turbulent time scale used to normalize the velocity gradients. The turbulence
properties of a flow are profoundly influenced under the presence of a wall. In this work the attention
given to the near-wall region has been peripheral. Following [82], we introduce here a lower bound
for the turbulent time scale which goes to zero as the wall is approached. The limiter proposed by
Durbin[12] reads

τ =

(
k

ε
, Cτ

√
ν

ε

)
(2.7)

with Cτ = 6. This limiter is active in the near-wall regions through the viscous time scale

Inserting a, S and Ω in the definition of the production and redistribution terms leads to the
following expressions

P
ε

= −4

3
S − (aS + Sa) + aΩ −Ωa (2.8)

Π

ε
= −c1a+

4

5
S +

9c2 + 6

11

(
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3
aSδ

)
+

7c2 − 10

11
(aΩ −Ωa) (2.9)

Resulting in an algebraic equation for the Reynolds stress anisotropy tensor that reads(
c1 − 1 +

P
ε

)
a = − 8

15
S +

7c2 + 1

11
(aΩ −Ωa)

− 5− 9c2

11

(
aS + Sa− 2

3
aSδ

)
(2.10)

2.3 Development of EARSM

The advantage of such a manipulation done in the previous section to the ’parent RSM’ is to reduce
the complexity of using the differential terms. Further the absence of any differential terms in
the Reynolds-stress equations implies that no boundary conditions are necessary for the stresses.
Nevertheless, the implicit relationship still requires excessive computational efforts and as a result
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the benefits of using ARSM instead of RSM may be somewhat negligible and especially when moving
to seamless hybrid methods.

To tackle this issue, an explicit expression to represent the Reynolds stress anisotropy a consisting
of the mean strain rate (S) and rotation rate (Ω) tensors is built, the explicit algebraic Reynolds
stress model (EARSM). In simple terms, the nature of deriving an EARSM can be described as
a purely mathematical process of inverting the implicit algebraic relation (Eq. 2.10) to arrive at
explicit relationships that link the stresses to the strains and other known or determinable quantities
(k, ε, ω). The advantages of using this model over its parent model is its improved numerical
robustness and also the required computational effort is less due to its simplicity while keeping its
most important physical modeling. Since we include the Reynolds stress anisotropy, we can expect
the EARSM model to perform better than the general LEVM in predicting turbulent flows.

The most general explicit formalism for a in terms of S and Ω, restricted for 2D flows consisted of
ten tensorially independent groups, provided by Pope [53]. The higher order terms can be reduced
to these ten terms with the aid of Cayley-Hamilton theorem. Gatski and Speziale [19] derived
a 3D EARSM based on the general quasi-linear RSM of Speziale, Sarkar and Gatski [70]. The
authors point out that the model requires a regularization technique in order to obviate unreasonable
solutions. In particular, the production to dissipation ratio (P/ε in Eq. 2.10 ) was considered to
be a constant and such an imposition resulted in an internal inconsistency in conditions other than
equilibrium. By utilizing the LRR model with the approximation (c2 = 5/9 in Eq. 2.10 ), Taulbee
[73] provided an extension of the formalism by Pope for 2D flows to 3D conditions. That same model
has been utilized by Wallin and Johansson [82], but with an explicit treatment of the production
to dissipation ratio in contrary to other models.

Of all the models, the model by Wallin and Johansson [82] probably constitutes the best compromise
between completeness and simplicity. In the following work, this model is put to use. We further
follow in this work the direct solution method proposed by Grigoriev [28] to arrive at an explicit
algebraic relationship from the implicit relationship. The interest of using such a direct solution
method will be highlighted in Chapter 4 when dealing with variable density flows.

2.3.1 Explicit algebraic relation

As pointed out by Wallin and Johansson [82], the value of c2 close to 5/9 suggested by some studies
allows to neglect the last term in the right hand side of Eq. 2.10 and this greatly simplify the
algebraic equation. Adopting this value leads to the following simplified yet an implicit algebraic
relation for the Reynolds stress anisotropy tensor

Na = −A1S + (aΩ −Ωa) (2.11)

N is a function of a and reads

N = A3 +A4
P
ε

= A3 −A4aS (2.12)

with

A1 =
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15A0
, A3 =

c1 − 1

A0
, A4 =

1

A0
, A0 =

7c2 + 1

11
(2.13)



2.3.1. Explicit algebraic relation 21

The procedure to solve the implicit equation for a consists first in assuming that the coefficient
N is known. This leads to a linear equation that can be solved with the help of the Cayley-
Hamilton theorem. The final step consists then in solving the nonlinear equation for N . Introducing
s ≡ A1S/N and o ≡ Ω/N , the implicit relation, Eq. 2.11, is first rewritten as

a = −s+ (ao− oa) (2.14)

The first step consist in writing the dimensionless Reynolds-stresses anisotropy tensor in terms of the
dimensionless mean strain tensor S and the dimensionless mean rotation Ω is presented below, for
both two- and three-dimensional mean flows, following the direct procedure proposed by Grigoriev
and Lazeroms [28]. The direct evaluation of the tensor is performed rather than a projection on a
particular tensor basis. This approach is followed in this thesis as it will be a powerfull tool when
dealing with buoyancy driven flows in Chapter 4.

Two-dimensional mean flows In order to derive an algebraic equation for the dimensionless
Reynolds-stresses anisotropy tensor, the first step consists in writing the first recursive usage of the
implicit relation, Eq. 2.10, leading to

a = −s+ (so− os) + (ao2 + o2a− 2oao) (2.15)

In order to express the last term in the right hand side of Eq. 2.15, we recall that the Cayley-
Hamilton theorem for a two-dimensional traceless tensor reads

c2 =
1

2
IIcI , IIc = tr{c2} (2.16)

Here, I is the three-dimensional unit tensor. Substituting c = a+ o into Eq. 2.16 leads to

ao+ oa = tr{ao}I (2.17)

As a is symmetric and o is antisymmetric, the right hand side of Eq. 2.17 is zero and this allows to
get

ao2 + o2a = −2oao (2.18)

Finally, substituting c = o into Eq. 2.16 and multiplying by a leads to

ao2 + o2a = IIoa (2.19)

As a result, the algebraic relation reads

(1− 2IIo)a = −s+ (so− os) (2.20)

Substituting s ≡ C1S/N and o ≡ Ω/N , the resulting expression is formally equivalent to the
common expression proposed by Wallin and Johansson given by

a = β1S + β4(SΩ −ΩS) (2.21)

with

β1 = − A1N

N2 − 2IIΩ
, β4 = − A1

N2 − 2IIΩ
(2.22)
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The nonlinear equation for N can then be derived by inserting the solution of a provided by Eq. 2.21
in the definition of N . The resulting equation reads

N3 −A3N
2 − (A1A4IIS − 2IIΩ)N + 2A3IIΩ = 0 (2.23)

The solution of the cubic equation; Eq. 2.23 for N is
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P2 < 0.

where,

P1 =

(
1

27
c′21 +

A1A4

6
IIS −

2

3
IIΩ

)
c′1,

P2 = P 2
1 −

(
1

9
c′21 +

A1A4

3
IIS +

2

3
IIΩ

)3

with c′1 = A3. The first term on the RHS of Eq. 2.21 can be interpreted as a linear eddy-viscosity
representation but with a variable C∗µ coefficient given by

β1S ≈ νtS

νt = C∗µkτ (2.24)

C∗µ = −1

2
β1 (2.25)

Three-dimensional mean flows As for two-dimensional mean flows, the first step consists in
writing the first recursive usage of the implicit relation and this leads to Eq. 2.15. In order to
express the last term in the right hand side of Eq. 2.15, we recall that the Cayley-Hamilton theorem
for a three-dimensional traceless tensor reads

c3 =
1

2
IIcc+

1

3
IIIcI , IIc = tr{c2} , IIIc = tr{c3} (2.26)

Substituting c = s+o into Eq. 2.26, taking into account that s is a symmetric traceless tensor and
o is an antisymmetric traceless tensor, and equating the equal powers of s and o, one gets

s3 =
1

2
IIss+

1

3
IIIsI (2.27)

os2 + sos+ s2o =
1

2
IIso (2.28)

o2s+ oso+ so2 =
1

2
IIos+ IV I , IV = tr{so2} (2.29)

o3 =
1

2
IIoo (2.30)
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As a result, using Eq. 2.29 with s ≡ a, one has

o2a+ ao2 =
1

2
IIoa+ tr{ao2}I − oao (2.31)

Using the implicit relation Eq. 2.14 multiplied by o2 and taking the trace of the result, the second
term on the right hand side of Eq. 2.31 simplifies to

tr{ao2} = tr{(−s+ (ao− oa))o2} = −IV (2.32)

Hence, collecting Eqs. 2.31 and 2.32 allows to write Eq. 2.15 as

a = −s+ (so− os) + (
1

2
IIoa− IV I − 3oao) (2.33)

Next, the second recursive employment of the implicit relation provided by Eq. 2.15 allows to write
the last term in the right hand side of Eq. 2.33 as

oao = o
[
−s+ (so− os) + (ao2 + o2a− 2oao)

]
o

= −oso− oso2 + o2so+ o(ao2 + o2a− 2oao)o (2.34)

Using Eq. 2.31 together with Eq. 2.32, the last term in the right hand side of Eq. 2.34 simplifies to

o(ao2 + o2a− 2oao)o = 3o(ao2 + o2a)o− IIooao+ 2IV o2 (2.35)

Then, using Eq. 2.30 to express the first term in the right hand side of Eq. 2.35, Eq. 2.34 leads to

(1− 2IIo)oao = −oso− (oso2 − o2so) + 2IV o2 (2.36)

Finally, multiplying Eq. 2.33 by (1−2IIo) and using Eq. 2.29 to express oso, we obtain the following
explicit algebraic relation

(1− 2IIo)(1−
1

2
IIo)a = −(1− 7

2
IIo)s− 6IV (o2 − 1

3
IIoI)

− (1− 2IIo)(so− os)− 3(so2 + o2s− 2

3
IV I)− 3(o2so− oso2) (2.37)

Substituting s ≡ A1S/N and o ≡ Ω/N , the resulting expression is formally equivalent to the
common expression proposed by Wallin and Johansson given by

a =β1S + β3

(
Ω2 − 1

3
IIΩδ

)
+ β4(SΩ −ΩS)

+ β6

(
SΩ2 +Ω2S − 2

3
IV δ

)
+ β9

(
ΩSΩ2 −Ω2SΩ

)
(2.38)

where the coefficients βi are defined according to :

β1 = −N
(
2N2 − 7IIΩ

)
Q

, β3 = −12N−1IV

Q

β4 = −2
(
N2 − 2IIΩ

)
Q

, β6 = −6N

Q
, β9 =

6

Q
(2.39)

where the denominator Q is defined by
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Q =
1

A1

(
N2 − 2IIΩ

) (
2N2 − IIΩ

)
Q always remains positive since IIΩ is negative as the trace of the square of the antisymmetric
matrix is negative.

The non-linear equation for N is of sixth order for three-dimensional flows. Wallin and Johans-
son [82] suggest to use Eq. 2.23 as a first approximation and mention the difference between the
2D and 3D solution to be negligible. The solution of the 2D cubic equation is used for both two-
dimensional and three-dimensional flows in this study.

At this stage of the developments, it is evident that the model remains incomplete without the
description of k and τ . This necessitates for a platform model to obtain these turbulence properties.

2.3.2 The k-ω BSL-EARSM model

Many authors have used the BSL model as the platform for EARSM [23, 40, 31]. Whatever the
existing platform model, in order to appropriately couple with a "higher order" model usually
requires a partial or a full recalibration of the model coefficients in the platform model. Therefore,
when combined with EARSM, some problems may arise without any recalibration of the platform
model. This encouraged for instance Hellsten [23, 25] to perform a systematic calibration of both
sets of model coefficients present in the BSL model.

In the following section, the goal is to combine EARSM with the k-ω BSL model keeping the BSL
model unaltered. We propose to achieve this in two steps thereby enabling not to perform a detailed
recalibration of the model constants. Firstly, we follow the methodology by Wilcox [86] which aids
in coupling any algebraic model with a two-equation model (k-ω BSL in our case) without the need
for a complete recalibration procedure. A detailed analytical study performed in section 2.3.3 on
the canonical test cases will show that a slightly modification of the c2 coefficient arising from the
parent RSM model in the EARSM formulation is sufficient to successfully perform the coupling.

The governing equations for the k-ω BSL model follows Eqs. 1.19-1.20. When the k-ω BSL model
is coupled with EARSM, the terms that are implicitly affected are

- The production terms via the Reynolds-stress tensor given by

P = τ
∂Ui
∂xj

(2.40)

where

τ = ka+
2

3
kδ (2.41)

Here, a follows Eq.2.38.

- The diffusion terms via the turbulent viscosity given by

νt = C∗µkτ (2.42)

with a variable C∗µ coefficient.
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This motivated Hellsten [23] to revise the complete set of model coefficients present in the parent
BSL model, for the coupled system, by performing the analysis on the canonical test cases. Here,
we prefer to leave the original BSL model unaltered.

We perform a simple procedure for adapting k-ω BSL with EARSM. The governing equations for
the turbulent kinetic energy k-and the specific dissipation rate ω follow the set of equations given
by Wilcox [86]

dk

dt
= P − β∗ωk +

∂

∂xj

[
(ν + σk

k

ω
)
∂k

∂xj

]
(2.43)

dω

dt
=
γω

k
P − βω2 +

∂

∂xj

[
(ν + σω

k

ω
)
∂ω

∂xj

]
+ 2(1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
(2.44)

with the function F1 is given by Eq. 1.24. On comparing the above set of equations and Eqs. 1.19-
1.20 indicate that the influence of turbulent viscosity in the diffusion terms is absent. The diffusion
terms are rather proportional to k/ω. As a result, the influence of the variable C∗µ coefficient is
absent in the diffusion terms. This provides a more general foundation model for computing the
Reynolds-stress tensor such as an algebraic stress model [86] since now the diffusion terms are
independent of the type of closure. Menter [47] states that such a modification for the diffusion
terms avoids the problems observed and resolved by Hellsten [24] in the boundary layer edge.

The only terms in these equations that are implicitly affected by the variable C∗µ coefficients are
the production terms through Eq. 2.40. To understand this influence on the platform model, the
model is thoroughly examined on the canonical cases and it is seen that the effect of the variable
C∗µ is present in the logarithmic region.

2.3.3 Calibration of the c2 coefficient

The following section focuses on the inner region of the boundary layer. The influence of variable C∗µ
coefficient enters exclusively from the anisotropic term, a12 in the logarithmic region. This region
is far from the wall to neglect the molecular viscosity relative to the eddy viscosity and yet close
enough to neglect the convective effects relative to the rate at which the turbulence is being created
and destroyed. Considering the logarithmic layer of a zero pressure gradient boundary layer, the
transport equations for the kinetic energy and the specific dissipation rate equation simplify to

0 = P − β∗ωk + σk1
∂

∂y

[
k

ω

∂k

∂y

]
(2.45)

0 = γ1
ω

k
P − β1ω

2 + σω1

∂

∂y

[
k

ω

∂ω

∂y

]
(2.46)

In the logarithmic region, we have a constant Reynolds shear stress −u′v′ = u2
τ = −a12k, uτ is the

frictional velocity. The kinetic energy also remains constant in the log layer. As a result, from the
transport equation for k, we have, P = β∗ωk.

The mean velocity gradient in this region is given by

dU

dy
=
uτ
κy

(2.47)
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Hence, P and ω become:

P = −u′v′dU
dy

=
u3
τ

κy
, ω = −a12uτ/κyβ

∗

Here, κ is the von Kármán constant, usually equal to 0.41. Anisotropy a12 is

a12 = −
C∗µ
β∗ω

dU

dy
=
√
C∗µ (2.48)

where C∗µ is introduced by using the non-linear constitutive relationship between the turbulent stress
and the mean-strain rate tensors.

Numerical experimentation on the Channel flow reveals that the coefficient has a value of C∗µ =
0.088125 (which is close to β∗ = 0.09) in the logarithmic region for the original values of the
constants present in the BSL model and the LRR model. To obtain a correct behavior in the
logarithmic region, or to obtain the right value for the C∗µ = 0.09 coefficient, two possibilities arise.
Either the coefficients in the BSL model can be modified or the coefficients in the original LRR
model from which the EARSM model is derived can be modified. Here, the coefficient from the
original LRR model is modified.

By keeping the BSL model unaltered, the only way to have a value of C∗µ = 0.09 in the logarithmic
region is by modifying the constants c1 and/or c2 that enters the EARSM formulation from the
pressure-strain relationship of the Reynolds stress model. The original values used by Wallin and
Johansson [82] are: c1 = 1.8 and c2 = 5

9 . The variable C
∗
µ coefficient obtained for the original values

of c1 and c2 in the log layer of a fully developed channel flow is 0.088125. We can see that the value
of C∗µ is slightly lower than its experimental value. This is the motivation behind the modification
done to the c2 coefficient. The value of C∗µ is dependent on the A1 coefficient which depends on
c2. The value of the c2 coefficient is decreased from 5

9 to 0.539166 to obtain a value close to 0.09
for the C∗µ coefficient in the logarithmic region. Various values for the c2 coefficient are shown in
Table 2.1. Menter [47] modifies the value of A1 alone present in the model equations with other

Model c2 A1 C∗µ
Wallin and Johansson [82]: Model 1 5/9 1.2 0.0881

Original RSS model [7] 0.52 1.26437 0.0917

Menter [47] 5/9 1.245 0.0914

Our calibration: Model 2 0.539166 1.23 0.0900

Table 2.1. The values of the c2 coefficient in the various EARSM variants
and the corresponding value of the C∗µ coefficient in the logarithmic region.

coefficients left unaltered in order to match the velocity profile in the logarithmic region of a zero
pressure gradient boundary layer without the need to modify the original BSL-equations.

In figure. 2.1, the β1-coefficient is shown for various values of c2. The iso-curves of the β1-coefficient
in the (σ, ω-plane shows a small difference between the original value of c2 = 5/9 and c2 = 0.52.
The behaviour is very similar and considering a value of c2 = 0.52 is modest. An important point
to be noted is that the substitution of c2 coefficient might have a negative impact since the choice
of c1 = 1.8 and c2 = 5/9 is one of combination that predicts both a12 and a22 correctly for the
higher order Reynolds stress model. Therefore, modifying c2 coefficient alone might pose a problem
for other flows.
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Figure 2.1. The behaviour of the β1 coefficient in the σ-ω-plane. Solid
lines(c2 = 5/9). Dashed lines(c2 = 0.52)

2.3.4 Diffusion correction

In some regions of the flow where the production to dissipation ratio is small, diffusion may become
of the same order of magnitude as the other terms of the transport equation of the anisotropy tensor.
In such a case, the weak equilibrium assumption fails to be valid and this may cause problems [73].
This is the case for example in the center of a turbulent channel flow where the magnitude of the
β1 coefficient becomes too large. This can be clarified by finding the value for C∗µ when the strain
rate goes to zero. The two-dimensional solution of the model becomes:

N(σ → 0) = A3, β1 = −A1

A3
, C∗µ =

A1

2A3
(2.49)

Using the original values for the constants A1 and A3, the resulting value C∗µ = 0.33 is very large
compared with the commonly adopted value Cµ = 0.09. For this reason, Wallin and Johansson [82]
include a correction introduced by an approximation for the neglected turbulent diffusion term
to the ARSM equations (Eq. 2.3) arising from the weak equilibrium assumption. The proposed
correction is based on the following simple model for the missing diffusion term in Eq. 2.3

D − uiuj
k
D = −CDaD (2.50)

Such a model can be motivated for instance by assuming that the deviatoric part of D can be
neglected instead of assuming that anisotropy in D is mainly related to the anisotropy in the
Reynolds stresses themselves [6, 18, 57]. The diffusive flux of k is further approximated by assuming
the equilibrium relation, D ' ε− P, that neglects advection of k. This allows to express the right-
hand side of Eq. 2.50 as

CDaD = CDεa

(
1− P

ε

)
(2.51)
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By plugging Eq. 2.51 into Eq. 2.12, c′1 becomes

c′1 = A3 +
CD
A0

max

(
1− P

ε
, 0

)
(2.52)

The limiter is added to prevent the model from approaching to a singular behavior for large pro-
duction to dissipation ratio. On the other hand, this limiter can also be seen as a blending between
two different weak equilibrium assumptions [18].

The ratio P/ε in the maximum function makes it impossible to be solved. The diffusion model is
further approximated by using P/ε = −β1IIS and β1 is approximated with βeq1 that corresponds to
P/ε = 1. The use of βeq1 assures the correction to be zero in the log-layer and for very high strain
rates. Thus c′1 becomes

c′1 = A3 +
CD
A0

max (1 + βeq1 IIS , 0) (2.53)

with

βeq1 = − A1N
eq

(N eq)2 − 2IIΩ
, N eq = A3 +A4

The constant CD can be estimated by looking for the effective C∗µ = 0.09 for zero strain rates. From
Eq. 2.49, we get

CD =
A0

2C∗µ

(
A1 − 2C∗µA3

)
This leads to CD = 2.163, a value close to 2.2 considered by Wallin and Johansson [82].
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Figure 2.2. Behaviour of the C∗µ coefficient for parallel shear flows using the
diffusive correction

The modifications provided in this section allows one to surpass the complete recalibration procedure
accomplished by Hellsten [25]. In situations where the algebraic expression reduces to the usual
Boussinesq closure for the Reynolds stresses, the k-ω BSL-EARSM model behaves like the platform
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two-equation k-ω BSL together with a behavior for the effective C∗µ coefficient that mimics the shear
stress transport limiter of the SST model [25].

2.4 Validation of EARSM

Two test cases are utilized to perform the validation of the implemented EARSM model. The first
test case corresponds to the fully developed channel flow at a frictional Reynolds number Reτ = 550.
Numerical simulations are carried out here on a moderate friction Reynolds number Reτ = 550.
Reference data are taken from the DNS of Lee and Moser [39].
The second test case is more challenging and deals with a fully developed turbulent flow in a pipe
of square cross-section at a friction Reynolds number Reτ = 600. The DNS results by Zhang et
al. [89] is used as the reference for this case.

We acknowledge that in our proposed developments, no particular treatment except for the use of
the limiter for turbulent time scale has been proposed to deal with the near-wall region. Never-
theless, these cases, especially the channel flow case, correspond to widely studied configurations of
engineering interest in CFD research as both the simplicity of the geometry and the available DNS
data make these cases ideal test cases for the turbulence model. Moreover, even without dedicated
near-wall corrections, these studied cases allow to assess and to illustrate the potentialities of the
model.

The numerical simulations are performed using the P2REMICS software developed at IRSN. In
the following cases, the velocity field is solved implicitly via a second-order accurate finite-volume
scheme while the time advancement is accomplished by a semi-implicit Crank-Nicolson method.
The numerical scheme used to solve the variables, k and ω corresponds to hybrid approximation.
Implementation of the algebraic expression for the Reynolds stresses follows suggestions proposed
by Wallin and Johansson [82] that consist in formulating the model in terms of an effective eddy
viscosity that is treated implicitly together with an additional correction a(ex) that is treated fully
explicitly:

u′iu
′
j −

2

3
kδij = −2C∗µkτSij + a

(ex)
ij (2.54)

Simulations are performed for the two EARSM variants: ’Model 1’ and ’Model 2’. Model 1 corre-
sponds to the EARSM with the original c2 coefficient and Model 2 with the modified c2 coefficient
(refer Table 2.1). For the turbulent channel flow, the performance of the EARSM model and the lin-
ear eddy viscosity models are similar (not shown here) whereas an improvement is observed for the
turbulent flow in a square pipe using the EARSM. The linear eddy viscosity models are incapable
of predicting the weak secondary flow.

2.4.1 Fully developed turbulent Channel flow

Fully developed turbulent channel flow constitutes a reference test case for the simulation of incom-
pressible turbulent flows using either LES or RANS approach due to the simplicity of its geometry.
It corresponds to a turbulent flow between two parallel plates separated by a distance 2δ where δ
is referred to as the channel half width. Figure 2.3 shows the configuration of the flow. The flow
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is homogeneous in the streamwise and spanwise directions. Simulations are performed along a two-
dimensional plane ( colored in grey) normal to the wall benefiting from the steady-state quantities
which vary only along the wall-normal direction.

2δ

x

z

y

Figure 2.3. Configuration of the channel flow where x,y and Z are the
streamwise, spanwise direction and the wall-normal direction respectively.

The available reference solutions provide direct numerical simulations at various Reynolds numbers
Reτ = (uτδ/ν) based on the friction velocity uτ and the channel half width δ. We consider a
moderate Reynolds number case corresponding to Reτ = 550. The simulation results are compared
with the DNS of Lee and Moser [51].

Numerical simulations are performed in a domain [0; 2πδ] × [0; δ] corresponding to the streamwise
and the wall-normal direction respectively. While in the normal direction to the wall a non-uniform
meshing is used according to the transformation given by Eq.2.55; the meshing in the streamwise
direction is uniform.

∀k ∈ [1, Nz] , zk =
δ

2

[
1 +

1

a
tanh

[(
−1 +

2(k − 1)

Nz − 1

)
tanh−1(a)

]]
(2.55)

The parameter a is set to a = 0.967 to have the first dimensionless grid point location at z+
2 = 1

for Nz = 156 where z+
2 = z2Rτδ.

The mean flow is driven by maintaining a constant flow rate Q = ρUbδ where Ub is the bulk velocity.
A periodic boundary condition is applied assuming homogeneity in the streamwise direction whereas
no-slip condition is imposed on the horizontal wall with a symmetry condition along the center of
the channel. The initial velocity profile is prescribed according to:

v(x, 0) = (U(z), 0, 0), U(z) =

{
uτ ( 1

κ ln z+ +B), if z+ ≥ zv
uτz

+, otherwise
(2.56)

with B = 5.2 and the von Kármán constant κ = 0.41. The distance from the wall where the viscous
stress is predominant is given by zv = 10ν/uτ . The dimensional distance from the wall is given by
z+ = zuτ/ν. For the dimensionless grid points lying in 30 < z+ < 0.3δ the law of the wall is usually
valid whereas for z+ ≤ zv the linear viscous profile applies.

The mean velocity profile obtained for the EARSM is plotted in Figure. 2.4a. The plots are normal-
ized using the friction velocity uτ and the channel half width δ. It can be inferred that the mean
velocity profile in the logarithmic region is well reproduced. The difference between the results for
the two values of c2 is negligible. The prediction of the Reynolds shear stress by both the models
plotted in Fig. 2.4b is very close. The linear eddy viscosity models reproduce very similar profiles
(not shown here).

The kinetic energy is underpredicted by EARSM in the near-wall region along with a shift in the
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Figure 2.4. Periodic channel flow simulation at Reτ = 550. Comparison
between the two EARSM variants: Model 1 with the original value of c2 = 5/9

and Model 2 with the Calibrated value of c2 = 0.539166.

location of the peak. The profile for the kinetic energy is plotted in Fig. 2.5. As mentioned earlier,
both the ’parent RSM’ and the ’platform model’ do not utilize any particular near-wall modeling.
Introducing wall functions in the platform model and for the coefficients in the explicit algebraic
relations will avail the model to better predict the location of the peak of the kinetic energy and its
intensity. Secondly, two-equation models are calibrated to reproduce the correct near-wall behavior
of the mean velocity profile, and not the turbulent kinetic energy.

2.4.2 Fully developed turbulent flow in a Square pipe

The fully developed turbulent flow in a straight pipe of square cross-section is a test case which
constitutes an illustrative case for which the anisotropy between the Reynolds stress components is
present and influences the mean flow. In this case, the anisotropy leads to a secondary flow that
greatly modifies both the shear stress and the heat transfer at the walls. This may also lead to an
increase in the turbulent mixing when dealing for instance with passive scalar transport or variable
density flows.

The two-equation RANS turbulence models based on the linear stress strain relationship are in-
capable of capturing the secondary flow. This is because the secondary flow is a result of the
anisotropy in the normal stresses. As a result, all turbulence models of this kind are unable to
generate secondary flows. The focal point of this test case is to determine the predictive capabilities
of the EARSM model (which should provide some anisotropy), to capture these secondary motion
of second-kind (purely turbulence driven) which are driven by the difference of the normal Reynolds
stresses (v2 − w2) perpendicular to the principal velocity U1. Following the approach by Rung et
al [61], the coefficients which act as a crucial parameter for the evolution of the secondary flow in
the current framework of the EARSM are determined. The quantity (2β4 +β3) drives the secondary
motion of second-kind.

Numerical simulations are performed here in a domain [0; 2πD] × [0;D] × [0;D] where D is the
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Figure 2.5. Periodic channel flow simulation at Reτ = 550. The turbulent
kinetic energy profiles for the two EARSM variants: Model 1 with the original
value of c2 = 5/9 and Model 2 with the Calibrated value of c2 = 0.539166.

H

l

Figure 2.6. Configuration of the flow in a pipe of square cross-section where
x,y and Z corresponds to the streamwise, spanwise and the wall-normal direc-

tions respectively.

duct width. Assuming symmetry conditions at y = z = D/2, the RANS numerical simulations
are performed on a quarter of the pipe [0; 2πD] × [0;D/2] × [0;D/2], where D/2 is half the pipe
width, prescribing symmetry boundary conditions at y = z = D/2. Numerical results are compared
with DNS performed by Zhang, Hao, et al. [89]. The Reynolds number Reτ based on the friction
velocity uτ and the duct width D is 600 which corresponds approximately to the bulk Reynolds
number Reb = UbD/ν of 10500. The flow is sustained by prescribing a constant mass flow rate at
a cross-section, given by

Qref = ρUb(D/2)2

specified at each time-step.

Along the streamwise direction, the meshing is uniform with Nx number of grid points whereas a
non-uniform meshing is used in the wall-normal directions for which the transformation reads:

∀k ∈ [1, Nz] , yk, zk =
D

2

[
1 +

1

a
tanh

[(
−1 +

(k − 1)

Nz − 1

)
tanh−1(a)

]]
According to the number of grid points Ny = Nz in the normal direction to the walls, the parameter
a is calculated by setting the first dimensionless grid point locations y+

2 , z+
2 :

y+
2 =

y2Rτ
D

, z+
2 =

z2Rτ
D
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By setting Nz = 49 and y+
2 = z+

2 = 0.2, this leads to 0.96.
As initial conditions, the turbulence intensity is set to 0.01 and the turbulent viscosity ratio is set to
10. The time-step is provided as per ∆t = 0.1T0 with T0 = D/Ub with the final time t = 300T0. The
results are made dimensionless using z+ = zuτ/ν, u+ = u/uτ , v+ = v/uτ . The results presented in
this section is plotted along the corner bisector y = z.
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Figure 2.7. Comparison between the two EARSM simulation results with
the reference DNS by Zhang, Hao, et al. [89] at Reτ = 600. Left: Mean
streamwise velocity profile plotted along the corner bisector, Right: Secondary
velocity profile plotted along the corner bisector. Model 1: Original value of

c2 = 5/9, Model 2: Calibrated value of c2 = 0.539166

Fig. 2.7a shows the mean stream-wise velocity profile along the corner bisector which is similar to
the profile obtained by Menter [47]. The increased axial momentum transfer into the corner from
the duct center increases the axial velocity near the corner walls which is well captured by both the
EARSM model variants. The transfer of this momentum arises due to the presence of secondary
velocity field plotted in figure. 2.7b. The developed EARSM model captures the secondary flow
resulting from the anisotropy of the normal stresses. On the contrary, all first order RANS models
do not exhibit any secondary motion (not shown here).

With the value of the coefficient c2 = 0.539166, there is a small but negligible decrease in the
strength of the secondary flow. The effect of modifying the coefficient c2 enters the anisotropic
stress tensor through the β coefficients. As the value of c2 is decreased, there is an impact on the
levels of anisotropic normal stress components which results in a decreased secondary flow. The
momentum transfer towards the corner of the wall from the center of the duct is decreased, resulting
in a decreased axial velocity near the center of the duct.

Two counter rotating vortices near along the corner bisector are clearly visible in Fig. 2.8. The
effect of the secondary motion on the mean stream-wise velocity is to convect momentum from the
central region of the duct to the walls along the corner bisector which is the reason why the mean
stream-wise velocity contour is bent towards the corner. Further, the secondary motion convects
momentum from the corners to the center along the wall and from the wall to the center of the
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duct which is the reason for the bulge of the mean velocity contour towards the center of the duct
along the wall bisector. This can be easily understood by looking at the mean stream-wise velocity
isotachs.
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Figure 2.8. Cross-section of the simulation domain. Mean streamwise veloc-
ity isotachs and the secondary velocity vectors.

2.5 Conclusion

The development of explicit algebraic Reynolds stress model in a RANS framework has been the
subject of this chapter. A direct solution method instead of using a particular tensor basis projection
method has been put to use to arrive at an explicit algebraic relation from the implicit relation.
The generality of the two-equation model is lost when coupling EARSM with it as the two-equation
model usually requires a full calibration of the model coefficients. It has been shown that modifying
the diffusion terms in the kinetic energy and specific dissipation rate transport equations along
with the calibration of a coefficient from the parent Reynolds stress model eliminates the need for
a complete recalibration of the coefficients in the platform two-equation model. In the developed
model, no particular treatment of the near wall region has been considered except for the use of a
Kolmogorov limiter in the turbulent time scale. Validation of EARSM has been performed on the
fully developed channel flow and the fully developed flow in a pipe of square cross-section. EARSM
is able to capture the secondary flow arising due to the presence of the corners unlike the linear
eddy viscosity models.
The next chapter is dedicated to seamless hybrid RANS/LES methodologies. The EARSM model
developed in a RANS framework in this chapter will be extended as a subfilter scale model in a
hybrid RANS/LES framework in the following chapter.
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Chapter 3

Explicit algebraic subfilter closure for
seamless hybrid RANS-LES methods

In order to account for complex flow features (unsteadiness...), the explicit algebraic approach pre-
sented in Chapter 2 is now extended to a seamless hybrid RANS-LES framework, following the
Equivalent-Detached Eddy Simulation (E-DES) methodology described in [14]. The development of
a subfilter scale model is presented wherein the anisotropic effects in the subfilter scales are taken
into account. Following the conventional LES practice, the model constants are calibrated on the De-
cay of Isotropic Turbulence. Further, the performance of the model is analyzed on the two previous
flows, the fully developed channel flow and the fully developed flow in a square pipe.

3.1 Seamless Hybrid RANS/LES methods

For simulating fluid flows, hybrid methods have gained the attention of researchers for the past 20
years and it is currently under development. As discussed in section 1 of Chapter 1, hybrid RANS-
LES methods can be broadly classified into two categories, zonal methods and seamless methods.
In zonal methods, the RANS to LES transition is abrupt and prescribed by the user whereas in
the seamless approach, a single SFS turbulence model, sensitized to the local grid properties and
local turbulence level is utilized. The intention of these methods was originally to model either the
complete or a part of the boundary layer with RANS and switch to a turbulence-resolving simulation
state in far wall and separated regions.

Usually, the hybrid RANS-LES methods adapt a RANS model as a base model and switch to a SFS
model by the adaption of a turbulent length scale. This length scale lets the hybrid RANS-LES
method work in fully modeling, i.e. RANS or partly resolving mode, i.e. LES. Thus, obtaining a
more accurate solution and at the same time having a reduction in the computational cost. There
are a large variety of seamless hybrid RANS-LES methods. We refer to the review provided by
Chaouat [8] for a detailed presentation of the most popular seamless hybrid approaches. In this
section, we restrict to the main concepts of seamless methods that are relevant to the present work.

3.1.1 Detached Eddy Simulation

Among the many available seamless methods, the most widely utilized one was proposed by Spalart
in the year 1997 called Detached Eddy Simulation (DES) [68]. This method was developed mainly
for simulating aerodynamic flows, in particular, detached flow over airfoils with the intention to
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bring down the computational cost of a true-LES for wall-bounded flows and the inability of RANS
methods to capture massively-separated flows. In this method, regions near solid boundaries where
the flow remains attached is modeled in RANS mode. The model transitions from a pure RANS to
a subfilter scale formulation in detached regions of the flow.

The hybridization of a base model from a RANS framework to its appropriate subfilter scale (SFS)
model is obtained by making the base model sensitive to the local grid resolution. Such an hybridiza-
tion was originally proposed for the single transport equation Spalart-Allmaras RANS model. In
the RANS model given by Eq. 1.10, the distance to the nearest wall d was replaced by a new
length-scale d̃; sensitive to the grid spacing

d̃ = min (d,CDES∆)

where ∆ is given by

∆ = max(∆x,∆y,∆z)

CDES is a modeling parameter which is determined by performing a model calibration, usually on
the decay of isotropic turbulence [65].

The motivation behind the development of DES through the modification of the length scale was
based on the fact that under local equilibrium conditions, i.e. when the production balances the
dissipation, the model in its LES formulation reduces to a Smagorinsky-like model [67]. Near the
wall (where the turbulence length scale is smaller than the grid size), d̃ = d and we obtain the
original RANS Spalart-Allmaras equations. As the grid is refined below the limit CDES∆ < d,
where the distance to the nearest wall is larger than the grid size, the DES limiter is activated and
the base model switches from RANS to SFS model. When the turbulence model is functioning as
a SFS model, the standard DES lengthscale becomes

d̃ = CDES∆

The level of production and destruction of turbulent viscosity is modified and now dependent on the
grid. The SST model was hybridized in a DES framework by Strelets [71]. Just like the classical,
RANS, Menter’s-SST model, the DES formulation developed by Strelets has two branches. This
motivated the author to introduce an empirical function to have two distinct values for the CDES

coefficient; one for the transformed ks-εs branch and the other for the ks-ωs branch.

Problems may arise when the DES limiter gets activated inside the attached boundary layer resulting
from the grid refinement, activating the LES mode inside the boundary layer, where the grid is not
fine enough to sustain resolved turbulence. This is undesirable as it can lead to grid-induced
separation, as discussed by Menter et al. [42] where the boundary layers separates at arbitrary
locations based on the grid spacing. In order to avoid this, further improvements have been proposed
by extending DES to Delayed-DES (DDES) [48] and Improved-DDES (IDDES) [66].

3.1.2 Partially Integrated Transport Model

The numerical method put in place is developed in a general framework of large eddy simulations
and can be applied to almost all subfilter scale models based on transport equations of subfilter
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scale turbulent quantities. More recently, Schiestel and Dejoan [64] developed a ks-εs SFS model1

that could be applied for RANS-LES in the context of seamless hybrid approach, i.e., to have a
smooth transition between resolved and unresolved scales, called Partially Integrated Transport
Model (PITM). The RANS model is to be made dependent on the filter width thereby being able
to control the amount of resolved energy.

In order to modify and make the system of transport equations dependent on the cutoff wavenumber,
the energy spectrum is partitioned into three spectral zones, such that [0, κc], [κc, κd], [κd,∞]. This
multi-scale approach is developed in spectral space, by selecting a cutoff wavenumber (κc) at-first
located in the inertial range just as done in the case of LES. The cutoff wavenumber κc is usually
determined by the grid size

κc =
2π

Cg∆
(3.1)

Cg is a constant and in practice depends on the type of numerical scheme being used. Next, a larger
wavenumber (κd) is introduced as:

κd = κc + ξ
ε

k
3/2
s

(3.2)

This larger wavenumber is selected such that the energy located beyond it, is negligible. The pa-
rameter ξ is sufficiently large such that the contribution of energy beyond κd is negligible. Therefore
the energy contained between κc and κd is modeled. The system of ks-εs SFS model in a PITM
framework is given by

∂ks
∂t

+ Ũj
∂ks
∂xj

=Ps − εs +
∂

∂xj

[
(ν +

νt,s
σk

)
∂ks
∂xj

]
, (3.3)

∂εs
∂t

+ Ũj
∂εs
∂xj

=
εs
ks

(Cε1Ps − C∗ε2εs) +
∂

∂xj

[
(ν +

νt,s
σε

)
∂εs
∂xj

]
. (3.4)

where C∗ε2 is given by
C∗ε2 = Cε1 + r (Cε2 − Cε1) (3.5)

The coefficient C∗ε2 is no more a constant but dependent on the parameter r. This dependence is
what makes the hybridization of the base model possible. This dependence is important as it allows
one to link the large scale part of the spectrum to the modelled subgrid scales.

Energy partition as a function of the cutoff

The parameter r is defined as the ratio between the modeled kinetic energy to the total kinetic
energy. The kinetic energy ratio parameter r is defined as:

r =
km
k

=
1

k

∫ ∞
κc

E(κ)dκ (3.6)

Here, E(κ) corresponds to the energy density spectrum. The ratio r can be computed from any
given energy spectrum. Here, we use the Kolmogorov spectrum given by

EK(κ) = CKε
2/3κ−5/3 (3.7)

1Hereon, the subscript ’s’ refers to a subfilter quantity
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with the Kolmogorov constant CK = 1.5. Assuming spectral equilibrium and substituting the
spectrum in Eq. 3.6, we obtain

r =
1

β0
η−2/3
c (3.8)

This ratio corresponds to the ratio the user targets, based on the grid size. The dimensionless
parameter ηc is given by:

ηc = κc
k3/2

ε
= κcLt (3.9)

where Lt refers usually to the integral length scale. The coefficient β0 is identified as

β0 =
2

3CK
(3.10)

It can be seen that the expression for r is consistent with the DNS limit (r = 0 when κc →∞). This
is not true in the RANS limit (r = 1 when κc → 0) because the Kolmogorov spectrum is invalid
in this limit. This motivated Schiestel and Dejoan [64] to propose an empirical relation2 for r to
eliminate this discrepancy:

r =
1

1 + β0η
2/3
c

(3.11)

A method similar to PITM is Partially Average Navier-Stokes (PANS) [20]. The formalization of this
method, though derived using different assumptions, leads to the same set of governing equations
as that of PITM, except for a slightly different treatment of turbulent diffusion.

3.1.3 Equivalent-Detached Eddy Simulation

The basic idea of Equivalent-DES is that it bridges DES with PITM, in such a way that the
"hybridization function" is not anymore a function of ∆, but of r. The theoretical justification has
been given for that in Friess et al. [14] where the authors shaped the relationship for the parameter
using the concept of H-equivalence where H stands for hybrid. The equivalence is based on the
postulate that allows one to bridge two different techniques of hybridization (DES and PITM [64])
of the same system of equations yielding a required condition that has to be satisfied by the DES
model (called the Equivalent-DES). As a result, the authors have demonstrated that the DES
method is statistically equivalent to the PITM method if the LES lengthscale in ψ is written in
terms of r, combining the consistency of PITM and the robustness of DES.

The k-ε-based E-DES is given by :

∂ks
∂t

+ Ũj
∂ks
∂xj

=Ps − ψεs +
∂

∂xj

[
(ν +

νt,s
σk

)
∂ks
∂xj

]
, (3.12)

∂εs
∂t

+ Ũj
∂εs
∂xj

=
εs
ks

(Cε1Ps − Cε2εs) +
∂

∂xj

[
(ν +

νt,s
σε

)
∂εs
∂xj

]
(3.13)

The non-dimensional lengthscale ψ in Eq. 3.12 is given by

ψ = max

(
1;

ls
lLES

)
with ls =

k
3/2
s

εs
, lLES =

r3/2Lt
Ψ(r)

(3.14)

2Other empirical relationships have been reviewed in [13].
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Neglecting the resolved dissipation, the integral lengthscale Lt is defined by

Lt =
(ks + kr)

3/2

εs
(3.15)

Here, the transition from RANS to LES is driven by the kinetic energy ratio parameter r, removing
its explicit relationship on the grid step. The function Ψ(r) is given by

Ψ(r) = 1 +

(
Cε2
Cε1
− 1

)(
1− r

Cε1
Cε2

)
(3.16)

It is worth mentioning that Friess et al. [14] derived three expressions for Ψ(r), under various sets
of assumptions. Here, we choose their most complete formulation.

The value of the constants present above remain unchanged and take the values present in the base
model. The turbulent eddy viscosity νt,s is

νt,s = Cµ
k2
s

εs
(3.17)

Friess et al. showed that DES is equivalent to TPITM if the DES length scale L = CDES∆ is
replaced by the appropriate function of the energy ratio r. As a result, DES is also interpretable as
a hybrid RANS/temporal LES, which does not require the grid step for the transition from RANS
to LES. From the expression for κc (Eq. 3.1), r (Eq. 3.11) and DES equivalent length scales, the
constant CDES must be replaced by the function

fDES =
1

β
3/2
0 πψ(r)

(3.18)

Recently, Tran et al. [76] have applied the E-DES methodology to Menter’s shear stress transport
(SST) model as the underlying model. We follow here an alternate route starting from the ks-εs
version of E-DES (for which the H-equivalence has been provided in [14]), leading to the derivation
of a ks-ωs based E-DES.

3.2 BSL-like model in E-DES framework

The use of ks-εs requires additional use of damping functions in the near-wall region. In order to
circumvent this, we start from the ks-εs version of E-DES and derive a ks-ωs based E-DES. In this
thesis, the ks-ωs BSL variant of the available versions of the ks-ωs model is chosen. The ks-ωs BSL
variant is expected to be advantageous over its counterparts in both the near-wall regions and in
regions with low-shear3.

In this section, the development of Menter’s BSL-like model in an E-DES framework is presented.
Firstly, the transformation of the E-DES version of the ks-εs model to its equivalent ks-ωs form is
performed. Following which, the E-DES version based on the modified Wilcox ks-ωs model is given,
this will be called the ks-ωs branch. Finally, with the help of the blending function by Menter[45],
the transformed E-DES ks-εs model and the E-DES Wilcox ks-ωs model are blended to obtain an
E-DES formulation of Menter’s BSL-like model. For simplicity, in this chapter, we will call the

3Refer Chapter 1
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transformed E-DES version of the ks-εs model as the ’ks-εs’ branch and the E-DES Wilcox ks-ωs
model as the ’ks-ωs’ branch.

3.2.1 The ks-εs branch

The E-DES ks-εs model Eqs. 3.12-3.13 is transformed to its equivalent ks-ωs model through the
relationship

εs = β∗ωsks (3.19)

The transformation of the model is demonstrated in Appendix A. The resulting transport equations
are

∂ks
∂t

+ Ũj
∂ks
∂xj

=Ps − ψεβ∗ωsks +
∂

∂xj

[
(ν + σkενt,s)

∂ks
∂xj

]
, (3.20)

∂ωs
∂t

+ Ũj
∂ωs
∂xj

=
ωs
ks
γεPs − βεω2

s +
∂

∂xj

[
(ν + σωενt,S)

∂ωs
∂xj

]
+ 2σωε

1

ωs

∂ks
∂xj

∂ωs
∂xj

(3.21)

with the non-dimensional lengthscale ψε given by

ψε = max

(
1;

ls
lLES

)
with ls =

k
1/2
s

β∗ωs
, lLES =

r
3/2
ε Lt
Ψε

(3.22)

Here, the subscript ε symbolizes the transformed E-DES ks-εs model and the subfilter eddy viscosity
νt,s is

νt,s =
ks
ωs

(3.23)

γε = (Cε1ε − 1) , βε = β∗ (Cε2ε − ψε) , σωε = 0.856, σkε = 1 (3.24)

with

Ψε = 1 +

(
Cε2ε
Cε1ε

− 1

)(
1− r

Cε1ε
Cε2ε
ε

)
(3.25)

The kinetic energy ratio parameter rε is given by

rε =
1

1 + β0εη
2/3
c

(3.26)

with ηc = κcLt and the integral lengthscale Lt is expressed as

Lt =
(ks + kr)

3/2

β∗ωsks
' (ks + kr)

3/2

β∗ωsks
(3.27)

3.2.2 The ks-ωs branch

The E-DES ks-ωs model is given as:

∂ks
∂t

+ Ũj
∂ks
∂xj

=Ps − ψωβ∗ωsks +
∂

∂xj

[
(ν + σkωνt,s)

∂ks
∂xj

]
, (3.28)

∂ωs
∂t

+ Ũj
∂ωs
∂xj

=
ωs
ks
γωPs − βωω2

s +
∂

∂xj

[
(ν + σωωνt,s)

∂ωs
∂xj

]
− β∗(1− ψω)ω2

s (3.29)
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The non-dimensional lengthscale ψω is

ψω = max

(
1;

ls
lLES

)
with ls =

k
1/2
s

β∗ωs
, lLES =

r
3/2
ω Lt
Ψω

(3.30)

The subscript ω refers to the Wilcox model. The subfilter eddy viscosity νt,s is given by Eq. A.20
and the constants are given by

γω =
5

9
, βω = 0.0750, σωω = 0.5, σkω = 0.5

On the other hand, the function Ψω is expressed as

Ψω = 1 +

(
Cε2ω
Cε1ω

− 1

)(
1− r

Cε1ω
Cε2ω
ω

)
(3.31)

where Cε1ω = γω + 1 and Cε2ω = βω/β
∗ + 1. The kinetic energy ratio parameter rω is given by

rω =
1

1 + β0ωη
2/3
c

(3.32)

with ηc = κcLt and the integral lengthscale Lt is given by Eq. 3.27.

3.2.3 E-DES based on Menter’s BSL-like model

The idea used by Menter in the construction of the RANS BSL model is put to use here. A blending
function is used to blend the ks-εs branch with the ks-ωs branch such that in the region of the flow
which is closest to the wall, the ks-ωs branch remains active and changes progressively to the ks-εs
branch further away from the wall. The blending function F1 used to perform the blend between
the two models is given by

F1 = tanh(arg4
1) (3.33)

with,

arg1 = min

(
max

( √
ks

β∗ωsy
;
500ν

y2ωs

)
;

4ρσω2ks
CDkωy2

)
(3.34)

Eq. 3.28 and Eq. 3.29 are multiplied by F1 and Eq. 3.20 and Eq. 3.21 are multiplied by (1 − F1)
and the corresponding equations are added together to give the E-DES formulation based on BSL
model4. The subfilter kinetic energy transport equation takes the form

∂ks
∂t

+ Ũj
∂ks
∂xj

=Ps − (F1ψω + (1− F1)ψε)︸ ︷︷ ︸
ψ′

β∗ωsks

+
∂

∂xj

[
(ν + (F1σkω + (1− F1)σkε)νt,s)

∂ks
∂xj

] (3.35)

4Hereon, the subscript ω represents the terms coming from the ks-ωs branch and ε represents the terms from the
ks-εs branch.
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and the subfilter specific dissipation rate transport equation takes the form

∂ωs
∂t

+ Ũj
∂ωs
∂xj

=
ωs
ks

(F1γω + (1− F1)γε)Ps − (F1βω + (1− F1)βε)ω
2
s

+
∂

∂xj

[
(ν + (F1σωω + (1− F1)σωε)νt,s)

∂ωs
∂xj

]
+ 2(1− F1)σωε

1

ωs

∂ks
∂xj

∂ωs
∂xj

(3.36)

The terms in the underbrace is the result of the non-dimensional lengthscale ψ′ used to achieve
the E-DES formulation of the respective RANS models. This is the only additional term that uses
the blending function in comparison with the original Menter’s BSL model. Considering this term
alone, we have

ψ′ = F1ψω + (1− F1)ψε =F1 max

(
1;

k
1/2
s

β∗ωsLt

Ψω

r
3/2
ω

)

+ (1− F1) max

(
1;

k
1/2
s

β∗ωsLt

Ψε

r
3/2
ε

) (3.37)

From the above equation, we can infer that within the maximum function, the terms other than
the two ratios Ψ/r3/2 are alike. As a result, the blending function can be considered within the
maximum function.

ψ′ = max

[
1;

k
1/2
s

β∗ωsLt

(
F1

Ψω

r
3/2
ω

+ (1− F1)
Ψε

r
3/2
ε

)]
(3.38)

From equations 3.48 and 3.32, we notice that the kinetic energy ratio parameter utilize the length-
scale Eq. 3.27. As a first approximation, the influence of the F1 function on the parameter r in the
above equation is neglected. That implies that a single length scale and β0 = β0ε = β0ω coefficient
is utilized. The function ψ′ then becomes

ψ′ = max

[
1;

k
1/2
s

β∗ωsr3/2Lt
(F1Ψω + (1− F1)Ψε)

]
(3.39)

with the relationship for r specified as

r =
1

1 + β0η
2/3
c

(3.40)

with ηc = κcLt and the integral length-scale expressed as

Lt =
(ks + kr)

3/2

β∗ωsks
(3.41)

The kinetic energy ratio parameter r given above is the target parameter. This parameter is a
sensor that is dependent on the local grid and turbulence properties. This is the ratio that the user
expects and we shall call this the target kinetic energy ratio or rt, unless else specified. The ratio
observed in the simulation is not necessarily the target ratio, therefore we shall call it the observed
ratio, ro.
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Complete model

∂ks
∂t

+ Ũj
∂ks
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+ Ũj
∂ωs
∂xj

=
ωs
ks
γPs − βω2

s +
∂

∂xj

[
(ν + σωνt,s)

∂ωs
∂xj

]
+ 2(1− F1)σωε

1

ωs

∂ks
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∂ωs
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(3.43)

with the coefficients γ = F1γω + (1 − F1)γε, β = F1βω + (1 − F1)βε, σω = F1σωω + (1 − F1)σωε ,
σk = F1σkω + (1− F1)σkε and Cε1ω = γω + 1 and Cε2ω = βω/β

∗ + 1 where

γω =
5

9
, βω = 0.0750, σωω = 0.5, σkω = 0.5

γε = (Cε1 − 1) , βε = β∗
(
Cε2 − ψkε

)
, σωε = 0.856, σkε = 1.0

(3.44)

The non-dimensional lengthscale ψ′ is given by

ψ′ = max

[
1;

ls

r3/2Lt
(F1Ψω + (1− F1)Ψε)

]
with

ls =
k
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s

β∗ωs
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3/2

β∗ωsks

(3.45)

along with

Ψω = 1 +

(
Cε2ω
Cε1ω

− 1

)(
1− r

Cε1ω
Cε2ω

)
(3.46)

Ψε = 1 +

(
Cε2ε
Cε1ε

− 1

)(
1− r

Cε1ε
Cε2ε

)
(3.47)

r =
1

1 + β0η
2/3
c

, ηc = κcLt (3.48)

The subfilter eddy viscosity νt,s that appear in the diffusion terms is given by

νt,s =
ks
ωs

(3.49)

With the coefficients coming from the base models kept unaltered, we have one coefficient, i.e., β0

in hand that has to be calibrated. The value of the β0 coefficient should be consistent for both
branches. The calibration procedure is shown in the section dedicated to the test cases.

3.3 Explicit algebraic hybrid stress model

Recently, Marstorp et al. [41] derived an anisotropic subgrid stress model for LES using the same
analogy as for the EARSM by Wallin and Johansson [82] called the explicit algebraic subgrid scale
model (EASSM). EASSM is achieved by representing the unknown quantities in terms of the known
filtered quantities. The EASSM uses the 2D solution as a first approximation, similar to EARSM
by Wallin and Johansson [82]. Temme et al. [74] have performed a simulation of the square duct
at low Reynolds number and the authors have observed the EASSM model to predict the mean
secondary velocity closer to the DNS compared to the linear eddy viscosity models as subgrid scale
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model. The EASSM used in [74] consists of the reduced anisotropic tensor for 2D flows. Marstorp et
al. [41] also mention the 2D tensorial representation to be a reasonable approximation for 3D flows.
Recently, numerical simulations were performed using EASSM on the fully developed channel flow
at various friction Reynolds numbers by Montecchia et al. [50]. Simulations with very coarse grids
reveal the EASSM as the subgrid scale model to be less sensitive to the grid step in comparison
with the LEVM as the subgrid scale model.

In a hybrid context, the question that arises is the applicability of the weak-equilibrium assumption,
i.e., whether or not the vanishing of the transport of the normalized subgrid stress anisotropy
is applicable in a hybrid RANS-LES context. To address this, EARSM is applied to a hybrid
RANS/LES framework on the following assumption - If the weak equilibrium assumption is valid
at the RANS limit and also for modeling the SFS in LES then this assumption should also be valid
for an intermediate cutoff (between RANS and LES), giving rise to explicit algebraic hybrid stress
model (EAHSM).

A hybrid approach based on an explicit algebraic model for modeling the subfilter stresses has
already been utilized in [83, 84] in a seamless approach. The platform sub-filter models utilized in
both the references follows the recalibrated model by Hellsten [23].

Presuming the aforementioned equilibrium assumption to be verified for the SFS, our goal is to use
a similar methodology by coupling the E-DES based on Menter’s BSL-like model developed in the
previous section with the explicit algebraic closure developed in Section 2.3.2 of Chapter 2. Once
the model calibration and validation is performed, this hybrid methodology using EDES will be
extended for buoyancy flows. This will be studied in Chapter 4.

The algebraic expression for the SFS anisotropic tensor as consists of higher order terms of the
resolved strain-rate tensor S̃ and rotation tensor Ω̃. The nonlinear SFS stress strain relationship
is given as:

τ s = −2νt,sS̃ +
2

3
ksδ + ksa

(ex)
s (3.50)

The extra anisotropic tensor has an influence on the resolved velocity through the term −∂τ s
∂xj

present
in the RHS of the filtered momentum equation. The SFS production term is also influenced through
the relationship Ps = −τ s ∂ũi∂xj

.
The algebraic expression for the SFS anisotropic tensor in a general 3D flow is

as =β3

(
(τΩ̃)2 − 1

3
IIΩ̃δ

)
+ β4τ

2
(
S̃Ω̃ − Ω̃S̃

)
+ β6

(
τ3(S̃Ω̃2 + Ω̃2S̃)− 2

3
IV δ − τIIΩ̃S̃

)
+ β9τ

4
(
Ω̃S̃Ω̃2 − Ω̃2S̃Ω̃

)
(3.51)

The non-zero β coefficients are

β1 = −N(2N2 − 7IIΩ̃)

Q
, β3 = −12N−1IV

Q
, (3.52)

β4 = −2(N2 − 2IIΩ̃)

Q
, β6 = −6N

Q
, β9 =

6

Q
(3.53)
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where

Q =
1

A1

(
N2 − 2IIΩ̃

) (
2N2 − IIΩ̃

)
(3.54)

Here, S̃ and Ω̃ are the filtered strain-rate and rotation tensor respectively given by:

S̃ =
1

2
(ũi,j + ũj,i) , Ω̃ =

1

2
(ũi,j − ũj,i) (3.55)

The turbulent timescale is defined as

τ = max

(
1

β∗ωs
;Cτ

√
ν

β∗ωsks

)
(3.56)

with the constants β∗ = 0.09 and Cτ = 6 and ks and ωs represent the SFS kinetic energy and the
specific dissipation rate. N is given by the solution of the third-order equation

N3 −A3N
2 −

(
A1A4IIS̃ − 2IIΩ̃

)
N + 2A3IIΩ̃ = 0 (3.57)

The solution of the above cubic equation is:

N =


c′1
3 + (P1 +

√
P2)

1
3 + sign(P1 −

√
P2)|P1 −

√
P2|

1
3 P2 ≥ 0,

c′1
3 + 2(P 2

1 − P2)
1
6 cos

(
1
3arccos

(
P1√
P 2
1−P2

))
P2 < 0.

(3.58)

where,

P1 =

(
1

27
c′21 +

A1A4

6
IIS̃ −

2

3
IIΩ̃

)
c′1, (3.59)

P2 = P 2
1 −

(
1

9
c′21 +

A1A4

3
IIS̃ +

2

3
IIΩ̃

)3

(3.60)

with

c′1 = A3 +
CD
A0

[
max

(
1 + βeq1 IIS̃ , 0

)]
(3.61)

and

βeq1 = − A1N
eq

(N eq)2 − 2IIΩ̃
(3.62)

where N eq = A3 +A4 and constant CD

CD =
A0

0.18
[A1 − 0.18A3] (3.63)



46 Chapter 3. Explicit algebraic subfilter closure for seamless hybrid RANS-LES methods

3.4 Test Cases

In this section, firstly the calibration of the EAHSM model concerning its model coefficient β0 on
the Decay of Isotropic Turbulence (DIT) is presented. This test is one of the simplest case to check
the correct behavior of a newly developed subfilter scale turbulence model. Numerical simulations
are carried out at two different Taylor Reynolds numbers5, namely; Comte-Bellot and Corrsin [9]
at Reλ is 71.6 and on the Kang et al. [32] at Reλ is 716.

Once the model has been calibrated, the performance of the EAHSM model is analyzed on the fully
developed turbulent channel flow. The channel flow is a widely studied configuration of engineering
interest in CFD research with a wealth of numerical analysis and data available in the literature. The
simplicity of the geometry makes the channel flow an ideal test case for investigating the behavior
of the turbulence model. Numerical simulations are carried out on a moderate friction Reynolds
number Reτ = 550. Reference data are taken from the DNS of Lee and Moser [39]. One important
aspect will be check the model performance on coarse grid resolutions and do a comparison with
LES, using the WALE model.

Like in the channel test case, the EAHSM model is used to compute fully developed turbulent
flow in a pipe of square cross-section at a friction Reynolds number Reτ = 600. The DNS results
by Huser and Biringen [27] and Zhang et al. [89] are used as reference for this case. It is not a
commonly studied configuration despite its simple geometry. The presence of the corners creates a
secondary flow which in the previous chapter stood a point of comparison between the linear eddy
viscosity models and the EARSM, in a RANS framework.

In the following cases, the resolved velocity field is solved implicitly via a second-order accurate
finite-volume scheme while the time advancement is accomplished by a semi-implicit Crank-Nicolson
method. This results in a discretely energy conserving numerical scheme. The numerical scheme
used to solve the subfilter variables, namely; ks and ws corresponds to hybrid approximation.

3.4.1 Calibration on the decay of isotropic turbulence

An isotropic turbulent velocity field is a field with no mean velocity and no mean gradients. The
isotropic field is by default homogeneous: invariant in space. Under the action of viscous forces
the turbulent field simply decays. Due to the nature of the turbulent field, it is regarded as the
most elementary test. Consequently, the importance of this case shall be understood as a first step
towards our understanding of the behavior of a turbulence model.

Just like the DES based on Menter’s-SST model, the EAHSM formulation has two distinct branches,
the transformed ks-εs branch and the ks-ωs branch, blended by F1. It is important to recall that the
influence of the F1 function is absent in the β0 coefficient. The calibration procedure is similar to
that followed by Strelets [71] on the DES based on Menter’s-SST model. This challenges us to find
an optimum value for the β0 coefficient which is capable of representing the correct energy spectra
for the DIT cases, on both branches. By enforcing F1 = 1, the transformed ks-εs branch of the
EAHSM model is active. This enables us to perform the calibration of the β0 coefficient exclusively
on this branch. On similar terms, the ks-ωs branch is active by enforcing F1 = 1. Note that only

5Reynolds number Reλ = λU/ν corresponding to Taylor micro-scales (λ). Length scales which are larger than the
Taylor microscale are not much affected by viscosity. Below the Taylor microscale the turbulent motions are subject
to strong viscous forces. The turbulent kinetic energy is dissipated into heat.
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the ks-εs branch results are presented here for this test case. A similar behavior is observed for the
ks-ωs branch for the same value of the β0 coefficient.

To perform the decay of isotropic turbulence, since the models run in a purely LES mode, initial
values for the subfilter quantities, namely; ks and ωs have to be prescribed which should respect
the subfilter part of the respective quantities for a given mesh size ∆. Consequently, the simulation
is divided into two phases6: the initialization phase (to find the initial values for ks and ωs) and the
decay phase. For the initialization phase, an initial velocity field is prescribed using the Random
Fourier Method (RFM) that provides a synthetic turbulent velocity field enforcing a given model
energy spectrum [see Appendix B for the RFM method]. This prescribed velocity field is frozen
and the subfilter turbulence model is run until the statistical convergence of the subfilter quantities
ks and ωs. For the decay phase, the initial values of the subfilter quantities thus obtained in the
initialization phase is prescribed. The calibration of the model coefficient is performed by examining
the ability of the model to correctly reproduce the energy spectrum in comparison to the available
experimental data at various time instances.
The test cases are individually presented in this section. Each test is briefly described, important
numerical parameters are looked into, followed by the simulation results.

Comte-Bellot and Corrsin test case

The experiment by Comte-Bellot and Corrsin [9] on the decaying turbulence behind a grid is simu-
lated first. The authors, in their experiments measured data at three different distances tU0/M = 42,
98 and 171 from a grid with mesh sizeM = 50.8 mm and a mean speed near the grid U0 = 10 m.s−1.
The Taylor Reynolds number at these locations are Reλ = 71.6, 65.3 and 60.7 respectively. This can
be recast for the simulation in terms of time advancement t0 = 0, t1 = 56M/U0 and t2 = 129M/U0

by applying Taylor’s hypothesis.

Numerical simulations are performed in a triply periodic box [0, L]3 of length L = π/6. This length
for the domain is much larger than the integral length scale in order to avoid spurious effects of
periodic boundary conditions. Three different equidistant meshes are used, namely; 163 , 323 and
643 cells. The ratio of the length of the computational mesh-size to the Kolmogorov length scale is
provided in Table 3.1. The higher this ratio becomes, the larger is the scale-separation between the
largest unresolved scales and the Kolmogorov scales; which will be a good way to test and challenge
the SFS model performance. The time-step is specified such that ∆tCFL with ∆tCFL = L/(Nurms).

The initial velocity field is prescribed according to the data measured at the first downstream
position using RFM. According to the experimental data at tU0/M = 42, the kinetic energy and
the integral length scale are set respectively to k = 1.5u2

rms = 0.074 m2.s−2 and Lt = 0.024 m.
Figure 3.1 shows a comparison between the energy spectrum obtained by the analytical expression
and the spectrum computed by the constructed velocity field using RFM method on 643 cells.
The abscissa denotes the wavenumber and the ordinate represents the energy contained. From the
spectrum, we can find out in which turbulence scales (or respective wave numbers) the fluctuating
kinetic turbulent energy reside. The convergence of the subfilter quantities is confirmed by looking
at the temporal evolution of the volume averaged subfilter kinetic energy < ks > and the temporal
evolution of the target and the observed kinetic energy ratio parameter. The converged states
for < ks > and < r > on 963 cells at initialization are displayed in figure 3.2. The observed
ratio is close to the target ratio which shows the robustness of the EAHSM model. A similar

6Common to both cases: Comte-Bellot and Corrsin [9]and Kang et al. [32]
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on the transformed ks-εs branch of the EAHSM is performed analytically assuming a steady forcing
(constant resolved-velocity gradients). This is obtained by first imposing F1 = 0 followed by volume
averaging the governing equations (Eqs. 3.35-3.36) and finding their steady state solution. A steady
state solution exists for the models based on the hybrid E-DES method. The fixed point solution
for the subfilter kinetic energy is given by

< ks >=
(βε + λ)(lLESS)2η2χ

λ(γελ+ β∗ηξ)
(3.64)
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Box length η N ∆ ∆/η

Comte-Bellot and Corrsin [9] π/6 0.029 cm
32 0.0164 56
64 0.0082 28
96 0.0041 19

Kang et al. [32] 2π 0.011 cm
32 0.1963 1785
64 0.098 892
96 0.0654 595

Table 3.1. The computational mesh-size to the Kolmogorov length-scale ratio
(∆/η) for the two DIT cases.

where < ks > is the volume averaged subfilter kinetic energy. In contrast, when a similar exercise
is performed on the PITM, the set of equations permit two fixed point solutions. A trivial fixed
point < ks >=< ωs >= 0, which corresponds to the DNS limit and a non-trivial fixed point when
various ratios but < ks >,< ωs > attain steady-state values. It will be interesting to demonstrate
that a solution for the PITM method is to have a time-dependent forcing similar to the analysis
performed by Girimaji et al. [21] on the PANS method. This is not a study conducted in the
current thesis. With the initial values, the decay of isotropic turbulence is performed without the
frozen turbulence field. The energy spectra for the freely decaying isotropic turbulence at various
time instances are shown in figure 3.3. For all three meshes agreement with the analytical spectra
is good for the prescribed β0 = 2/(3Cκ) = 0.44 coefficient, even for the smallest resolved scales
also on the coarser grid resolution. Both the branches provide essentially similar results in decaying
isotropic turbulence for this value of β0. The inertial transfer zone for the energy cascade is very
short for this case in comparison with standard inertial zones computed at higher Reynolds numbers.
Firgure 3.5c is

Kang et al. test case

To further support this result and make sure that the EAHSM model can handle demanding LES
(at larger Taylor Reynolds number and ∆/η ratio), the DIT of Kang et al. [32] is also simulated.
In this case, the mesh size of the grid turbulence is M = 152 mm and the mean speed near the grid
U0 = 11.2 m.s−1. The Taylor micro-scale Reynolds number measured at four different distances
tU0/M = 20, 30, 40 and 48 are Reλ = 716, 676, 650 and 626 respectively. Similar to the previous
case, this can be recast for the simulation in terms of time advancement t0 = 0, t1 = 10M/U0,
t2 = 20M/U0 and t3 = 28M/U0 by applying Taylor’s hypothesis. This computation is thus more
challenging than the Comte-Bellot and Corrsin in terms of the SFS model, with a Reynolds number
that is 10 times larger resulting in a larger inertial region. Numerical simulations are performed in
a triply periodic box [0, L]3 with L = 2π. Three different equidistant meshes are used, namely; 323

, 643 and 963 cells. The initial velocity field is prescribed according to the data measured at the
first downstream position using the Random Fourier Method (RFM). Fig. 3.6 shows the comparison
between the energy spectrum given by the analytical expression and the numerical result obtained
using the RFM method for the 963 cells.

For the initialization phase, the convergence of ks and the temporal evolution of the target and the
observed kinetic energy ratio parameter are plotted in Fig. 3.7 again for the 963 cells. The results
are not shown here for the 323 and 643 cases.
The computed three-dimensional energy spectra at times t0 = 0, t1 = 10M/U0, t2 = 20M/U0 and
t3 = 28M/U0 for the three resolutions are displayed in Fig. 3.8. Despite a larger ∆/η ratio, the
agreement is good with the analytical spectra at all times for the three resolutions. Comparison



50 Chapter 3. Explicit algebraic subfilter closure for seamless hybrid RANS-LES methods

of the temporal evolution between the target and observed kinetic energy ratio parameter for the
three resolutions is displayed in Figure. 3.9. For the 643 and 963 resolutions, the ratios are in good
agreement whereas for the 323 there is a small difference. This shows that the EAHSM model is
consistent and robust.

Figure. 3.10 shows the time decay of the turbulence for the total kinetic energy, the resolved energy
and the subfilter kinetic energy in logarithmic coordinates. The total kinetic energy is the sum of
the resolved energy and the subfilter kinetic energy. Thus the test seems to be quite satisfactory
and gives credibility to the subgrid-scale version of the EAHSM model. It should be noted however
that these values appear optimal for the numerical schemes utilized. From the above test cases, we
can conclude that the value of the coefficient β0 = 2/(3Cκ) is a good estimate. This value for the
model coefficient will remain fixed in the following simulations.
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3.4.2 Fully developed turbulent Channel flow

Three dimensional simulations are performed for a fully developed channel flow at a moderate
Reynolds number of Reτ = 550. The 3D geometry of the channel is shown in Figure. 2.3. The
distance between the parallel walls of the channel is 2δ with the channel half width δ. Reference
data is taken from the DNS of Moser et al. [51] at the bulk Reynolds number Reb = Ubδ/ν = 10000
where

Ub =
1

2δ

∫ δ

−δ
U(y) dy

is the bulk velocity and U(y) is the mean streamwise velocity corresponding to Reτ = 550.

The dimensions of the computational domain are [0; 2πδ] × [0;πδ] × [0; 2δ] in the streamwise, the
spanwise and the wall-normal direction, respectively. The computational domain is small in com-
parison to the DNS ([0; 8πδ]× [0; 3πδ]× [0; 2δ]) to reduce the computational cost. The dimensions
are sufficiently large to resolve the largest structures of the flow.

Two mesh resolutions ’fine’ and ’coarse’ are chosen. The fine mesh corresponds to the ’guidelines’
mesh requirement for a wall-resolved LES, usually with a ∆x+ = 50 and ∆y+ = 20 [63]. A coarse
mesh is also considered to compare the predictive capability of EAHSM. The number of mesh
points in the coarse mesh is half the number of mesh points in the fine mesh for the streamwise
and spanwise directions. Mesh parameters are given in Table 3.2. In the streamwise and spanwise
directions, the meshing is uniform with respectively Nx and Ny number of grid points whereas in
the wall-normal direction, a non-uniform meshing is used according to the transformation:

∀k ∈ [1, Nz] , zk =
δ

2

[
1 +

1

a
tanh

[(
−1 +

2(k − 1)

Nz − 1

)
tanh−1(a)

]]
(3.65)

where the first dimensionless grid point location z+
2 = z2Rτ

δ = 0.5. The wall-normal mesh distribu-
tion remains the same for both resolutions.

Periodic boundary conditions are applied on the streamwise and the spanwise directions. No-slip
boundary condition is imposed at the walls whereas in the two homogeneous directions a periodic
boundary condition is applied. Since the flow being investigated is fully established, two possible
options exist to drive the flow. The first option follows prescribing a constant mass flow rate
Q = ρUbA at a given section. Here, A is the cross-sectional area of the channel. The bulk velocity
Ub is calculated from the bulk Reynolds number. The second option to drive the flow is by prescribing
a constant pressure gradient in the streamwise direction. The mean pressure gradient is directly
related to the friction velocity uτ at the wall given by [54]

dP

dx
=
u2
τ

2δ

In all our simulations, a constant mass flow rate is fixed. The bulk Reynolds number is thus imposed,
and the friction Reynolds number Reτ is a part of the output of the simulation.
An initial velocity profile is prescribed by superimposing a synthetic field on the mean velocity
according to:

v(x, 0) = (U(z), 0, 0) + v′(x, 0) (3.66)
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with the following law:

U+ =
1

κ
log(1 + 0.4z+) + 7.8(1− e−z+/11 − z+

11
e−z

+/3), (3.67)

where U+ = U(z)/uτ and v′(x, 0) is a synthetic fluctuating contribution computed from the RFM
method with an isotropic turbulent field specified by prescribing k = k+ ∗ u2

τ with the turbulent
length scale 1.5δ following the law

k+ = 0.07e−z
+/8(z+)2 + 4.5

1− e−z+/20

1 + 4 z+

Reτ

, (3.68)

conceding the turbulent fluctuations to immediately establish at the beginning of the simulation[11].
This allows one to have a shorter initial transient behavior, to have a fully developed turbulent flow.
The initial conditions for the subfilter quantities are: ks = 0.1k along with a turbulent viscosity
ratio r = νt,s/ν = 10.

The time step is chosen such that ∆tUb/∆x = 0.25. Time averaging is performed over a period
of 60Lx/Ub ≈ 21δ/uτ after removing the initial time period of 20Lx/Ub ≈ 7δ/uτ , for the flow to
be established. At the end of the calculation the statistics are spatially averaged over the two
homogeneous (streamwise and spanwise) directions. Computations were also done using the WALE
model for both mesh resolutions, as a point of comparison. The results are made dimensionless
using z+ = zuτ/ν, t+ = ν/u2

τ , u+ = u/uτ and k+ = k/u2
τ .

A good starting point of comparison is by looking at the computed friction Reynolds number by the
models. To find the friction Reynolds number, the friction velocity is first computed. The velocity
at the wall is zero, respecting the no-slip condition. The velocity at the first node closest to the
wall7 is used to calculate the shear stress at the wall. The molecular viscosity (ν) plays the most
important role in this region. The friction velocity is calculated using

uτ =

√
ν
du

dz
≈
√
ν
u2

z

Friction Reynolds number is then calculated by Reτ = uτδ/ν and Table 3.3 summarizes the friction
Reynolds number using the various models.

The mean streamwise velocity normalized by the computed friction velocity for the fine resolution is
plotted in Figure. 3.11. From Table 3.3, we can infer that the friction Reynolds number computed
by the WALE model is higher on the fine resolution. As a result, the mean-streamwise velocity
at the center of the channel for the WALE model is lower. The turbulent kinetic energy has been
plotted in Figure. 3.11. For the EAHSM model, it is the sum of the resolved and the subfilter
kinetic energies has been plotted whereas only the resolved kinetic energy is represented for the
WALE model. The EAHSM model shows a very good agreement with the DNS except in the center
of the channel. The mean streamwise velocity and the total kinetic energy profiles for the coarse
mesh are plotted in Figure. 3.12. The kinetic energy is overestimated by WALE on coarser meshes,
which is a well known behavior that LES exhibits on coarse meshes. The kinetic energy is also
slightly over-predicted by the EAHSM model.

The energy distribution between the resolved and modeled scales is examined for the EAHSM
7In the wall-normal direction.
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Mesh Nx ×Ny ×Nz ∆x+ ∆y+ ∆z+w - ∆z+c

coarse 35× 43× 156 100 40 0.5 - 15
fine 69× 86× 156 50 20 0.5 - 15

DNS [39] - 8.9 5.0 0.019 - 4.5

Table 3.2. Channel flow simulations at Reτ = 550. Nx, Ny and Nz are
the number of grid points along the streamwise, spanwise and the wall-normal
directions, respectively. ∆x+ and ∆y+ are the grid spacings in viscous wall
units along the streamwise and the spanwise direction, respectively and ∆z+

w

and ∆z+
c are the grid spacing in the wall-normal direction at the wall and at

the channel centerline.

WALE Model 1 Model 2

coarse 525 531 533
fine 567 546 547

Table 3.3. Channel flow simulations at Reτ = 550. Comparison of the
computed friction Reynolds number Reτ for the three models on the two grid
resolution. Reference friction Reynolds number corresponds to Reτ = 550.

model by plotting the target and observed kinetic energy ratio parameters, shown in Figure. 3.13
(left). The figure reveals some important features about the SFS model and the formulation for
the target kinetic energy ratio parameter. There is a considerable difference between the target
and the observed ratios in the near-wall region. One probable reason could be regarding the high
Reynolds number formulation of the model which strongly underestimated subfilter kinetic energy
in this region. The subfilter model can be improved by using the low Reynolds number formulation
through the introduction of the wall functions. Secondly, we know that at the wall, ks is zero.
Considering the observed rk to be reliable, the target rk can be overpredicted. Introducing a limiter
for the subfilter length-scale in target rk given by Eq. 3.48. This limiter will limit the lengthscale
from going below the Kolmogorov lengthscales in this region, thereby reducing the target rk. A
different definition of the subgrid length-scale ∆ in Eq. 3.48, should improve the near-wall behaviour
of the models[66].

A good agreement with DNS results is obtained despite the use of a relatively coarse mesh for the
calculations. These results are very similar in comparison to the ones obtained by Montecchia et
al. [50] at this friction Reynolds number. The performance of the model can be better understood
for flows at higher friction Reynolds number. The turbulence model is able to reproduce the correct
near wall behavior in terms of the mean streamwise velocity and the position of the kinetic energy
peak. Finally, we investigate the influence of the c2 coefficient. We see no significant differences
between the two values of the c2 coefficient. In the logarithmic region of the flow, the model is
functioning as a subfilter model and thus the influence of the subfilter model is less.
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Figure 3.3. Comparison of the temporal evolution of the energy spectrum.
The solid lines represent the numerical results whereas the dashed curves are

the analytical solution given by the spectrum in Eq.
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Figure 3.4. Temporal evolution: Comparison between the target < rt > and
the observed < r0 > kinetic energy ratio parameter.
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Figure 3.11. Periodic channel flow simulation at Reτ = 550. Fine mesh sim-
ulation results obtained fromWALE and EAHSM are plotted against the DNS.
Profile of the mean streamwise velocity (left). Profile of the total turbulent

kinetic energy kt (right).
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Figure 3.12. Periodic channel flow simulation at Reτ = 550. Coarse mesh
simulation results obtained from WALE and EAHSM are plotted against the
DNS. Profile of the mean streamwise velocity (left). Profile of the total turbu-

lent kinetic energy kt (right).
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Figure 3.13. Periodic channel flow simulation at Reτ = 550. The profiles of
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Figure 3.14. Periodic channel flow simulation at Reτ = 550. Profile of the
mean streamwise velocity (left). Profile of the total turbulent kinetic energy
kt (right) plotted for the original value of c2 = 5/9 (Model 1) and the modified

value c2 = 0.539166 (Model 2).
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3.4.3 Fully developed turbulent flow in a Square Pipe

The test case of the fully developed turbulent flow in a square duct constitutes an illustrative case
for which the anisotropy between the Reynolds stress components is present and influences the mean
flow. In this case, the anisotropy leads to a secondary flow that greatly modifies both the shear
stress and the heat transfer at the walls. This may also lead to an increase in the turbulent mixing
when dealing for instance with passive scalar transport or variable density flows.

Numerical simulations are performed here in a domain [0; 2πD] × [0;D] × [0;D] where D is the
duct width. Numerical results are compared with direct numerical simulations performed by Huser
and Biringer [27] and Zhang et al. [89]. The Reynolds number Reτ based on the friction velocity
uτ and the duct width D is 600 which corresponds approximately to the bulk Reynolds number
Reb = ubD/ν of 10500.

Two meshes are used namely, ’fine’ and ’coarse’. As the friction Reτ for this case is close to the
friction Reynolds number for the turbulent channel flow, we consider the same numerical parameters
in the streamwise and the two wall-normal directions, given in Table. 3.4. The first dimensionless
grid point location in the wall-normal direction is set to z+

2 = 1 using the transformation given for
the Channel flow. The coarse mesh has half the number of grid points in the streamwise alone.
A Periodic boundary condition is prescribed in the streamwise direction and a no-slip condition
is imposed on the four walls. Like for the channel flow. The flow is sustained by prescribing a
constant mass flow rate at a cross-section. A synthetic fluctuating field is superimposed on the
initial velocity profile using the RFM method, Eqs. 3.66-3.67. An isotropic field is initiated by
prescribing k = k+ ∗ u2

τ where k+ follows the law Eqs. 3.68 along with the turbulent length scale
3D/4. The initial conditions for the subfilter quantities are: ks = 0.1k along with a turbulent
viscosity ratio r = νt,s/ν = 10.

The time step is chosen such that ∆tUb/∆x = 0.25. Time averaging is performed over a period of
200Lx/Ub after removing the initial time period of 100Lx/Ub, for the flow to be established. At the
end of the calculation the statistics are spatially averaged along the homogeneous direction. We
believe that this should not affect many of the conclusions of this study, except for the secondary
flow. The results are made dimensionless using z+ = zuτ/ν, u+ = u/uτ , v+ = v/uτ .

The friction Reynolds number computed using the friction velocity at the wall on the wall bisector
for various models is shown in Table. 3.5. The results presented below focus on the mean streamwise
velocity component u and the mean spanwise velocity component v along a corner bisector y = z.
For the fine mesh results presented in Figure. 3.15, both models have a similar behavior. Both
EAHSM and WALE are able to predict the increase in the streamwise velocity near the corner. On
the coarse mesh, the EAHSM results are closer to the DNS of Huser & Biringen [27]. The mesh
parameters used in the DNS of Huser & Biringen [27] corresponds to a poorly resolved DNS [89].
As the mesh is coarsened, there is an increase in the level of the total kinetic energy.

The secondary flow contours are plotted across a cross-section in Figures. 3.17 and 3.18. A fair
degree of symmetry over the quadrants has been obtained but to achieve complete symmetry,
a larger sample size for averaging would be necessary for the strength of the secondary velocity is
weak. The energy distribution between the resolved and modeled scales is examined for the EAHSM
model by plotting the target and observed kinetic energy ratio parameters, shown in Figure. 3.13.
There seems to be a slight difference between the two meshes.
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Mesh Nx ×Ny ×Nz ∆x+ ∆z+w - ∆z+c

coarse 38× 98× 98 100 1 - 13
fine 75× 98× 98 50 1 - 13

DNS [27] 96× 100× 100 − −
DNS [89] 320× 256× 256 11.78 0.216 - −

Table 3.4. Simulation on a fully developed flow in a square pipe atReτ = 600.
Numerical parameters for the two meshes.

WALE Model 1 Model 2

coarse 634 613 612
fine 601 591

Table 3.5. Simulation on a fully developed flow in a square pipe atReτ = 600.
Comparison of the computed friction Reynolds number Reτ for the three mod-
els on the two grid resolution. Reference friction Reynolds number corresponds

to Reτ = 600.

Finally, we investigate the influence of the c2 coefficient. We see no significant differences in the
mean streamwise velocity profile for the two c2 values (Figure 3.20). For the secondary velocity
profile, some differences are seen between the two values for c2. Since the secondary flow is weak,
the convergence of the secondary flow statistics is not yet achieved.

3.5 Conclusion

Main concepts of seamless hybrid RANS/LES methods relevant to the present work were looked
upon. Starting from the ks−εs version of E-DES for which the hybrid equivalence has been provided,
the derivation of a ks-ωs based E-DES has been performed. Menter’s blending function is used to
obtain a E-DES BSL-like model. Presuming the weak-equilibrium assumption to be verified for
the subfilter scales, explicit algebraic closure developed in the previous chapter is coupled with the
E-DES based on Menter’s BSL-like model.
The calibration of the EAHSM model concerning its model coefficient is done on the decay of
isotropic turbulence. Following which tests are performed on the fully developed channel flow
and the fully developed flow in a pipe of square cross-section for two grids: fine and coarse. On
coarser grids, EAHSM performs fairly better than the WALE model. It has been observed that
the target and the observed kinetic energy ratio parameters behave differently close to the wall.
Moving towards a low-Reynolds number formulation for the subfilter model and the explicit algebraic
relations can be helpful.
In the following chapter, the developed EARSM in chapter 2 and the EAHSM model presented in
this chapter will be extended to variable density flows.
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Figure 3.15. Periodic flow in a square pipe at Reτ = 600. Fine mesh
simulation results obtained using WALE and EAHSM.
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Figure 3.16. Periodic flow in a square pipe at Reτ = 600. Coarse mesh
simulation results obtained using WALE and EAHSM.
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(a) WALE fine (b) EAHSM fine

Figure 3.17. Secondary velocity isotachs for the fine mesh.

(a) WALE coarse (b) EAHSM coarse

Figure 3.18. Secondary velocity isotachs for the coarse mesh
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Figure 3.19. Fully Developed square duct flow simulation at Reτ = 600.
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Figure 3.20. Fully Developed square duct flow simulation at Reτ = 600.
Profiles of the streamwise and transverse velocities and total turbulent kinetic
energy kt (right) plotted for the original value of c2 = 5/9 (Model 1) and the

modified value c2 = 0.539166 (Model 2).
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Chapter 4

Extension to variable density flows

In this chapter, we extend the EAHSM model described in Chapter 3 to variable density flows. We
restrict in this first step to slightly variable density flows for which the Boussinesq approximation is
assumed to be valid. As previously, we first present the derivation of the explicit algebraic model in
the RANS framework for both the Reynolds stresses and the scalar flux following a direct solution
of the implicit algebraic relationships. The nonlinearity of the coupled expressions for the algebraic
expressions is treated through an efficient iteration solution method. The resulting explicit algebraic
approach is then extended to the seamless hybrid RANS-LES framework following the same route as
presented in Chapter 3. Both the RANS and hybrid RANS-LES algebraic models are assessed in the
case of a stable stratification, on the homogeneous mean shear flow and the fully developed channel
flow.

4.1 Explicit algebraic Reynolds-stress and scalar flux model

We address in this section explicit algebraic modeling of turbulent fluxes for variable density flows
with buoyancy. We restrict in this work to small density differences for which the Boussinesq
approximation is assumed to be valid. Using such an approximation, effects of varying density
due to temperature or concentration are neglected everywhere in the transport equations except
in the buoyancy force. While such a description is restricted to small density differences, this is
illustrative of the coupling between momentum and density induced by buoyancy. The resulting
transport equations read:

∂ui
∂xi

= 0 (4.1)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ %(θ)gi (4.2)

∂θ

∂t
+ uj

∂θ

∂xj
= κ

∂2θ

∂xj∂xj
(4.3)

where ui is the velocity field, p the pressure, gi the gravitational acceleration, κ refers to a molecular
diffusivity (heat or species) and θ denotes a scalar that causes density differences. In Eq. 4.2, %(θ)
corresponds to a reduced density variation with respect to a reference state and is defined by

%(θ) = 1− βθ (θ − θ0) (4.4)

where βθ is the expansion coefficient (thermal or compositional). As the transport equation for the
scalar is coupled to the momentum transport equation through buoyancy, this refers to an active
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scalar. This contrasts with the passive scalar case for which there is no coupling and the scalar is
simply advected by the flow.

By using the Reynolds decomposition, ui = ui + u′i, p = p + p′ and θ = θ + θ′ in Eqs. 4.1-4.3 and
then taking the average, one arrives at the following Reynolds-averaged version of the governing
equations:

∂ui
∂xi

= 0 (4.5)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj
− u′iu′j

)
+ %(θ)gi (4.6)

∂θ

∂t
+ uj

∂θ

∂xj
=

∂

∂xj

(
κ
∂θ

∂xj
− u′jθ′

)
(4.7)

where %(θ) denotes the reduced averaged density defined by

%(θ) = 1− βθ
(
θ − θ0

)
(4.8)

Two terms involving the correlations between the velocity and scalar fluctuations appear. We recall
that u′iu

′
j correspond the Reynolds stresses. Similarly, u′jθ′ corresponds the turbulent scalar flux

arising by the interaction of velocity and fluctuations in the scalar. Both these quantities remain
unknown, making the set of equations incomplete.

4.1.1 Transport equation for the turbulent fluxes

As for the Reynolds stresses, one can derive transport equations for the turbulent mass flux. The
derivation is not repeated here as it can be found elsewhere. The obtained transport equations for
the turbulent fluxes u′iu

′
j and u

′
iθ
′ read

∂u′iu
′
j

∂t
+ uk

∂u′iu
′
j

∂xk
−Dij =Pij +Πij − εij + Gij (4.9)

∂u′iθ
′

∂t
+ uk

∂u′iθ
′

∂xk
−Dθi =Pθi +Πθi − εθi + Gθi (4.10)

where Dθi, Pθi, Πθi and εθi refer respectively to diffusion, production, pressure redistribution and
dissipation of the active scalar turbulent flux. Compared with the passive scalar case, taking into
account buoyancy leads to an additional contribution in the transport equation for the turbulent
fluxes, namely Gij in Eq. 4.9 for the Reynolds stresses and Gθi in Eq. 4.10 for the turbulent scalar
flux. The production term for the Reynolds stresses remains unchanged compared with its expression
given in chapter 2 while the production term for the turbulent scalar flux has the following form:

Pθi = −u′iu′k
∂θ

∂xk
− u′kθ′

∂ui
∂xk

(4.11)

The additional terms in the right hand side of the transport equations for the turbulent fluxes
correspond to buoyancy terms that are expressed as

Gij = −βθ
(
giu′jθ

′ + gju′iθ
′
)
, Gθi = −2βθkθgi (4.12)



4.1.1. Transport equation for the turbulent fluxes 73

where kθ = 1
2θ
′2 is half the scalar variance. For the pressure redistribution term Πij , the LRR model

given in Eq. 1.38 is utilized to which an additional term representing the buoyancy contribution is
added [34]

Πij =− c1
ε

k

(
u′iu
′
j −

2

3
kδij

)
− c2 + 8

11

(
Pij −

1

3
Pkkδij

)
− 30c2 − 2

55
k

(
∂ui
∂xj

+
∂uj
∂xi

)
− 8c2 − 2

11

(
−u′iu′k

∂uk
∂xj
− u′ju′k

∂uk
∂xi
− 1

3
Pkk

)
− cg

(
Gij −

1

3
Gkkδij

)
(4.13)

where k = u′iu
′
i/2 is the turbulent kinetic energy and ε = εii/2 is the dissipation rate. c1, c2 and

cg are model coefficients that need to be specified. As in chapter 2, the dissipation rate tensor is
assumed to be isotropic and follows Eq. 1.36. The pressure scalar gradient correlation Πθi and the
dissipation vector εθiare modelled as

Πθi − εθi =−
(
cθ1 + cθ5

k

εkθ
u′kθ
′ ∂θ

∂xk

)
ε

k
u′iθ
′

+ cθ2u
′
kθ
′ ∂ui
∂xk

+ cθ3u
′
kθ
′∂uk
∂xi

+ cθ4u
′
iu
′
k

∂θ

∂xk
+ cθgβθkθgi (4.14)

where cθ1, cθ2, cθ3, cθ4, cθ5, cg and cθg are again the model constants that remain to be specified.

The transport equations for the turbulent kinetic energy k and the scalar variance 2kθ are ob-
tained from the previous transport equations for the Reynolds stresses and the turbulent scalar flux
respectively and read

dk

dt
−D = P − ε+ G (4.15)

dkθ
dt
−Dθ = Pθ − εθ (4.16)

Here again, as for the Reynolds stresses, taking into account buoyancy leads to the additional term
G in the transport equation for the turbulent kinetic energy. This additional term corresponds to
half the trace of Eq. 4.9 and reads

G =
1

2
Gkk = −βθgku′kθ′ (4.17)

Moving to the transport equation for the scalar variance Eq. 4.16, the first term on the right hand
side corresponds to the production term that reads

Pθ = −u′kθ′
∂θ

∂xk
(4.18)

The last term on the right hand side in Eq. 4.16 refers to the dissipation term and we follow here
[37] by prescribing the ratio rτ = τθ/τ which corresponds to the ratio of the scalar turbulence time
scale, τθ = kθ/εθ, and the characteristic eddy turn over time scale τ = k/ε. This allows to avoid
the need in solving an additional transport equation for the dissipation εθ by using the algebraic
relation:

εθ =
kθ
rττ

(4.19)
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We will follow here the same methodology described in chapter 2 to deal with the diffusion term
Dθ.

In order to introduce the weak equilibrium assumption for both the Reynolds stresses and the
turbulent scalar flux, starting from the previous transport equations for the turbulent fluxes we first
need to write transport equations for the corresponding normalized fluxes. We look into details in
the following section.

4.1.2 Transport equation for the dimensionless turbulent fluxes

As for the Reynolds stresses, the first step consists thus in writing a transport equation for the
normalized scalar flux ξi defined by

ξi =
u′iθ
′

√
kkθ

(4.20)

Introducing the dimensionless anisotropy tensor aij in Eq. 4.9 and the normalized scalar flux ξi in
Eq. 4.10, the transport equations for these quantities read

daij
dt
− 1

k

(
Dij −

u′iu
′
j

k
D
)

=
1

k

(
Pij +Πij −

2

3
εδij + Gij −

u′iu
′
j

k
(P − ε+ G)

)
(4.21)

dξi
dt
− 1√

kkθ

(
Dθi −

u′iθ
′

2

(D
k

+
Dθ
kθ

))

=
1√
kkθ

(
Pθi +Πθi − εθi + Gθi −

u′iθ
′

2

(P − ε+ G
k

+
Pθ − εθ
kθ

))
(4.22)

Using the weak-equilibrium assumption, both the advection and diffusion terms will be neglected.
In this manner, we will be able to find a system of algebraic equations for the coupled system.

4.1.3 Weak equilibrium assumptions

Using the weak-equilibrium assumption for both the dimensionless anisotropy tensor aij and the
normalized scalar flux ξi, the left-hand side of the previous transport equations are removed and
the resulting algebraic equations read

u′iu
′
j

k
(P − ε+ G) =Pij +Πij −

2

3
εδij + Gij (4.23)

u′iθ
′

2

(P − ε+ G
k

+
Pθ − εθ
kθ

)
=Pθi +Πθi − εθi + Gθi (4.24)

Inserting the mean buoyancy vector Γi and the mean scalar gradient Θi defined by

Γi = τ

√
kθ
k
βθgi (4.25)

Θi = τ

√
k

kθ

∂θ

∂xi
(4.26)
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Inserting further aij , ξi, Sij and Ωij in the definition of the redistribution terms leads to the following
expressions

Πij

ε
= −c1aij +

4

5
Sij +

9c2 + 6

11

(
aikSkj + Sikakj −

2

3
akmSmkδij

)
+

7c2 − 10

11
(aikΩkj −Ωikakj) + cg

(
Γiξj + Γjξi −

2

3
Γkξkδij

)
(4.27)

τ√
kkθ

(Πθi − εθi) = − (cθ1 + cθ5ξkΘk) ξi + (cθ2 + cθ3) ξkSik

+ (cθ2 − cθ3) ξkΩik + cθ4

(
aik +

2

3
δik

)
Θk + cθgΓi (4.28)

As a result, the algebraic equations for the Reynolds stress anisotropy tensor aij and the normalized
scalar flux ξi read

Naij =− 8

15
Sij +

7c2 + 1

11
(aikΩkj −Ωikakj)

− 5− 9c2

11

(
aikSkj + Sikakj −

2

3
akmSmkδij

)
− (1− cg)

(
Γiξj + Γjξi −

2

3
Γkξkδij

)
(4.29)

Nθξi =− (cθSSik + cθΩΩik) ξk − cθ
(
aik +

2

3
δik

)
Θk − (2− cθg)Γi (4.30)

The new model constants are defined by cθS = 1 − cθ2 − cθ3, cθΩ = 1 − cθ2 + cθ3 and cθ = 1 − cθ4
while the coefficients N and Nθ are given by

N = c1 − 1 +
P + G
ε

= c1 − 1− akmSkm − Γkξk (4.31)

Nθ = cθ1 + cθ5ξkΘk +
1

2

(P + G
ε
− 1 +

1

r

(Pθ
εθ
− 1

))
= cθ1 +

1

2

(P + G
ε
− 1− 1

rτ

)
+

(
cθ5 −

1

2

)
ξkΘk (4.32)

The set of previous expressions correspond to the most general implicit algebraic formulation. In
order to reduce the complexity of the coupled algebraic expressions, we follow in the next section
some particular parameter settings considered in [37]. In practice, we will see that focusing only on
the two model constants c2 and cθ5, a particular set of values allows to greatly simplify the coupled
algebraic relationships.

4.1.4 Coupled explicit algebraic relations

As pointed out by Wikström et al. [85], the special choice cθ5 = 1/2 greatly reduces the complexity
of the algebraic equation. Here, we will adopt the simplifications provided by the parameter choices
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c2 = 5/9 as considered in chapter 2 together with cθ5 = 1/2 that leads to

Naij =− 8

15
Sij +

4

9
(aikΩkj −Ωikakj)− (1− cg)

(
Γiξj + Γjξi −

2

3
Γkξkδij

)
(4.33)

Nθξi =− (cθSSik + cθΩΩik) ξk − cθ
(
aik +

2

3
δik

)
Θk − (2− cθg)Γi (4.34)

with

N = c1 − 1 +
P + G
ε

= c1 − 1− akmSkm − Γkξk (4.35)

Nθ = cθ1 +
1

2

(
N − c1 −

1

rτ

)
(4.36)

Unlike in case of the passive scalar [85], where the equations for aij and ξi can be solved in a sequen-
tial way, the equations for aij and ξi in the case of active scalar have to be solved simultaneously
due to the terms arising from the buoyancy coupling. As previously, the procedure to solve the
implicit equations consists first in assuming that both the coefficients N and Nθ are known.

First, in order to obtain explicit algebraic but still coupled relations from the implicit relations
Eqs. 4.33-4.34 we follow the methodology outlined in [22, 28] in order to take benefit from the direct
solution described in chapter 2. This methodology consists in rewriting the previous equations for
aij and ξi as

Naij =− C1Sij + (aikΩkj −Ωikakj)− CgS+
ij (4.37)

(Nθδik + cθSSik + cθΩΩik) ξk =− cθ
(
aik +

2

3
δik

)
Θk − (2− cθg)Γi (4.38)

where C1 = 6/5, Cg = 9(1− cg)/4 and where the additional tensor S+
ij is defined by

S+
ij = Γiξj + Γjξi −

2

3
Γmξmδij (4.39)

As a result, introducing s ≡ C1Sij/N , s+ ≡ CgS
+
ij/N and o ≡ Ωij/N , we get formally the same

implicit relation for aij obtained in chapter 2:

a = −s̃+ (ao− oa) , s̃ = s+ s+ (4.40)

Hence, following the direct solution described in chapter 2, we obtain a fully explicit algebraic
relation for aij but still coupled to the normalized scalar flux ξi. Next, the resulting expression for
aij can be split into two parts

aij = a0
ij + a+

ij (4.41)

where the tensorial basis for the former contribution is independant of the normalized scalar flux.
Hence, further substituting the resulting expression for aij to the equation Eq. 4.38 for ξi leads also
after some transformations with a+

ij to a fully explicit relation for the normalized scalar flux. A
solution strategy is presented in the next section to solve the coupled explicit algebraic relations
together with detailed expressions for the explicit algebraic relations.
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4.1.5 Coupling strategy

While the splitting introduced previously for the anisotropy tensor allows to obtain explicit algebraic
relations for aij and ξi, a solution strategy remains to be specified to solve the coupled relationships.
The solution for aij and ξi remains formal as the coefficients N and Nθ remain to be determined.
This thus requires an appropriate method to determine these coefficients recalled below for the sake
of clarity

N = c1 − 1− akmSkm − Γkξk (4.42)

Nθ = cθ1 +
1

2

(
N − c1 −

1

rτ

)
(4.43)

Efficient methods have been proposed in [37, 38] to solve Eqs. 4.42-4.42 based on the two limit so-
lutions that correspond to the shear-dominated regime and the buoyancy-dominated regime. While
the proposed methods are attractive, the approach is restricted to certain two-dimensional mean
flows. In this work, we follow the solution strategy suggested in [22, 28]. As the solution for Nθ is
known provided that N is known, we first focus on the solution for N from Eq. 4.42. The solution
strategy consists in solving Eq. 4.42 through the following iterative procedure

Nn = c1 − 1− akm(Nn−1)Skm − ξk(Nn−1)Γk (4.44)

The iterative procedure requires a guess N0 at the first iteration. We select here the analytical
solution provided in chapter 2 for the purely shear two-dimensional mean flow case. For the studied
cases dealt in this work, the method proves to be very robust and efficient and needs a small
number of iterations, in practice n ≤ 4. The robustness is ensured by introducing a lower limit
for the production to dissipation ratio in such a way that Nn remains strictly positive during the
iterative sequence. As indicated in [37], this is an important criterion for robustness since it is a
necessary condition to avoid a non-singular behavior of the model. The prescribed lower limit used
in Eq 4.44 is expressed as

P + G
ε
≥ 1.1− c1 (4.45)

The resulting coupling strategy to solve the algebraic relations for the anisotropy tensor and the
normalized scalar flux is summarized below

(i) First compute Nn from either the analytical relation (n = 0) or from Eq 4.44 (n ≥ 1)

(ii) Then compute a0
ij(Nn) that depends on Sij , Ωij and Nn

(iii) Compute the normalized scalar flux ξi(Nn) that depends on Sij , Ωij , Γi and Nn

(iv) Then compute a+
ij(Nn) that depends on Sij , Ωij , Γi, ξi and Nn

(v) Compute the anisotropy tensor aij(Nn) = a0
ij(Nn) + a+

ij(Nn) and go back to step (i)

The detailed expressions for a0
ij , a

+
ij and ξi are given hereafter for both two- and three-dimensional

mean flows following the direct solution methodology presented in chapter 2 and the algebraic
transformations proposed in [22, 28].
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Two-dimensional mean flows For two-dimensional mean flows, following [22] we define the
traceless analog of S+

ij by:

S
+(2D)
ij = Γiξj + Γjξi − Γmξmδ

(2D)
ij (4.46)

As the strain and vorticity tensors can be treated as two-dimensional, i.e S3i = 0 and Ω3i = 0, the
equation for aij can be written as:

Naij = −C1Sij + (aikΩkj −Ωikakj)− CgS+(2D)
ij − CgΓmξm

(
δ

(2D)
ij − 2

3
δij

)
(4.47)

Next, defining also the traceless analog of aij by:

aij = a
(2D)
ij + β0

(
δ

(2D)
ij − 2

3
δij

)
(4.48)

Then, the equation for aij Eq. 4.47 can be written as an equation for a(2D)
ij and β0 as:

Na
(2D)
ij +Nβ0

(
δ

(2D)
ij − 2

3
δij

)
=− C1Sij + (aikΩkj −Ωikakj)− CgS+(2D)

ij

− CgΓmξm
(
δ

(2D)
ij − 2

3
δij

)
(4.49)

The coefficient β0 is determined by equating the three-dimensional tensor groups on both sides of
the previous equation and is thus given by:

β0 = −Cg
N

Γmξm (4.50)

The remaining part is purely two-dimensional and reads:

Na
(2D)
ij = −C1Sij + (aikΩkj −Ωikakj)− CgS+(2D)

ij (4.51)

This algebraic relation corresponds formally to the relation provided in section 2.3.1 that reads

(1− 2IIo) a =− s̃+ (s̃o− os̃)
=− s+ (so− os)− s+ + (s+o− os+) (4.52)

Substituting s ≡ C1Sij/N , s+ ≡ CgS+(2D)
ij /N and o ≡ Ωij/N , one gets

a
(2D)
ij = β1Sij + β4(SikΩkj −ΩikSkj)

+ β+
1 S

+(2D)
ij + β+

4 (S
+(2D)
ik Ωkj −ΩikS+(2D)

kj ) (4.53)

with

β1 = − C1N

N2 − 2IIΩ
, β4 = − C1

N2 − 2IIΩ
, β+

1 =
Cg
C1
β1 , β+

4 =
Cg
C1
β4 (4.54)

As a result, Eq. 4.53 allows to identify the two terms of the splitting aij = a0
ij + a+

ij . In order
to express ξi from Eq. 4.34 as a fully explicit algebraic relation, we can write following [22] the



4.1.5. Coupling strategy 79

following transformations

S
+(2D)
ij Θj =

(
ΓiΘj + IIΘΓδ

(2D)
ij − ΓjΘi

)
ξj (4.55)(

S
+(2D)
ik Ωkj

)
Θj =

(
ΓiΘkΩjk + ΓmΘkΩmkδ

(2D)
ij − ΓjΘkΩik

)
ξj (4.56)(

ΩikS
+(2D)
kj

)
Θj = (ΓkΘjΩik + IIΘΓΩij − ΓjΘkΩik) ξj (4.57)

Introducing the splitting for aij and using the above transformations, we get from Eq. 4.34

Aijξj = −cθa0(2D)
ij Θj −

2

3
cθΘi − (2− cθg)Γi (4.58)

where the matrix Aij is given by

Aij = Nθδij + cθSSij + cθΩΩij + cθLij (4.59)

with

Lij = β+
0 L

(0)
ij + β+

1 L
(1)
ij + β+

4 L
(4)
ij , β+

0 = − Cg
3N

(4.60)

L
(0)
ij = ΓjΘi (4.61)

L
(1)
ij = ΓiΘj + IIΘΓδ

(2D)
ij − ΓjΘi (4.62)

L
(4)
ij = ΓiΘkΩjk + ΓmΘkΩmkδ

(2D)
ij − ΓkΘjΩik − IIΘΓΩij (4.63)

In order to use previous results obtained for the passive scalar case [85] to invert the matrix A and
following [22], we introduce the traceless two-dimensional ΓΘ-strain and ΓΘ-rotation rate tensors
S̊ij and Ω̊ij as

S̊ij =
1

2

(
ΓiΘj + ΓjΘi − IIΘΓδ

(2D)
ij

)
, Ω̊ij =

1

2
(ΓjΘi − ΓiΘj) (4.64)

This allows to write the following relation:

ΓjΘi = S̊ij + Ω̊ij +
1

2
IIΘΓδ

(2D)
ij (4.65)

Then, we get:

L
(0)
ij = S̊ij + Ω̊ij +

1

2
IIΘΓδ

(2D)
ij (4.66)

L
(1)
ij = −2Ω̊ij + IIΘΓδ

(2D)
ij (4.67)

L
(4)
ij = −2IIΘΓΩij + 2IIΩΩ̊δ

(2D)
ij (4.68)

where IIΩΩ̊ is given by

IIΩΩ̊δ
(2D)
ij = 2ΩikΩ̊kj = 2Ω̊ikΩkj (4.69)
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This allows to express the matrix A as

Aij = Ñθδ
(2D)
ij + cθSSij + c̃θΩΩij + c̊θSS̊ij + c̊θΩΩ̊ij (4.70)

Ñθ = Nθ + cθIIΘΓ

(
β+

0

2
+ β+

1

)
+ 2cθIIΩΩ̊β

+
4 (4.71)

c̃θΩ = cθΩ − 2cθβ
+
4 IIΘΓ (4.72)

c̊θS = cθβ
+
0 (4.73)

c̊θΩ = cθ
(
β+

0 − 2β+
1

)
(4.74)

This corresponds formally to the result obtained in [22]. The formal solution for the normalized
scalar flux is then obtained by inverting the matrix A−1

ij . As proposed in [85] for the passive scalar
case, this is achieved as a direct consequence of the Cayley-Hamilton theorem and the inverted
matrix reads

A−1 = (det(A))−1 (tr{A}I −A)

= (det(A))−1
(
Ñθδ

(2D)
ij − cθSSij − c̃θΩΩij − c̊θSS̊ij − c̊θΩΩ̊ij

)
(4.75)

with

det(A) =
1

2

(
(tr{A})2 − tr{A2}

)
=Ñ2

θ −
1

2

(
c2
θSIIS + c̊2

θSIIS̊ + c̃2
θΩIIΩ + c̊2

θΩIIΩ̊
)

− cθS c̊θSIISS̊ − c̃θΩ c̊θΩIIΩΩ̊ (4.76)

As a result, the normalized scalar flux reads

ξi =− cθA−1
ik

(
a0
kj +

2

3
δkj

)
Θj − (2− cθg)A−1

ik Γk (4.77)

Three-dimensional mean flows For three-dimensional mean flows, the explicit solution of
Eq. 4.37 is provided in section 2.3.1 that reads

(1− 2IIo) (1− 1

2
IIo)a = −(1− 7

2
IIo)s̃− 6 ˜IV (o2 − 1

3
IIoI)

− (1− 2IIo)(s̃o− os̃)− 3(s̃o2 + o2s̃− 2

3
˜IV I)− 3(o2s̃o− os̃o2) (4.78)



4.1.5. Coupling strategy 81

where we have used the notation ˜IV = tr{s̃o2}. As for the two-dimensional case, splitting s̃ and
substituting s ≡ C1Sij/N , s+ ≡ CgS+

ij/N and o ≡ Ωij/N , one gets

aij = β1Sij + β3

(
ΩikΩkj −

1

3
IIΩδij

)
+ β4(SikΩkj −ΩikSkj)

+ β6

(
SikΩklΩlj +ΩikΩklSlj −

2

3
IV δij

)
+ β9 (ΩikSklΩlmΩmj −ΩikΩklSlmΩmj)

+ β+
1 S

+
ij + β+

3 IV
+

(
ΩikΩkj −

1

3
IIΩδij

)
+ β+

4 (S+
ikΩkj −ΩikS+

kj)

+ β+
6

(
S+
ikΩklΩlj +ΩikΩklS

+
lj −

2

3
IV +δij

)
+ β+

9

(
ΩikS

+
klΩlmΩmj −ΩikΩklS+

lmΩmj
)

(4.79)

where the definition for both the coefficients βi and β+
i = Cgβi/C1 remains the same except for the

coefficient β+
3 for which the dependance on the invariant IV + has been removed and added directly

in the previous tensor expression:

β+
3 = −Cg

C1

12N−1

Q
(4.80)

Here again, the above expression allows to identify the two terms of the splitting aij = a0
ij + a+

ij .
As for the two-dimensional case, following [22], in order to express ξi as a fully explicit algebraic
relation, we first write the following transformations:

S+
ijΘj =

(
ΓiΘj + IIΘΓδij −

2

3
ΓjΘi

)
ξj (4.81)

(
S+
ikΩkj

)
Θj =

(
ΓiΘkΩjk − ΓmΘkΩkmδij −

2

3
ΓjΘkΩik

)
ξj (4.82)(

ΩikS
+
kj

)
Θj =

(
ΓkΘjΩik + IIΘΓΩij −

2

3
ΓjΘkΩik

)
ξj (4.83)

IV +

(
(Ωij)

2 − 1

3
IIΩδij

)
Θj =2

(
(Ωik)

2Θk −
1

3
IIΩΘi

)(
(Ωjm)2Γm −

1

3
IIΩΓj

)
(4.84)

(
IV +δij

)
Θj =2

(
ΓkΘi(Ωkj)

2 − 1

3
ΓjΘiIIΩ

)
ξj (4.85)(

ΩikS
+
km(Ω)2

mj

)
Θj =

(
ΩikΓkΘm(Ωjm)2 +ΩijΓmΘk(Ωmk)

2
)
ξj

− 2

3
ΩikΓpξpΘj(Ωkj)

2 (4.86)(
(Ω)2

ikS
+
kmΩmj

)
Θj =−

(
(Ω)2

ikΓkΘm(Ωmj)
2 + (Ω)2

ijΓmΘkΩkm
)
ξj

− 2

3
(Ω)2

ikΓpξpΘjΩkj (4.87)

Introducing the splitting for aij and using the above transformations, we get from Eq. 4.34

Aijξj =− cθa0
ijΘj −

2

3
cθΘi − (2− cθg)Γi (4.88)

where the matrix A is again given by

Aij = Nθδij + cθSSij + cθΩΩij + cθLij (4.89)
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with

Lij = β+
1 L

(1)
ij + β+

3 L
(3)
ij + β+

4 L
(4)
ij + β+

6 L
(6)
ij + β+

9 L
(9)
ij (4.90)

L
(1)
ij = ΓiΘj + IIΘΓδij −

2

3
ΓjΘi (4.91)

L
(3)
ij = 2

(
(Ωik)

2Θk −
1

3
IIΩΘi

)(
(Ωjm)2Γm −

1

3
IIΩΓj

)
(4.92)

L
(4)
ij = ΓiΘkΩjk − ΓmΘkΩkmδij − ΓkΘjΩik − IIΘΓΩij (4.93)

L
(6)
ij = ΓiΘk(Ω)2

jk + ΓkΘm(Ω)2
mkδij + ΓkΘj(Ω)2

ik + IIΩ(Ω)2
ij

− 4

3

(
ΓjΘk(Ω)2

ik + ΓkΘi(Ω)2
kj

)
+

4

9
ΓjΘiIIΩ (4.94)

L
(9)
ij = ΩikΓkΘm(Ωjm)2 +ΩijΓmΘk(Ωmk)

2 + (Ω)2
ikΓkΘm(Ωmj)

2 + (Ω)2
ijΓmΘkΩkm (4.95)

As for the previous two-dimensional case, in order to use results obtained for the passive scalar case,
the matrix Aij is rewritten as:

Aij = Ñθδij +Mij , Mij = cθSSij + cθΩΩij + cθL̃ij (4.96)

The coefficient Ñθ and the traceless matrix L̃ij are defined by :

Ñθ = Nθ −
cθ
3
Lkk , L̃ij = Lij −

1

3
Lkkδij (4.97)

Following [85] for the passive scalar case, the inverted matrix can be obtained as a direct consequence
of the Cayley-Hamilton theorem and reads

A−1
ij =

1

det(A)

((
Ñ2
θ −

IIM
2

)
δij − ÑθM +M2

)
(4.98)

with

det(A) = Ñθ

(
Ñ2
θ −

IIM
2

)
+
IIIM

3
, IIM = tr{M2} , IIIM = tr{M3} (4.99)

The normalized scalar flux then reads

ξi =− cθA−1
ik

(
a0
kj +

2

3
δkj

)
Θj − (2− cθg)A−1

ik Γk (4.100)

4.1.6 The k-ω BSL model for buoyancy flows

In order to close the turbulence model, additional equations are necessary to provide the turbulence
characteristic scales. Following Chapter 2, the BSL k-ω model is used for which the governing
transport equations read as:

dk

dt
= P + G − β∗ωk +

∂

∂xj

[
(ν + σk

k

ω
)
∂k

∂xj

]
(4.101)

dω

dt
=
ω

k
(γP + αG)− βω2 +

∂

∂xj

[
(ν + σω

k

ω
)
∂ω

∂xj

]
+ 2(1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
(4.102)
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We recall that the production terms due to the shear stresses and the buoyancy, denoted by P and
G respectively are expressed as

P = −u′iu′j
∂ui
∂xj

, G = −βθgiu′iθ′ (4.103)

These terms are dependent on the closure of the Reynolds stresses and the turbulent mass flux.
When the k-ω BSL model is coupled with EASFM, the production terms include the explicit
algebraic relationships derived in the previous section.

The model constants σk, γ, α, β, σω and σω2 are defined with the use of a blending function, F1

following Eq. 1.24 by
φ = F1φ1 + (1− F1)φ2 (4.104)

where φ represents the coefficients σk, γ.. in the BSL model and φ1 and φ2 are the respective
coefficients from the k-ω branch and the k-ε branch. An additional coefficient α arises from the
buoyancy contribution in the ω equation. Here, we recall the values of the coefficients for the two
branches:
σk1 = 0.5, γ1 = 5/9, α1 = −1, β1 = 0.0750 and σω1 = 0.5.
σk2 = 1.0, γ2 = 0.44, α2 = 0.44, β2 = 0.0828, and σω2 = 0.856

4.1.7 Transport equation for the scalar variance

The k-ω BSL model for buoyancy flows described in the previous section allows to provide the
turbulence time scale τ = k/ε and, using Eq. 4.19, needs to be complemented by a closed form of
the transport equation Eq. 4.16 the scalar variance 2kθ to provide the remaining scalar turbulence
time scale τθ = kθ/εθ. Following [38, 79] and the same previous methodology to express the
turbulent diffusivity involved in the diffusive turbulent flux, the transport equation for the scalar
variance reads:

dkθ
dt

= Pθ − εθ +
∂

∂xj

[
(κ+

1

σkθ

k

ω
)
∂kθ
∂xj

]
(4.105)

with σkθ = 2. The production term Pθ involves the algebraic expression for the turbulent scalar
flux and reads

Pθ = −u′kθ′
∂θ

∂xk
(4.106)

From Eq. 4.19, the dissipation rate εθ is determined through the algebraic relation

εθ =
kθ
rττ

(4.107)

where the ratio rτ = τθ/τ corresponds to the ratio of the scalar turbulence time scale, τθ = kθ/εθ to
the characteristic eddy turn over time scale τ = k/ε. Following [37, 79], a constant value rτ = 0.55
is specified for the time scale ratio.
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4.1.8 Diffusion correction

Examination of the weak equilibrium assumption for the normalized turbulent heat fluxes was
performed by Vanpouille et al. [78] on the channel flow. The authors reported the failure of the
weak equilibrium assumption specifically in the core of the channel. The diffusion plays a crucial
role in these regions where the production to dissipation ratio is small and consequently a correction
is necessary for considering its effects.

Following [79], we first extend the diffusion correction Eq. 2.52 described in Chapter 2 in the absence
of buoyancy by accounting also for the production arising from the buoyancy term. As a result, the
correction now reads

c′1 = A3 +
CD
A0

max

(
1− P + G

ε
, 0

)
(4.108)

where we use the same value for the constant CD determined in Chapter 2. During the iterative
procedure described in section 4.1.5, the production to dissipation ratio involved in the above
correction uses the analytical solution provided in Chapter 2 for the purely shear two-dimensional
case only at the first iteration while the complete expression is used for subsequent iterations.

Moving to the turbulent scalar flux, the diffusive correction was extended by Högström et al. [26] for
the passive scalar case using the same reasoning. We put to use this correction for the active scalar
case by also considering the buoyancy contribution through the production term G. The proposed
diffusion correction for the turbulent scalar flux follows the methodology described in Chapter 2 for
the anisotropy tensor and, following [26], consists in modeling the missing diffusion term in Eq. 4.22
as

Dθi −
u′iθ
′

2

(D
k

+
Dθ
kθ

)
= −cDθ

√
kθ
k
ξiD (4.109)

As in Chapter 2, the diffusive flux of k is further approximated by assuming the equilibrium relation
that reads here by taking into account the additional production term due to buoyancy, D ' ε−P−G.
This allows to express the right-hand side of Eq. 4.109 as

cDθ

√
kθ
k
ξiD = cDθε

√
kθ
k
ξi

(
1− P + G

ε

)
(4.110)

As a result, the diffusion correction for the turbulent scalar flux consists of replacing the cθ1 coeffi-
cient by c′θ1 with

c′θ1 = cθ1 + cDθ max

(
1− P + G

ε
, 0

)
(4.111)

Here again, as in Chapter 2, the limiter is added to prevent the model from approaching to a
singular behavior for large production to dissipation ratio. Following the methodology described
in Chapter 2 to prescribe CD, the determination of cDθ should require a careful examination of
the resulting eddy diffusivity in some particular situations together with a calibration with some
reference turbulent Schmidt or Prandtl number. In order to exhibit some effective eddy diffusivity
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κt, the turbulent scalar flux is rewritten as

u′iθ
′ =− τkDij

∂θ

∂xj
− τkθ(2− cθg)A−1

ik βθgk

=− τkDll

3

∂θ

∂xi
− τk

(
Dij −

Dll

3
δij

)
∂θ

∂xj
− τkθ(2− cθg)A−1

ik βθgk (4.112)

where Dij is the dispersion tensor defined as

Dij = cθA
−1
ik

(
a0
kj +

2

3
δkj

)
(4.113)

The first term on the right-hand side of Eq. 4.112 corresponds formally to an eddy diffusivity term
that is expressed usually as

u′iθ
′ = − νt

Prt

∂θ

∂xi
(4.114)

Hence, using νt = Cµτk with the commonly assumed value Cµ = 0.09, the turbulent Prandtl
number Prt may identify to

Prt =
3Cµ
Dll

(4.115)

It is beyond the scope of this work to provide a detailed discussion about the resulting effective
turbulent Prandtl number for buoyant flows. Nevertheless, we just provide here a rough estimate
in the passive scalar case that allows to greatly simplify the analysis. In this case, assuming further
cθS = cθΩ = 0, allows to express the turbulent Prandtl number as

Prt =
3CµNθ

2cθ
(4.116)

When the strain rate goes to zero, the model behaves:

Nθ(σ → 0) = (c̃θ1 −
1

2
)

(
r + 1

r

)
, (4.117)

where we have introduced the following expression for the coefficient cθ1 proposed by Wikström [85]:

cθ1 = c̃θ1

(
r + 1

r

)
(4.118)

As a result, using the values c̃θ1 = 1.6 and r = 0.55 proposed in [37, 85] and used in this work leads
to Prt ' 0.4. Hence, as in Chapter 2 without diffusion correction, the resulting effective turbulent
Prandtl number is too small and leads to an overestimation of the eddy diffusivity. Introducing the
diffusion correction and using the commonly adopted value Prt = 0.9 leads to cDθ = 3.567. This
value corresponds roughly to half of that proposed by Högström et al. [26] following a calibration
procedure on the turbulent channel flow case.
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4.2 Validation of EARSM for buoyancy flows

In this section, we evaluate the performance of the developed EASFM model on two test cases.
The values for the coefficients that appear in the model have to be specified. In this preliminary
study, we do not intend to investigate on the model coefficients and consider the values prescribed
by Lazeroms et al. [37]. The corresponding values are reported in Table 4.1.

Cg c̃θ1 cθ2 cθ3 cθ4 cθ5 cθg rτ
0.3 1.6 1 0 0 0.5 0.75 0.55

Table 4.1. Values of model constants. The values of EARSMmodel constants
without scalar transport remain the same as those presented in Chapter 2

The behavior of the model is first assessed on the case of stably stratified homogeneous shear flow at
Richardson numbers Ri = 0, 0.2, 0.25 and 0.3 for a turbulent Reynolds number Ret = 191. We find
that the resulting model is robust and performs well for the current choice of model coefficients which
supports the findings of Lazeroms et al. [37]. It is worth pointing out that performing a calibration
study on the model coefficients will be required for turbulent flows with unstable stratification.
Simulations are performed for the developed flow in a stably stratified turbulent channel at friction
Richardson number’s Riτ = 60, 120 and 480 for friction Reynolds number Reτ = 550. The DNS
results obtained by Garcia-Villalba and Del Alamo [17] is used as the reference for this case.

In the following cases, the velocity field is solved implicitly via a second-order accurate finite-volume
scheme while the time advancement is accomplished by a semi-implicit Crank-Nicolson method.
The numerical scheme used to solve the scalar variables (θ, k and ω) corresponds to a MUSCL-like
approximation. Implementation of the algebraic expressions for both the Reynolds stresses and the
scalar flux follows the same methodology described in Chapter 2 that consist in formulating the
model in terms of an effective eddy diffusivity that is treated implicitly together with an additional
correction that is treated fully explicitly:

u′iu
′
j −

2

3
kδij =− 2νtSij + a

(ex)
ij (4.119)

u′iθ
′ =− κt

∂θ

∂xi
+ u′iθ

′(ex)
(4.120)

where κt refers to the (isotropic) eddy diffusivity defined in the previous section.

We would like to recall that throughout this work, no particular attention towards the near-wall
region has been given. Regardless of this, we obtain good results for the test cases considered.
Improvements in the near-wall performance of the model can be achieved by utilizing wall functions
for both the turbulence model and the coefficients present in the explicit algebraic relations.

4.2.1 Homogeneous mean shear flow

A homogeneous turbulence sustained by a uniform mean shear together with a stable stratification
is one of the simplest shear flows. The physical configuration of which is shown in Figure. 4.1. As
the direct consequence of homogeneity, in the absence of transport Eq 4.101 for the kinetic energy



4.2.1. Homogeneous mean shear flow 87

reduces to an ordinary differential equation

dk

dt
= P + G − ε

where we recall that P is the production due to shear stress, G is the production due to buoyancy
and ε is the dissipation rate.

x

z

y

U = SUz

Figure 4.1. Configuration of homogeneous shear turbulence

Following [37], to assess the validity of the explicit algebraic model, in this test we prescribe uniform
and constant values for both the mean velocity gradient SU = dU/dz and the mean scalar gradient
SΘ = dΘ/dz. The strength of the stratification is usually estimated by the gradient Richardson
number given by

Ri = βθg
dΘ

dz

(
dU

dz

)−2

The case Ri = 0 corresponds to the non-stratified situation for which the buoyancy term G is absent
and the turbulent kinetic energy grows exponentially as the production and dissipation are not
balanced. For non-zero Richardson number, the buoyancy force has a stabilizing effect by damping
turbulence. In this case, the production term due to buoyancy is non-zero resulting in the reduction
of turbulent kinetic energy as the stratification gets stronger. For a particular level of stratification,
the total production balances dissipation allowing the kinetic energy to reach a steady value. Beyond
this level that refers to a critical gradient Richardson number Ric, the effects of stratification are
so strong that turbulence decays.

The model performance above and below the critical gradient Richardson number is assessed here
numerically with a prescribed mean velocity gradient SU and a mean scalar gradient SΘ along
the vertical direction. Four different Richardson numbers, Ri = 0, 0.2, 0.25 and 0.3 are specified
by modifying the value of βθ. The numerical simulations start with an initial turbulent Reynolds
number Ret =

√
2kLt/ν = 191 with Lt = k3/2/ε = 0.63 and the shear number S∗ = SUk/ε is

initially set to 1.

The temporal evolution of the normalized kinetic energy for the four prescribed Richardson numbers
together with the total production to dissipation ratio are plotted in Figure. 4.2. As the strength of
the stratification increases, the term G acts as a destruction term and the ratio (P + G)/ε reduces.
We observe here that for a Richardson number equal to 0.25, a balance between total production
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due to shear and buoyancy and dissipation is nearly recovered together with a non-zero steady state
value for the kinetic energy. Hence, as in [37], the critical Richardson number predicted by the
algebraic model corresponds to the estimate Ric = 0.25 obtained by Miles [49] using linear stability
analysis for stably stratified inviscid shear flows.
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Figure 4.2. Time evolution of the turbulent kinetic energy (left) and the
total production to dissipation ratio (right) for different Richardson numbers.

4.2.2 Fully developed turbulent channel flow

In this section, we move to the fully developed turbulent channel flow with a stable stratification.
The friction Reynolds number is Reτ = 550 and corresponds to the case considered and described
in chapter 2. Assuming that θ plays the role of the temperature, a stable stratification is achieved
by imposing a constant temperature difference between the two walls with the highest temperature
at the top wall. We follow here the same procedure described in chapter 2 to get a fully developed
turbulent flow at a prescribed bulk Reynolds number. We consider three friction Richardson num-
bers corresponding to Riτ = 60, 120 and 480 with Pr = ν/κ = 0.7 and we prescribe here their
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corresponding bulk Reynolds numbers Reb = 11219, 11882 and 14760 according to the DNS data
provided by Garcia-Villalba and Del Alamo [17]. The friction Richardson number is defined by

Riτ =
βθg∆θh

u2
τ

Two-dimensional numerical simulations are performed in a domain [0; 2πδ] × [0; δ] corresponding
to the streamwise and the wall-normal directions respectively. In the streamwise direction, the
meshing is uniform whereas in the wall-normal direction a non-uniform meshing is used according
to the transformation given by Eq 2.55. The numerical parameters follows Section 2.4.1, also given
in Table. 3.2. A no-slip boundary condition is prescribed at the walls. The flow is periodic in
the streamwise direction and a constant mass flow rate is prescribed at a cross-section (as done
previously in Chapters 2 and 3) using the bulk velocity Ub to drive the flow. The results are made
dimensionless using z+ = zuτ/ν, u+ = u/uτ and using the temperature difference between the two
walls ∆θ.

Before moving to the stratified case, we first examine briefly the non-stratified case which was
also investigated by Garcia-Villalba and Del Alamo [17]. The bulk Reynolds number in this case
is Reb = 10140. The non-stratified case corresponds formally to the passive scalar case studied
by Wikström et al. [85] for which the algebraic expression for the Reynolds stresses does not
depend on the turbulent scalar flux and the solution for N and Nθ discussed in section 4.1.5 can
be obtained without any iterative procedure. The mean streamwise velocity and the mean scalar
profiles are reported in figure. 4.3 together with the streamwise and the wall-normal component of
the turbulent scalar flux in figure. 4.4. As reported in [37, 85], without diffusion correction, the
mean scalar profile is overpredicted in the centre of the channel. The use of the diffusion correction
described in section 4.1.8 allows to improve the mean scalar profile and to obtain a similar profile
compared with predictions reported in [37] with a standard eddy diffusivity model. On the other
hand, despite the fact that the streamwise component of turbulent scalar flux is underpredicted,
probably due to the adopted values for the model constants and the lack of a dedicated near-wall
treatment, the values are non-zero and this contrasts to a standard eddy diffusivity model.

We now move to the stratified case by focussing first on the mean streamwise velocity profile. In
figure. 4.5, the mean velocity profile is plotted for the friction Richardson numbers Riτ = 60, 120
and 480. Close to the wall, the mean velocity profiles for the three cases are have a similar velocity
gradients. The flow in this region is least affected by the strength of stratification. An increase in
the Richardson number increases the mean velocity in the core of the channel. This region can be
identified as the region where the turbulent shear stresses are suppressed by the effects of buoyancy.
With an increase in stratification one can see an increase in the centerline velocity. Consequently,
the flow at the center of the channel undergoes relaminarization. There is an underprediction
of the mean velocity at the center of the channel in comparison to the DNS. The benefit in using
diffusion correction appears to be unnecessary and even counter-productive at least for intermediate
Richardson numbers and in the center of the channel. We recall here that the correction described
in section 4.1.8 has been proposed following a straightforward analogy with the unstratified case
presented in Chapter 2 and this would requires a more careful analysis or a Richardson-dependent
diffusion correction coefficient.

The mean temperature profile is also affected by stratification. Close to the wall the temperature
gradient is reduced as Richardson number increases. The mean temperature profile is shown for the
three cases in figure. 4.6. The temperature gradient gets steeper towards the center of the channel
as Riτ increases. Like for the mean velocity profile, the model closeness with DNS is better for
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Figure 4.3. Mean velocity (left) and temperature (right) profiles for the non-
stratified case. The dashed curves represent the DNS of Garcia-Villalba and

Del Alamo [17].
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Figure 4.4. Wall-normal (left) and streamwise (right) component of the
turbulent scalar flux for the non-stratified case. The dashed curves represent

the DNS of Garcia-Villalba and Del Alamo [17].

increased levels of stratification. Here again, the benefit in using diffusion correction appears to be
unnecessary and even counter-productive, especially in the center of the channel where the scalar
gradient is not well predicted.

The kinetic energy profile is plotted in figure. 4.7. The peak of the turbulent kinetic energy is
underpredicted along with the location of the peak, a behavior observed similarly in Chapter 2.
Introducing wall functions will improve the model behavior in this region. The kinetic energy
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Figure 4.5. The mean velocity profile without (left) and with (right) diffusion
correction for the three Richardson numbers. The dashed curves represent the

DNS of Garcia-Villalba and Del Alamo [17].

attains almost a constant value for 0.1 < y/h < 0.5. It can be inferred from figure. 4.8 that the
total production balances dissipation for 0.1 < y/h < 0.5. The kinetic energy is overestimated for
most part of the channel. There is a rapid decrease in the total production to dissipation ratio
towards the center of the channel and has a negative value. This shows the dominant effects of
buoyancy over the usual turbulent behavior of the flow observed for Riτ = 0. Although the profiles
do not match with the DNS [17], the model still captures the pronounced effects that increasing
Riτ has on the flow. This behavior of the model agrees with [37].

4.3 Explicit algebraic hybrid stress and scalar flux model

In Section 3.3, the validity of the weak-equilibrium assumption, in a hybrid RANS/LES framework,
was discussed. The following hypothesis was put forth : if the weak-equilibrium assumption is valid
for subgrid scale closures in LES, as well as at the RANS limit, then it should be valid in between.
When accounting for scalar turbulent fluxes, the same assumption can be made : Eqs.4.23 and 4.24
can be formally applied to the subfilter scales.
As a result, the relationships presented in Sec. 4.1.4 and 4.1.5 can be formally applied in the
framework of seamless hybrid RANS/LES.
In that framework, the subfilter stresses are defined using Eq.3.50 and subfilter scalar fluxes ũ′iθ are
defined as :

ũ′iθ = ξi
√
kskθs (4.121)

where ks is the subfilter turbulent kinetic energy and kθs is the subfilter equivalent of the scalar
variance, rigorously defined as:

kθs = θ̃′θ′

Their transport equations are detailed hereafter. The normalized scalar flux vector ξ is detailed in
Sec.4.3.3, as well as the SFS anisotropic tensor as.
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Figure 4.6. The mean temperature profile without (left) and with (right)
diffusion correction for the three Richardson numbers. The dashed curves

represent the DNS of Garcia-Villalba and Del Alamo [17].

4.3.1 Transport equation for ks and ωs

dks
dt

= Ps + Gs − β∗ωsks +
∂

∂xj

[
(ν + σk

ks
ωs

)
∂ks
∂xj

]
(4.122)

dωs
dt

=
ωs
ks

(γPs + αGs)− βω2
s +

∂

∂xj

[
(ν + σω

ks
ωs

)
∂ωs
∂xj

]
+ 2(1− F1)σω2

1

ωs

∂ks
∂xj

∂ωs
∂xj

(4.123)

As in RANS mode, the production terms due to the shear stresses and the buoyancy, denoted by
Ps and Gs respectively are expressed as

Ps = −τijs
∂ũi
∂xj

, Gs = −βθgiũ′iθ′ (4.124)

All the constants in Eqs.4.122 and 4.123 have the same values as in RANS mode (see Sec.4.1.6).
The function F1 is defined by Eqs.3.33 and 3.34.

4.3.2 Transport equation for kθs

Similar to what is done for ks, one must adapt the sink term in the transport equation for kθs, in
order to account for the cutoff induced by the seamless hybrid RANS/LES.
Applying Equivalent DES to kθs raises the question of a specific energy ratio for scalar turbulence,
that we would call rθ, and that would be defined as :

rθ =
kθs

kθs + kθres
(4.125)

But this would require to build specific subfilter length/time scales. As a consequence, we will use
the dynamic energy ratio r. Yet we assumed, at the RANS level (see Eq. 4.107), that the dissipation
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(right) diffusion correction for the three Richardson numbers. The dashed

curves represent the DNS of Garcia-Villalba and Del Alamo [17].
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of the scalar, εθ is defined such as the ratio between scalar and dynamic eddy turnover time scales,
is an imposed constant, called rτ .
We recall here that, in purely dynamic Equivalent DES, one adds a cœfficient ψ in front of the
subfilter dissipation term, in the transport equation of ks:

ψ = max

(
1;

lS
lLES

)
, (4.126)
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where :

lS =
k

3/2
S

εS
et lLES =

r3/2k
3/2
tot

Ψ(r)εtot
, (4.127)

where Ψ(r) can, for instance, be given by Equation 3.25.
Now, we build a scalar-specific coefficient ψθ, that has to be placed in front of the scalar subfilter
dissipation εθs, in the transport equation of kθs.
A conceptual problem is raised here : it is not always possible to build a length scale with kθ et εθ,
for dimensional reasons. For exemple, if θ is temperature, it is clearly impossible to build a length
scale from kθs and εθs.
Nevertheless, for any kind of scalar, εθs will always have the dimension of kθs divided by time, since
the former is a term of the transport equation of the latter. In other words, for any scalar θ, the
ratio kθs/εθs is a time scale.
Following Tran et al. [76] in the dynamic framework, one can build ψ from the comparison of time
scales, instead of length scales :

ψ = max

(
1;

tS
tLES

)
, (4.128)

with:
tS =

kS
εS

and tLES =
rktot

Ψ(r)εtot
. (4.129)

It is straightforward to build ψθ following the same approach as above.

ψθ = max

(
1;

tθ,S
tθ,LES

)
, (4.130)

with:
tθs =

kθs
εθs

and tθLES =
rkθ,tot

Ψ(r)εθ,tot
. (4.131)

We heuristically assume that Ψ(r) used for ks can be used for scalar turbulence (see Eq. 3.25).
Introducing the scalar to dynamic time ratio:

rτ =
kθ/εθ
k/ε

, (4.132)

and its subfilter counterpart rτ s, one can define tθs and tθLES from dynamic turbulent variables
(assuming εtot ≈ εs):

ψθ = max

(
1;
rτ s
rτ

ks
rktot

Ψ(r)

)
. (4.133)

The subfilter time scale ratio rτ,S may for instance be defined from Jimenez et al. (2015) [30] in the
purely LES framework:

rτ s ≈ Pr (4.134)

or from a blending between rτ and the expression above, using the energy ratio r.

For the scalar we do not perform any blending between two second scales (unlike what we do for
the dynamic subfilter quantities εs and ωs), we simply use the coefficient ψθ defined by Eq. 4.133,
leading to:

dkθs
dt

= Pθs − ψθεθs +
∂

∂xj

[
(ν +

1

σkθ

ks
ωs

)
∂kθs
∂xj

]
(4.135)
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where the subfilter production term Pθs reads

Pθs = −ũ′kθ′
∂θ̃

∂xk
(4.136)

4.3.3 Explicit algebraic coupled subfilter closure

In the general 3D flow case, the algebraic expression for the SFS anisotropic tensor as reads

aijs = β1S̃ij + β3

(
Ω̃ikΩ̃kj −

1

3
IIΩ̃δij

)
+ β4(S̃ikΩ̃kj − Ω̃ikS̃kj)

+ β6

(
S̃ikΩ̃klΩ̃lj + Ω̃ikΩ̃klS̃lj −

2

3
IV δij

)
+ β9

(
Ω̃ikS̃klΩ̃lmΩ̃mj − Ω̃ikΩ̃klS̃lmΩ̃mj

)
+ β+

1 S̃
+
ij + β+

3 IV
+

(
Ω̃ikΩ̃kj −

1

3
IIΩ̃δij

)
+ β+

4 (S̃+
ikΩ̃kj − Ω̃ikS̃+

kj)

+ β+
6

(
S̃+
ikΩ̃klΩ̃lj + Ω̃ikΩ̃klS̃

+
lj −

2

3
IV +δij

)
+ β+

9

(
Ω̃ikS̃

+
klΩ̃lmΩ̃mj − Ω̃ikΩ̃klS̃+

lmΩ̃mj

)
(4.137)

where the βi and the β+
i coefficients are expressed as in Sec.4.1.5. The tensors S̃ and Ω̃ are defined

by Eq.3.55.
The algebraic expression for the SFS scalar flux ξs reads :

ξis =− cθA−1
ik

(
akj

(0)
s +

2

3
δkj

)
Θjs − (2− cθg)A−1

ik Γks (4.138)

where

Γis = τ
kθs
ks
βθgi and Θis = τ

ks
kθs

∂θ̃

∂xi

Globally, the coupling strategy is identical to what is done in RANS mode (see Sec.4.1.5), except
that :

• Averaged quantities are replaced with filtered quantities.

• Closure model variables are replaced with their subfilter scale counterpart.

4.4 Test cases

The behavior of the proposed explicit algebraic hybrid stress and scalar flux model is here assessed
through the same previous test cases addressed in section 4.2 in a RANS framework, namely the
homogeneous shear flow and the fully developed turbulent channel flow both with stable stratifica-
tion. As in section 4.2, a full calibration of the model constants is beyond the scope of this study
and we focus here on a rather qualitative evaluation of the seamless hybrid model by using the set
of model coefficient values given previously.

The numerical simulations are performed using the P2REMICS software. In the following cases, the
velocity field is solved implicitly via a second-order accurate finite-volume scheme on a staggered
mesh while the time advancement is accomplished by a semi-implicit Crank-Nicolson method. This
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results in a discretely energy conserving scheme. The numerical scheme used to solve the scalars
corresponds to a MUSCL like scheme.

4.4.1 Homogeneous mean shear flow

In this section, we investigate the behavior of the explicit algebraic hybrid stress and scalar flux
model in the situation of the homogeneous mean shear flow described previously in section 4.2.1 in
a RANS framework. Compared with the previous RANS simulations for which the integral length
scale or the turbulent kinetic energy can evolve freely, the size L of the computational domain
enforces here upper bounds that correspond to the order of the box size L for the integral length
scale and to the order of SUL for the velocity fluctuations [56]. While this contrasts with unbounded
calculations that use remeshing procedures together with periodic boundary conditions [60], such
a confined configuration exhibits also a violent growth of the kinetic energy during the transient
regime and the subsequent statistically steady state has been extensively studied as it seems to be
representative of some real situations.

Numerical simulations are performed in a box [0, L]3 with L = 2π. This is much larger than the
prescribed initial value for the integral length scale in order to avoid confinement effects during the
transient regime. Following [55], the linear background profiles for the mean velocity and the mean
temperature are imposed by adding respectively forcing terms fUi and fθ to the transport equations
for the resolved velocity and the resolved temperature as

fUi =
SUy − 〈u〉xy

τ
e1 , fθ =

Sθy − 〈θ〉xy
τ

(4.139)

where τ denotes here the forcing time scale usually taken as the time step and the notation 〈·〉xy
refers to the horizontal average. Periodic boundary conditions apply in the horizontal x- and y-
directions while the following boundary conditions apply on the horizontal surfaces:

u = SUz , v = w = 0 , θ = Sθz (4.140)

The initial velocity field is prescribed by using the Random Fourier Method introduced in Chapter
3 with a parameterization of the model energy spectrum that follows the prescribed kinetic energy
and integral length scale given in Section 4.2.1. In the same way, following the procedure described
in 3, the initial values for the subfilter quantities ks and ωs are obtained by running the subfilter
turbulence model until a statistically steady state. Two different equidistant meshes are used,
namely 323 and 643 cells. The time step is specified such that ∆t = 0.5/(NSU ).

The temporal evolution of the normalized kinetic energy k/U2 for three Richardson numbers, Ri = 0,
0.2 and 0.3 is reported in Figure 4.9 for the two mesh resolutions. As in Section 4.2.1, three distinct
regimes are obtained according to the value of the Richardson number. As observed in direct
numerical simulations [29, 55], the case Ri = 0 leads to an initial phase for which kinetic energy
decays, that may result from isotropic initial conditions, followed by an exponential-like growth
and subsequently followed by a statistically steady state regime characterized by large oscillations
in the kinetic energy [56] owing to finite box size effects.Moving to the high Richardson number
case Ri = 0.3 leads as expected to a decay in the kinetic energy. The value found here for the
critical Richardson number Ric ' 0.1 differs substantially from the estimate Ric = 0.25 obtained
through linear inviscid stability analysis [49] and from RANS numerical experiments performed in
Section 4.2.1. On the other hand, this agrees with direct numerical simulation results, for which
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0.04 < Ric < 0.17 for instance in [29], that exhibit a strong dependence of the critical Richardson
number on Reynolds and shear numbers. A detailed discussion about the critical Richardson number
issue is beyond the scope of this work and we will just refer to [29] that suggests that the linear
result of Miles [49] fails to be valid for nonlinearly evolving uniform shear flows.
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Figure 4.9. Time evolution of the turbulent kinetic energy for different
Richardson numbers with N = 32 (solid lines) and N = 64 (dashed lines).

Figure 4.10. Snapshots of the streamwise resolved velocity for N = 32 (left)
and N = 64 (right) for Ri = 0 at SU t = 20.

4.4.2 Fully developed turbulent channel flow

We now investigate in this section the behavior of the seamless hybrid RANS-LES model on the
fully developed turbulent channel flow with a stable stratification described previously in a RANS
framework. The physical description of the test case is not repeated here and we refer to Section
4.2.2. As the friction Reynolds number is Reτ = 550, we adopt here the fine mesh used in Chapter
3 for the same case without stratification and we refer to Section 3.4.2 for more details regarding
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Figure 4.11. Snapshots of the streamwise resolved velocity (top) and the
resolved scalar (bottom) for N = 32 (left) and N = 64 (right) for Ri = 0.1 at

SU t = 20.

numerical settings. We also provide in this section LES results using the WALE model together
with an eddy-diffusivity model that relates the subfilter scalar flux to the resolved scalar gradient
through a turbulent Prandtl number Prt with Prt = 1.

As in Section 3.4.2, the dimensions of the computational domain are [0; 2πδ]× [0;πδ]× [0; 2δ] in the
streamwise, the spanwise and the wall-normal direction, respectively. We acknowledge that this com-
putational domain is small in comparison to the DNS that corresponds to [0; 8πδ]× [0; 3πδ]× [0; 2δ].
Nevertheless, relaminarization that has mainly motivated the use of large computational domains
in [16, 17] has not been observed in our simulations and this greatly reduces the computational cost.
The mesh resolution is recalled in Table 4.2 together with the mesh resolution used in DNS.

As previously performed in the RANS framework in Section 4.2.2, we first examine the non-stratified
case. We focus again on the mean streamwise velocity and the mean scalar profiles that are reported
in figure. 4.12 together with the streamwise and the wall-normal component of the turbulent scalar
flux in figure. 4.13. Contrary to the mean velocity profile that appears to be better reproduced
by the hybrid model as already observed in Chapter 3, the mean scalar profile shows no clear
improvement compared with a simple eddy-diffusivity model. In the same way, the turbulent scalar
fluxes predicted by the models are close to each other and are in a good agreement with DNS results.
However, it must be pointed out that the turbulent scalar flux reported for the hybrid approach
takes into account the modeled part while only the resolved part is reported for the WALE model.
Even if it is premature to conclude, this is probably due to the particular setting of model constants
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Mesh Nx ×Ny ×Nz ∆x+ ∆y+ ∆z+
w - ∆z+

c

fine 69× 86× 156 50 20 0.5 - 15
DNS [17] - 9 4.1 - 6.7

Table 4.2. Stably stratified channel flow simulations at Reτ = 550. Nx, Ny

and Nz are the number of grid points along the streamwise, spanwise and the
wall-normal directions, respectively. ∆x+ and ∆y+ are the grid spacings in
viscous wall units along the streamwise and the spanwise direction, respectively
and ∆z+

w and ∆z+
c are the grid spacing in the wall-normal direction at the wall

and at the channel centerline.

(cθS = cθΩ = 0) that leads to an algebraic subfilter closure that behaves like an eddy-diffusivity
approach in this case.
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Figure 4.12. Mean velocity (left) and temperature (right) profiles for the
non-stratified case. The dashed curves represent the DNS of Garcia-Villalba

and Del Alamo [17].

When moving to the stratified case, the numerical simulation results reported in Figures 4.14-4.16
for the mean streamwise velocity and the mean scalar profiles and in Figure 4.21 for snapshots of
the resolved velocity and the resolved scalar follow the tendencies observed previously in a RANS
framework. The stable stratification leads to a higher velocity in the centre of the channel compared
with the unstratified case due to a damping of the turbulent shear stresses.

From a quantitative point of view, the agreement with DNS reference results [16, 17] is less sat-
isfactory compared with the unstratified case carried out in Chapter 3. The computed friction
Reynolds numbers reported in Table 4.3 reflect this behavior with a mismatch that increases with
the Richardson number.
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turbulent scalar flux for the non-stratified case. The dashed curves represent

the DNS of Garcia-Villalba and Del Alamo [17].

Ri WALE EAHSM DNS

0 573 - 13.4 556 - 14.3 550 - 16.4
60 585 - 7.4 565 - 7.7 550 - 6.9
120 588 - 6.0 568 - 6.3 550 - 5.4
480 608 - 4.3 582 - 4.2 550 - 3.3

Table 4.3. Comparison of the computed friction Reynolds and Nusselt num-
bers Reτ / Nu for the three Richardson numbers.

We observe as previously in the non-stratified case that both the WALE and EAHSM models
produce very similar results and here seem to tend to underestimate turbulence damping in the
centre of the channel while the near-wall behavior is better reproduced. As a result, the mean
stream velocity and the mean scalar gradient in the wall-normal direction are underpredicted in the
core of the channel as illustrated in Figures 4.14-4.16.

Moving to the turbulent kinetic energy and the root-mean-square of the scalar fluctuations that are
shown in Figures 4.17-4.19, both the WALE and EAHSM models tend to underpredict the level
of fluctuations in the channel centre. This discrepancy is probably due to the presence of internal
gravity waves outlined in [16, 17] in the core region of the channel as suggested by the high level of
the root-mean-square of the scalar fluctuations. It appears here premature to identify precisely the
reasons that cause the internal gravity waves to be poorly described for such high stratification lev-
els. Nevertheless, we just mention here that relatively small computational domains may constrain
internal gravity waves [16]. Moreover, it is also important to keep in mind that neither the WALE
model nor the EAHSM model account for internal gravity waves. This calls for further work that
would consist of numerical simulations using larger computational domains and on the interest in
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Figure 4.14. Mean velocity (left) and mean temperature (right) profile -
Ri = 60.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

y/h

U
+

DNS

WALE

EAHSM

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

y/h

Θ

DNS

WALE

EAHSM

Figure 4.15. Mean velocity (left) and mean temperature (right) profile -
Ri = 120.

introducing internal waves modeling in algebraic models (see for instance [81]).

The underestimation of the fluctuations, at high Richardson numbers, is also illustrated by Figure
4.20, that shows target and observed rk, as well as observed scalar variance ratio (as defined by
Eq. 4.125). Both ratios (scalar and kinetic) exhibit bumps near y/h ≈ 0.8 at Ri = 480, which is
consistent with what was said above, about internal gravity waves.
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Figure 4.16. Mean velocity (left) and mean temperature (right) profile -
Ri = 480.
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Figure 4.17. Turbulent kinetic energy (left) and scalar variance (right) profile
- Ri = 60.

4.5 Conclusion

In this chapter we deal with slightly variable density flows for which the Boussinesq approximation
is assumed to be valid. Derivation of the explicit algebraic model for both the Reynolds stresses and
the scalar flux following a direct solution of the implicit algebraic relationship has been presented in
a RANS framework. An efficient iteration solution strategy has been specified to solve the coupled
algebraic expressions. Like in Chapter 2, the BSL model is used to close the turbulence model.
The model behavior is accessed on the homogeneous mean shear flow with the default values for the
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Figure 4.18. Turbulent kinetic energy (left) and scalar variance (right) profile
- Ri = 120.
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Figure 4.19. Turbulent kinetic energy (left) and scalar variance (right) profile
- Ri = 480.

model coefficients. The total production due to shear and buoyancy balances dissipation with a non-
zero steady state value for the kinetic energy for a Richardson number equal to 0.25. This verifies
the correct behavior of the model. Some discrepancies are observed for the mean temperature profile
on the stably stratified turbulent channel.
Following the validation of EARSM for buoyancy flows, the explicit algebraic approach is then
extended to the seamless hybrid RANS-LES framework following the same route as presented in
Chapter 3. The behavior of the proposed explicit algebraic hybrid stress and scalar flux model is
accessed on the same stably stratified cases.



104 Chapter 4. Extension to variable density flows

0 0.2 0.4 0.6 0.8 1
0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

y/h

r

Ri = 60 - rk
Ri = 60 - ro
Ri = 120 - rk
Ri = 120 - ro
Ri = 480 - rk
Ri = 480 - ro

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

y/h

r θ

Ri = 60

Ri = 120

Ri = 480
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Figure 4.21. Instantaneous resolved streamwise velocity (left) and resolved
temperature (right) predicted by the EAHSFM model for the three Richardson

numbers Ri = 60 (top), 120 (middle) and 480 (bottom).
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Chapter 5

General conclusions

The present thesis is a contribution to explicit algebraic models, in the hybrid RANS/LES frame-
work, including passive and active scalar transport.

The development of explicit algebraic Reynolds stress model in a RANS framework has first been
revisited. A direct solution method instead of using a particular tensor basis projection method has
been put to use to arrive at an explicit algebraic relation. However, coupling EARSM with the two-
equation model usually requires a full calibration of the model coefficients. It has been shown that
modifying the diffusion terms in the kinetic energy and specific dissipation rate transport equations
along with the calibration of a coefficient from the parent Reynolds stress model eliminates the need
for a complete recalibration of the coefficients in the platform two-equation model. In the developed
model, no particular treatment of the near wall region has been considered except for the use of a
Kolmogorov limiter in the turbulent time scale. Validation of EARSM has been performed on the
fully developed channel flow and the fully developed flow in a pipe of square cross-section. The
resulting EARSM is able to capture the secondary flow arising due to the presence of the corners
unlike the linear eddy viscosity models.

The next step has been to generalize the obtained EARSM to the seamless hybrid RANS/LES frame-
work. The main concepts of seamless hybrid RANS/LES methods relevant to the present work were
looked upon. Starting from the ks− εs version of E-DES for which the hybrid equivalence has been
provided, the derivation of a ks-ωs based E-DES has been performed. Menter’s blending function
has been used to obtain a E-DES BSL-like model. Presuming the weak-equilibrium assumption to be
verified for the subfilter scales, explicit algebraic closure developed in the previous chapter has been
coupled with the E-DES based on Menter’s BSL-like model, leading to an Explicit Algebraic Hybrid
Stress Model (EAHSM). The calibration of the EAHSM model’s coefficients has been against the
decay of isotropic turbulence. Following which tests zere performed on the fully developed channel
flow and the fully developed flow in a pipe of square cross-section using two grids: fine and coarse.
On coarser grids, EAHSM performs fairly better than the WALE model. It has been observed that
the target and the observed kinetic energy ratio parameters are significantly different, close to the
wall. To circumvent this issue, a low-Reynolds number formulation for the subfilter model and the
explicit algebraic relations could be helpful.

The final challenge of the present work, was to deal with slightly variable density flows for which
the Boussinesq approximation is assumed to be valid. As a first step, the explicit algebraic model
for both the Reynolds stresses and the scalar flux following a direct solution of the implicit algebraic
relationship has been derived in a RANS framework. An efficient iteration solution strategy has
been specified to solve the coupled algebraic expressions. Like in Chapter 2, the BSL model has
been used to close the turbulence model.
The model behavior is assessed on the homogeneous mean shear flow with the default values for the
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model coefficients. The total production due to shear and buoyancy balances dissipation with a non-
zero steady state value for the kinetic energy for a Richardson number equal to 0.25. This verifies
the correct behavior of the model. Some discrepancies are observed for the mean temperature profile
on the stably stratified turbulent channel.
Following the validation of EARSM for buoyancy flows, the explicit algebraic approach has then
been extended to the seamless hybrid RANS-LES framework following the same route as presented
in Chapter 3. The behavior of the proposed explicit algebraic hybrid stress and scalar flux model
is assessed on the same stably stratified cases as in the RANS context.

Eventually, the work presented in this thesis opens the way to further developments that are listed
below:

- The algebraic models studied in this work were used without a dedicated near-wall treatment
except the limiter given by Equation 2.7 for the turbulent time scale. It is expected that
more accurate results can be obtained for wall-bounded flows by using near-wall corrections
in both the RANS and hybrid RANS-LES framework. In the latter case, this could offer the
possibility to use coarser meshes. This could be accomplished by adopting for instance the
near-wall correction proposed in [79] for the platform model together with elliptic blending
approaches for the algebraic turbulent fluxes.

- The EASFM model together with the coupling strategy to solve for the Reynolds-stresses and
the turbulent scalar flux presented in Chapter 3 gives satisfactory results and appears be very
robust using the values prescribed in [37] for the model coefficients. It could be instructive to
perform a sensitivity study on the model coefficients on other situations of interest (unstable
stratification, natural convection) and assess the robustness of the coupling strategy.

- The hybrid seamless RANS-LES calculations have been performed using the rough estimate
provided by the Kolmogorov spectrum and resulting in Equation 3.11 for the kinetic energy
ratio. On the other way, the dissipation term for the subfilter scalar variance transport
equation was assumed to be independant of the cut-off. It could be interesting to study the role
played by the energy spectrum function used to estimate the kinetic energy ratio, especially for
variable density flows, and to study the interest in introducing a cut-off dependence through
an Equivalent-DES like description of the scalar variance dissipation. Another interesting
perspective would be to introduce some limiters for the turbulence length scale involved in
the kinetic energy ratio following similar arguments as proposed for IDDES approaches [66].

- The test cases presented in this work mainly deal with periodic wall-bounded flows for which
turbulence is prescribed at the beginning of the simulation and is then sustained in the near-
wall region. It could be interesting to adapt forcing techniques originally proposed for zonal
hybrid RANS-LES methods to the seamless hybrid RANS-LES approach described in this
work. In this frame, the volumetric forcing proposed in [11] appears to be very attractive. It
could reduce for instance the "log layer mismatch" frequently observed in hybrid RANS-LES
simulations that use very coarse meshes [66] or it could be useful to sustain turbulence for
other situations of interest for which turbulence at boundaries play a major role rather than
at the beginning of the simulation (turbulent jet, . . . ).

- Finally, the algebraic approaches described in this work for incompressible and slightly variable
density flows can be extended following the methodology proposed in [22] and followed in this
work to account for truly variable density flows possibly with significant mean or subfilter
dilatation.
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Appendix A

Transformation of ks-εs to its equivalent
ks-ωs model

The E-DES version of the k-ε model reads:

Dks
Dt

=Ps − ψεs +
∂

∂xj

[
(ν +

νt,s
σk

)
∂ks
∂xj

]
, (A.1)

Dεs
Dt

=
εs
ks

(Cε1Ps − Cε2εs) +
∂

∂xj

[
(ν +

νt,s
σε

)
∂εs
∂xj

]
(A.2)

The relationship between the dissipation rate and the specific dissipation rate is usually given as
ε = β∗ωk in a RANS framework. We assume this relationship to be valid for the subfilter scales:

εs = β∗ωsks (A.3)

with β∗ as the constant of proportionality. Differentiating the above equation with respect to time
leads to:

dεs
dt

= β∗ωs
dks
dt

+ β∗ks
dωs
dt

(A.4)

Inserting equation A.1 and equation A.2 in the above equation leads to:

dωs
dt

=
1

β∗ks

[
β∗ωs (Cε1Ps − Cε2β∗ωsks) +

∂

∂xj

(
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(A.5)

− ωs
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)
∂ks
∂xj

)]
(A.6)

By rearranging the terms, we obtain

dωs
dt

= (Cε1 − 1)
ωs
ks
Ps − β∗(Cε2 − ψ)ω2

s +
1
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[
∂
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(
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(A.7)

− ωs
ks

[
∂

∂xj

(
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∂ks
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)]
(A.8)
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Considering the first diffusive term on the right hand side of the previous equation:
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(A.9)
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The second diffusive term on the right hand side of equation A.7:

I2 =
ωs
ks

[
∂

∂xj

(
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)
∂ks
∂xj

)]
(A.14)

As in the development of the BSL model in [45], we consider σε = σk. This implies that the last
term on the right hand side of equation A.13 and I2 cancel out each other resulting in:

I = I1 − I2 =
∂
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(A.15)

The second term in the right hand side of Eq. A.15 corresponds to the cross-diffusion term. In
a RANS framework, the effects of molecular viscosity in the cross-diffusion term was negligible as
demonstrated in the case of free shear layers by Menter [45]. Similarly, we assume the effects of
molecular viscosity in the cross-diffusion term to be negligible. Substituting νt,s = (ks/ωs) in the
cross-diffusion term of Eq. A.15 leads to:
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(A.16)

By substituting Eq. A.16 into the Eq. A.7, we have the resulting transformed equation. The resulting
ks-ωs model reads
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with the non-dimensional lengthscale ψε given by

ψε = max

(
1;

ls
lLES

)
with ls =

k
1/2
s

β∗ωs
, lLES =

r
3/2
ε Lt
Ψε

(A.19)

Here, the subscript ε symbolizes the transformed E-DES ks-εs model and the turbulent eddy vis-
cosity νt,s is

νt,S =
ks
ωs

(A.20)
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γε = (Cε1ε − 1) , βε = β∗
(
Cε2ε − ψkε

)
, σωε = 0.856, σkε = 1.0 (A.21)

with

Ψε = 1 +

(
Cε2ε
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)(
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Cε2ε
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Appendix B

Random Fourier Modes method

The Random Fourier Modes (RFM) method consists in writing the synthetic fluctuating velocity
as:

u′(~x, t) = 2

N∑
n=1

ûn cos(κn · (~x− uct) + ψn)σn (B.1)

where ûn, ψn and σn correspond respectively to the amplitude, the phase and the direction of
the Fourier mode n associated with the wave vector κn. The convective velocity uc, needs to be
a constant in space to avoid a decorrelation of the velocity field. The wave vector κn is picked
randomly on a sphere of radius κn = |κn| to ensure statistical isotropy. From spherical coordinates
(κn, ϕn, θn), its components are written as:

κn1 =κn sin(θn) cos(ϕn) (B.2)
κn2 =κn sin(θn) sin(ϕn) (B.3)
κn3 =κn cos(θn) (B.4)

where θn, 0 ≤ θn ≤ π and ϕn, 0 ≤ ϕn ≤ 2π are random angles defined for each mode n. Requiring
that the probability of a randomly selected direction of a wave vector to be the same for all dS on
the shell of the sphere of radius κn leads to:

p(κn)dκn =
dS

4πκ2
n

(B.5)

p(θn)dθnp(ϕn)dϕn =
κndθnκn sin(θn)dϕn

4πκ2
n

(B.6)

On the other hand, writing the divergence free condition leads to:

∇ · u′(~x, t) = −2

N∑
n=1

ûn sin(κn · (~x− uct) + ψn)κn · σn (B.7)

This requires the vectors κn and σn to be orthogonal for each mode n. The unit vector σn is then
defined by the random angle αn, 0 ≤ αn ≤ 2π, in the plane (ξn,ηn) as

σn = cos(αn)ξn + sin(αn)ηn (B.8)
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The unit vector ξn can be arbitrarily prescribed such that ξn · κn = 0, for instance

ξn1 = cos(ϕn) cos(θn) (B.9)
ξn2 = sin(ϕn) cos(θn) (B.10)
ξn3 =− sin(θn) (B.11)

Then the unit vector ηn is determined from the cross product ηn = κn × ξn leading to

ηn1 =− sin(ϕn) (B.12)
ηn2 = cos(ϕn) (B.13)
ηn3 =0 (B.14)

As a result, the unit vector σn is given by

σn1 = cos(ϕn) cos(θn) cos(αn)− sin(ϕn) sin(αn) (B.15)
σn2 = sin(ϕn) cos(θn) cos(αn) + cos(ϕn) sin(αn) (B.16)
σn3 =− sin(θn) cos(αn) (B.17)

The probability density functions for the parameters ϕn, θn, αn and ψn are given in Table (B.1).

Pdf Interval
P (ϕn) = 1/(2π) 0 ≤ ϕn ≤ 2π
P (θn) = sin(θn)/2 0 ≤ θn ≤ π
P (αn) = 1/(2π) 0 ≤ αn ≤ 2π
P (ψn) = 1/(2π) 0 ≤ ψn ≤ 2π

Table B.1. Probability density functions for the random variables

Finally, the amplitude ûn is determined from a modeled energy spectrum Es(κ) as follows:

ûn =
√
Es(κn)δκn (B.18)

where δκn denotes the wave number step of the nth Fourier mode in the interval [κ1, κN ].
The smallest wave number κ1 is given by κ1 = fκe where κe denotes the wave number at which the
energy spectrum reaches its maximum and f is a constant which is less than 1. On the other hand,
the highest wave number κN is given by κN = 1.5 maxκc(r). Here, the cut-off wavenumber κc(r) is
given as κc(r) = 2π/(Cg∆), depending on the grid size. The constant Cg depends on the numerical
scheme used. This method employs a set of wave numbers which is fixed in time. The number of
modes is discretised either by using a linear or a logarithmic distribution as attributed below. But
the integration is performed from n = 0 upto n corresponding to κn = κc(r) which varies spatially
so that the number of modes linked to the large-scale structure vary spatially.
For a linear discretization, κn and δκn are simply given by:

δκn =
κN − κ1

N
, κn = κ1 + nδκn (B.19)

A better discretization in the lower wave number range corresponding to the larger energy-containing
eddies can be obtained by using a logarithmic discretization [2]:

δκn =
log(κN )− log(κ1)

N
, κn = exp(log(κ1) + nδκn) (B.20)
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B.1 Model spectrum

Here, the general expression for the energy spectrum to determine Es(κ) is given by:

Es(κ) = Cε2/3κ−5/3fL(κLe)fη(κη) (B.21)

The non-dimensional function fL(κLe) determines the shape of the energy containing scales. This
function corresponds to 1 for κLe → +∞. Here, Le corresponds to the size of the most energy-
containing eddies.
On the other hand, fη(κLη) determines the shape of the dissipation range and it tends to unity for
κLη → 0. Here, η corresponds to the Kolmogorov scales.
In the inertial subrange, both fL(κLe), fη(κLη) → 1 and the original Kolmogorov spectrum is
recovered. Here, the coefficient C is the Kolmogorov constant. The functions fL(κLe) and fη(κLη)
are given by,

fL(κLe) =

[
κLe

((κLe)2 + 1)1/2

] 5
3

+p0

(B.22)

The choice of p0 = 4 corresponds to the Von Kármán Pao spectrum.

fη(κη) = exp
(
−2(κη)2

)
(B.23)

The specification of fη(κLη) is followed as in the work of Laffite et al. [33]. By substituting fL(κLe)
and fη(κLη) in Eq.(B.21), the following model spectrum is obtained.

Es(κ) = Cε2/3κ−5/3 (κLe)
17/3[

((κLe)2 + 1)1/2
]17/6

exp
(
−2(κLη)

2
)

(B.24)

Usually, Le is related to the integral length scale L while Lη refers to the Kolmogorov length scale:

Le = αLL , L =
k3/2

ε
, Lη =

(
ν3

ε

)1/4

(B.25)

The spectrum can be rearranged as follows

Es(κ) = αEkLe
(κLe)

4[
((κLe)2 + 1)1/2

]17/6
exp

(
−2(κLη)

2
)

(B.26)

where αL and αE are constants. The coefficient αE is determined through the definition of the
kinetic energy:

k =

∫ ∞
0

E(κ)dκ (B.27)

Following Lafitte, for small κLη the function fη tends to unity and by introducing the change of
variables y = (κLe)

2 one obtains

k =
αE
2
k

∫ ∞
0

y3/2

[1 + y]17/6
dy (B.28)

As a result we get

αE =
2

3

55

9
√
π

Γ(5/6)

Γ(1/3)
(B.29)
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On the other hand, the coefficient αL can be found from the integral length scale definition for
isotropic turbulence

4

3π
kL =

∫ ∞
0

Es(κ)

κ
dκ (B.30)

Neglecting again the function fη and using the same change of variables, one gets

αL =
Γ(1/3)√
πΓ(5/6)

(B.31)

B.2 Model spectrum for the decay of isotropic turbulence

The above energy spectrum is utilized for the initialization of the synthetic fluctuating field for
both the fully developed channel flow and the fully developed flow in a square pipe. Meanwhile,
the energy spectrum used for calibrating the model coefficient on the decay of isotropic turbulence
is as follows:

Es(κ) =Cκε
2/3κ−5/3

[
κLe

[(κLe)α2 + α1]1/α2

] 5
3

+α3

exp−α4κη

[
1 + α5

(
1

π
arctan (α6 log10(κη) + α7) +

1

2

)]
(B.32)

with the value of the parameters: Cκ = 1.613, α1 = 0.39, α2 = 1.2, α3 = 4.0, α4 = 2.1, α5 = 0.522,
α6 = 10.0 and α7 = 12.58. This energy spectrum corresponds to the three-dimensional spectrum
provided in [32]. These values for the parameters has been found in [32] through the comparison of
the spectrum with the measured experimental data.



115

Bibliography

[1] C Dennis Barley et al. “Analysis of buoyancy-driven ventilation of hydrogen from buildings”.
In: International Conference on Hydrogen Safety, San Sebastian. 2007.

[2] W. Béchara, C. Bailly, and P. Lafon. “Stochastic approach to noise modeling for free turbulent
flows”. In: AIAA Journal 32.3 (1994), pp. 455–463.

[3] Ahmed Bentaib, Nicolas Meynet, and Alexandre Bleyer. “ISP-49 on Hydrogen Combustion.”
In: NEA/CSNI/R(2011) 9 (2011).

[4] Ahmed Bentaib, Nicolas Meynet, and Alexandre Bleyer. “Overview on hydrogen risk research
and development activities: methodology and open issues”. In: Nuclear Engineering and Tech-
nology 47.1 (2015), pp. 26–32.

[5] Ahmed Bentaib, Nicolas Meynet, and Alexandre Bleyer. Research and development with regard
to severe accidents in pressurised water reactors: Summary and outlook. 2017.

[6] JR Carlson et al. “Computation of turbulent wake flows in variable pressure gradient”. In:
Computers & fluids 30.2 (2001), pp. 161–187.

[7] René-Daniel Cécora et al. “Differential Reynolds-stress modeling for aeronautics”. In: AIAA
Journal 53.3 (2014), pp. 739–755.

[8] Bruno Chaouat. “The state of the art of hybrid RANS/LES modeling for the simulation of
turbulent flows”. In: Flow, Turbulence and Combustion 99.2 (2017), pp. 279–327.

[9] G. Comte-Bellot and S. Corrsin. “Simple Eulerian time correlation of full-and narrow-band
velocity signals in grid-generated, "isotropic" turbulence”. In: Journal of Fluid Mechanics 48.2
(1971), pp. 273–337.

[10] Lars Davidson and Shia-Hui Peng. “Hybrid LES-RANS modelling: a one-equation SGS model
combined with a k-ω model for predicting recirculating flows”. In: International Journal for
Numerical Methods in Fluids 43.9 (2003), pp. 1003–1018.

[11] B. De Laage De Meux. “B. Modélisation des écoulements turbulents en rotation et en présence
de transferts thermiques par approche hybride RANS/LES zonale”. PhD thesis. PhD thesis,
2012.

[12] PA Durbin. “Application of a near-wall turbulence model to boundary layers and heat trans-
fer”. In: International Journal of Heat and Fluid Flow 14.4 (1993), pp. 316–323.

[13] Atabak Fadai-Ghotbi et al. “A seamless hybrid RANS-LES model based on transport equa-
tions for the subgrid stresses and elliptic blending”. In: Physics of Fluids 22.5 (2010), p. 055104.

[14] C Friess, R Manceau, and TB Gatski. “Toward an equivalence criterion for hybrid RANS/LES
methods”. In: Computers & Fluids 122 (2015), pp. 233–246.

[15] Jochen Fröhlich and Dominic Von Terzi. “Hybrid LES/RANS methods for the simulation of
turbulent flows”. In: Progress in Aerospace Sciences 44.5 (2008), pp. 349–377.

[16] Manuel García-Villalba and Juan C del Álamo. “Turbulence and internal waves in a stably-
stratified channel flow”. In: High Performance Computing in Science and Engineering’08.
Springer, 2009, pp. 217–227.

[17] Manuel Garcia-Villalba and Juan C Del Alamo. “Turbulence modification by stable stratifi-
cation in channel flow”. In: Physics of Fluids 23.4 (2011), p. 045104.



116 BIBLIOGRAPHY

[18] TB Gatski and T Jongen. “Nonlinear eddy viscosity and algebraic stress models for solving
complex turbulent flows”. In: Progress in Aerospace Sciences 36.8 (2000), pp. 655–682.

[19] Thomas B Gatski and Charles G Speziale. “On explicit algebraic stress models for complex
turbulent flows”. In: Journal of fluid Mechanics 254 (1993), pp. 59–78.

[20] Sharath S Girimaji. “Partially-averaged Navier-Stokes model for turbulence: A Reynolds-
averaged Navier-Stokes to direct numerical simulation bridging method”. In: Journal of Ap-
plied Mechanics 73.3 (2006), pp. 413–421.

[21] Sharath S Girimaji, Eunhwan Jeong, and Ravi Srinivasan. “Partially averaged Navier-Stokes
method for turbulence: Fixed point analysis and comparison with unsteady partially averaged
Navier-Stokes”. In: Journal of Applied Mechanics 73.3 (2006), pp. 422–429.

[22] I.A. Grigoriev et al. “Capturing turbulent density flux effects in variable density flow by an
explicit algebraic model”. In: Physics of Fluids 27 (2015).

[23] Antti Hellsten. “Some improvements in Menter’s k-omega SST turbulence model”. In: 29th
AIAA, Fluid Dynamics Conference. 1998, p. 2554.

[24] Antti Hellsten and Seppo Laine. “Explicit algebraic Reynolds-stress modelling in decelerating
and separating flows”. In: Fluids 2000 Conference and Exhibit. 2000, p. 2313.

[25] Antti Hellsten et al. New Two-equation Turbulence Model for Aerodymamics Applications.
Helsinki University of Technology, 2004.

[26] Carl-Maikel Hogstrom, Stefan Wallin, and Arne V Johansson. “Passive scalar flux modelling
for CFD”. In: TSFP DIGITAL LIBRARY ONLINE. Begel House Inc. 2001.

[27] Asmund Huser and Sedat Biringen. “Direct numerical simulation of turbulent flow in a square
duct”. In: Journal of Fluid Mechanics 257 (1993), pp. 65–95.

[28] Werner M.J. Lazeroms. Igor A. Grigoriev. “Direct solution for the anisotropy tensor in explicit
algebraic Reynolds stress models.” In: Methodological Note (2015), pp. 191–200.

[29] Frank G Jacobitz, Sutanu Sarkar, and Charles W Van Atta. “Direct numerical simulations
of the turbulence evolution in a uniformly sheared and stably stratified flow”. In: Journal of
Fluid Mechanics 342 (1997), pp. 231–261.

[30] C Jiménez et al. “Subgrid scale variance and dissipation of a scalar field in large eddy simu-
lations”. In: Physics of Fluids 13.6 (2001), pp. 1748–1754.

[31] Adam Jir-Uuml et al. “Computational study of the high-lift A-airfoil”. In: Journal of aircraft
38.4 (2001), pp. 769–772.

[32] Hyung Suk Kang, Stuart Chester, and Charles Meneveau. “Decaying turbulence in an active-
grid-generated flow and comparisons with large-eddy simulation”. In: Journal of Fluid Me-
chanics 480 (2003), pp. 129–160.

[33] Bailly C. Laurendeau E. Lafitte A. Le Garrec T. “Turbulence Generation from a Sweeping-
Based Stochastic Model.” In: AIAA Journal 52.2 (2014).

[34] BE Launder. “On the effects of a gravitational field on the turbulent transport of heat and
momentum”. In: Journal of Fluid Mechanics 67.3 (1975), pp. 569–581.

[35] Brian Edward Launder, G Jr Reece, and W Rodi. “Progress in the development of a Reynolds-
stress turbulence closure”. In: Journal of fluid mechanics 68.3 (1975), pp. 537–566.

[36] Brian Edward Launder and BI Sharma. “Application of the energy-dissipation model of tur-
bulence to the calculation of flow near a spinning disc”. In: Letters in heat and mass transfer
1.2 (1974), pp. 131–137.

[37] WMJ Lazeroms et al. “An explicit algebraic Reynolds-stress and scalar-flux model for stably
stratified flows”. In: Journal of Fluid Mechanics 723 (2013), pp. 91–125.

[38] WMJ Lazeroms et al. “Efficient treatment of the nonlinear features in algebraic Reynolds-
stress and heat-flux models for stratified and convective flows”. In: International Journal of
Heat and Fluid Flow 53 (2015), pp. 15–28.



BIBLIOGRAPHY 117

[39] Myoungkyu Lee and Robert D Moser. “Direct numerical simulation of turbulent channel flow
up to Reτ ≈ 5200”. In: Journal of Fluid Mechanics 774 (2015), pp. 395–415.

[40] L Lorentzen and I Lindblad. “Application of two-equation and EARSM turbulence models to
high lift aerodynamics”. In: 17th Applied Aerodynamics Conference. 1999, p. 3181.

[41] Linus Marstorp et al. “Explicit algebraic subgrid stress models with application to rotating
channel flow”. In: Journal of Fluid Mechanics 639 (2009), pp. 403–432.

[42] Florian Menter, Martin Kuntz, and Roland Bender. “A scale-adaptive simulation model for
turbulent flow predictions”. In: 41st aerospace sciences meeting and exhibit. 2003, p. 767.

[43] Florian R Menter. “Influence of freestream values on k-omega turbulence model predictions”.
In: AIAA journal 30.6 (1992), pp. 1657–1659.

[44] Florian R Menter. “Two-equation eddy-viscosity turbulence models for engineering applica-
tions”. In: AIAA journal 32.8 (1994), pp. 1598–1605.

[45] Florian R Menter. “Zonal two equation kw turbulence models for aerodynamic flows”. In: 23rd
fluid dynamics, plasma dynamics, and lasers conference. 1993, p. 2906.

[46] FR Menter. “Influence of freestream values on k-omega turbulence model predictions”. In:
AIAA journal 30.6 (1992), pp. 1657–1659.

[47] FR Menter, AV Garbaruk, and Y Egorov. “Explicit algebraic Reynolds stress models for
anisotropic wall-bounded flows”. In: Progress in Flight Physics 3 (2012), pp. 89–104.

[48] FR Menter and M Kuntz. “Adaptation of eddy-viscosity turbulence models to unsteady sepa-
rated flow behind vehicles”. In: The aerodynamics of heavy vehicles: trucks, buses, and trains.
Springer, 2004, pp. 339–352.

[49] John W Miles. “On the stability of heterogeneous shear flows”. In: Journal of Fluid Mechanics
10.4 (1961), pp. 496–508.

[50] Matteo Montecchia et al. “Taking large-eddy simulation of wall-bounded flows to higher
Reynolds numbers by use of anisotropy-resolving subgrid models”. In: Physical Review Fluids
2.3 (2017), p. 034601.

[51] Robert D Moser, John Kim, and Nagi N Mansour. “Direct numerical simulation of turbulent
channel flow up to Reτ = 590”. In: Physics of fluids 11.4 (1999), pp. 943–945.

[52] Franck Nicoud and Frédéric Ducros. “Subgrid-scale stress modelling based on the square of
the velocity gradient tensor”. In: Flow, turbulence and Combustion 62.3 (1999), pp. 183–200.

[53] S.B. Pope. “A more general effective-viscosity hypothesis”. In: Journal of Fluid Mechanics 72
(02 1975), pp. 331–340.

[54] Stephen B Pope. Turbulent flows. IOP Publishing, 2001.
[55] Vincent Prat et al. “Shear mixing in stellar radiative zones-II. Robustness of numerical simu-

lations”. In: Astronomy & Astrophysics 592 (2016), A59.
[56] A. Pumir. “Turbulence in homogeneous shear flows”. In: Physics of Fluids 8.11 (1996), pp. 3112–

3127.
[57] J-F Qiu, S Obi, and TB Gatski. “Evaluation of extended weak-equilibrium conditions for fully

developed rotating channel flow”. In: Flow, Turbulence and Combustion 80.4 (2008), pp. 435–
454.

[58] Osborne Reynolds. “On the dynamical theory of incompressible viscous fluids and the deter-
mination of the criterion”. In: Philosophical Transactions of the Royal Society of London. A
186 (1895), pp. 123–164.

[59] W. Rodi. “A new algebraic relation for calculating Reynolds stressese”. In: Z. Angew. Math.
Mechs 56 (1976), pp. 219–221.

[60] Michael M Rogers and Parviz Moin. “The structure of the vorticity field in homogeneous
turbulent flows”. In: Journal of Fluid Mechanics 176 (1987), pp. 33–66.

[61] T Rung et al. “Turbulence closure model constraint derived from stress-induced secondary
flow”. In: AIAA journal 38.9 (2000), pp. 1756–1758.



118 BIBLIOGRAPHY

[62] Pierre Sagaut. Large eddy simulation for incompressible flows: an introduction. Springer Sci-
ence & Business Media, 2006.

[63] Pierre Sagaut. Multiscale and multiresolution approaches in turbulence: LES, DES and hybrid
RANS/LES methods: applications and guidelines. World Scientific, 2013.

[64] Roland Schiestel and Anne Dejoan. “Towards a new partially integrated transport model for
coarse grid and unsteady turbulent flow simulations”. In: Theoretical and Computational Fluid
Dynamics 18.6 (2005), pp. 443–468.

[65] M Shur et al. “Detached-eddy simulation of an airfoil at high angle of attack”. In: Engineering
Turbulence Modelling and Experiments 4. Elsevier, 1999, pp. 669–678.

[66] Mikhail L Shur et al. “A hybrid RANS-LES approach with delayed-DES and wall-modelled
LES capabilities”. In: International Journal of Heat and Fluid Flow 29.6 (2008), pp. 1638–
1649.

[67] Joseph Smagorinsky. “General circulation experiments with the primitive equations: I. The
basic experiment”. In: Monthly weather review 91.3 (1963), pp. 99–164.

[68] Philippe R Spalart. “Comments on the feasibility of LES for wings, and on a hybrid RANS/LES
approach”. In: Proceedings of first AFOSR international conference on DNS/LES. Greyden
Press. 1997.

[69] PRaA Spalart and S1 Allmaras. “A one-equation turbulence model for aerodynamic flows”.
In: 30th aerospace sciences meeting and exhibit. 1992, p. 439.

[70] Charles G Speziale, Sutanu Sarkar, and Thomas B Gatski. “Modelling the pressure–strain
correlation of turbulence: an invariant dynamical systems approach”. In: Journal of fluid me-
chanics 227 (1991), pp. 245–272.

[71] M Strelets. “Detached eddy simulation of massively separated flows”. In: 39th Aerospace sci-
ences meeting and exhibit. 2001, p. 879.

[72] Chenglong Tang et al. “Explosion characteristics of hydrogen–nitrogen–air mixtures at ele-
vated pressures and temperatures”. In: international journal of hydrogen energy 34.1 (2009),
pp. 554–561.

[73] Dale B Taulbee. “An improved algebraic Reynolds stress model and corresponding nonlinear
stress model”. In: Physics of Fluids A: Fluid Dynamics 4.11 (1992), pp. 2555–2561.

[74] Nils Temme, Martin Niemann, and Jochen Fröhlich. “Comparison of isotropic and anisotropic
subgrid scale models in Large Eddy Simulations of a backward-facing step and square duct
flow”. In: PAMM 16.1 (2016), pp. 585–586.

[75] Hendrik Tennekes, John Leask Lumley, JL Lumley, et al. A first course in turbulence. MIT
press, 1972.

[76] TT Tran et al. “A hybrid temporal LES approach. Application to flows around rectangu-
lar cylinders”. In: Proceedings of 9th ERCOFTAC International Symposium on Engineering
Turbulence Modelling and Measurements, Thessaloniki, Greece. 2012.

[77] Paul G Tucker and Lars Davidson. “Zonal k–l based large eddy simulations”. In: Computers
& Fluids 33.2 (2004), pp. 267–287.

[78] D Vanpouille, B Aupoix, and E Laroche. “Development of an explicit algebraic turbulence
model for buoyant flows–Part 1: DNS analysis”. In: International Journal of Heat and Fluid
Flow 43 (2013), pp. 170–183.

[79] David Vanpouille. “Développement de modèles de turbulence adaptés à la simulation des
écoulements de convection naturelle à haut nombre de Rayleigh”. PhD thesis. Toulouse, ISAE,
2013.

[80] AG Venetsanos et al. “Source, dispersion and combustion modelling of an accidental release
of hydrogen in an urban environment”. In: Journal of hazardous materials 105.1-3 (2003),
pp. 1–25.



BIBLIOGRAPHY 119

[81] D Violeau. “Explicit algebraic Reynolds stresses and scalar fluxes for density-stratified shear
flows”. In: Physics of fluids 21.3 (2009), p. 035103.

[82] Stefan Wallin and Arne V Johansson. “An explicit algebraic Reynolds stress model for in-
compressible and compressible turbulent flows”. In: Journal of Fluid Mechanics 403 (2000),
pp. 89–132.

[83] Jack Weatheritt and Richard D Sandberg. “Hybrid Reynolds-Averaged/Large-Eddy Simula-
tion Methodology from Symbolic Regression: Formulation and Application”. In: AIAA Journal
(2017), pp. 3734–3746.

[84] M Weinmann, RD Sandberg, and C Doolan. “Tandem cylinder flow and noise predictions
using a hybrid RANS/LES approach”. In: International Journal of Heat and Fluid Flow 50
(2014), pp. 263–278.

[85] P.M. Wikström, S. Wallin, and A.V. Johansson. “Derivation and investigation of a new explicit
algebraic model for the passive scalar flux”. In: Physics of Fluids 12.3 (2000), pp. 688–702.

[86] D. C. Wilcox. “Formulation of the k − ω turbulence model revisited.” In: American Institute
of Aeronautics and Astronautics Journal 46.11 (2008), pp. 2823–2838.

[87] David C Wilcox. “Reassessment of the scale-determining equation for advanced turbulence
models”. In: AIAA journal 26.11 (1988), pp. 1299–1310.

[88] David C Wilcox et al. Turbulence modeling for CFD. Vol. 2. DCW industries La Canada, CA,
1998.

[89] Hao Zhang et al. “Direct numerical simulation of a fully developed turbulent square duct flow
up to Reτ= 1200”. In: International Journal of Heat and Fluid Flow 54 (2015), pp. 258–267.


	Résumé en français : Modélisation de sous-filtre algébrique explicite pour des méthodes de type DES et extension aux écoulements à masse volumique variable
	Contexte et objectifs
	Modélisation RANS et fermeture algébrique des flux turbulents
	Ecoulements incompressibles
	Extension au cas des écoulements à masse volumique variable

	Modélisation hybride RANS/LES et fermeture algébrique des tensions de sous-filtre et du flux de masse de sous-filtre
	DES équivalente
	Fermeture algébrique en contexte hybride RANS/LES
	Cas général
	Cas avec scalaire



	Introduction and Preliminaries
	Hydrogen hazard and the need of reliable CFD tools
	Governing Equations and turbulence modeling approaches
	Statistical modeling: Reynolds Averaged Navier-Stokes
	Boussinesq hypothesis
	Reynolds stress models
	Non linear Eddy viscosity models

	Scale resolving simulation models
	Large Eddy Simulation
	Hybrid RANS/LES methods

	Thesis Outline

	Explicit Algebraic Reynolds Stress Modeling
	Transport equation for the Normalized Reynolds stresses 
	Weak Equilibrium assumption 
	Development of EARSM 
	Explicit algebraic relation
	The k- BSL-EARSM model
	Calibration of the c2 coefficient
	Diffusion correction

	Validation of EARSM 
	Fully developed turbulent Channel flow 
	Fully developed turbulent flow in a Square pipe 

	Conclusion 

	Explicit algebraic subfilter closure for seamless hybrid RANS-LES methods
	Seamless Hybrid RANS/LES methods
	Detached Eddy Simulation
	Partially Integrated Transport Model
	Energy partition as a function of the cutoff

	Equivalent-Detached Eddy Simulation

	BSL-like model in E-DES framework
	 The ks-s branch
	 The ks-s branch
	 E-DES based on Menter's BSL-like model
	Complete model


	Explicit algebraic hybrid stress model
	Test Cases
	Calibration on the decay of isotropic turbulence
	Fully developed turbulent Channel flow
	Fully developed turbulent flow in a Square Pipe

	Conclusion

	Extension to variable density flows
	Explicit algebraic Reynolds-stress and scalar flux model
	Transport equation for the turbulent fluxes
	Transport equation for the dimensionless turbulent fluxes
	Weak equilibrium assumptions
	Coupled explicit algebraic relations
	Coupling strategy
	The k- BSL model for buoyancy flows
	Transport equation for the scalar variance
	Diffusion correction

	Validation of EARSM for buoyancy flows
	Homogeneous mean shear flow
	Fully developed turbulent channel flow

	Explicit algebraic hybrid stress and scalar flux model
	Transport equation for ks and s
	Transport equation for ks
	Explicit algebraic coupled subfilter closure

	Test cases
	Homogeneous mean shear flow
	Fully developed turbulent channel flow

	Conclusion

	General conclusions
	Transformation of ks-s to its equivalent ks-s model
	Random Fourier Modes method
	Model spectrum
	Model spectrum for the decay of isotropic turbulence


