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ABSTRACT 
 
The revision of the 10 CFR50.46 in 1988 has made possible the use of best-estimate (BE) codes 
in safety demonstration and licensing, provided that uncertainties are added to the relevant output 
parameters before comparing them with the acceptance criteria. In the safety analysis of the large 
break loss of coolant accident, for a BE analysis, it was agreed that the 95th percentile estimated 
with a high degree of confidence should be lower than the acceptance criteria. It appeared 
necessary to IRSN, technical support of the French Safety Authority, to get more insight into 
these strategies.  
 
The application of the BE plus uncertainty analysis can be made in three steps in a statistical 
evaluation:  - The definition and the evaluation of uncertainties of the input parameters; 

- The modelling and understanding of the output parameters; 
- The evaluation of the 95th percentile with a high degree of confidence. 

 
As a general rule the global sensitivity analysis (GSA) is done with linear correlation 
coefficients. This paper presents a new approach to perform a more accurate GSA to determine 
and to classify the main input parameters. Such information is difficult to obtain directly by 
Monte-Carlo methodologies using the thermal-hydraulic code, because it is rather time-
consuming. Therefore, it is natural to replace it with a simpler model called a surrogate model 
too. We suggest Kriging methodology for its construction and the SOBOL methodology for the 
GSA. 
 
The paper presents the application of the previously described methodology on the LOFT (Loss-
of-Fluid Test) loss of coolant experiment L2-5 which simulated a double-ended offset shear of a 
cold leg in the primary coolant system. LOFT L2-5 has been the subject of the BEMUSE 
international problem. The output is the first maximum Peak Cladding Temperature of the fuel. 
The best estimate code used is CATHARE2 V2.5. 
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1 INTRODUCTION 
 
The methods using best estimate codes, associated with an evaluation of uncertainties related to 
the relevant output parameters, will be used much more than ever in safety demonstration for 
nuclear power plants (NPP). In order to develop a method of uncertainty propagation and to get 
more insight to these methodologies, IRSN chose, in a first step, to apply it to the calculation of 
the LOFT L2.5 experiment (simulation of a double-ended offset shear of a cold leg in the 
primary coolant system). In our study, we will be mainly focusing on the relevant output 
parameter which corresponds to the first maximum peak cladding temperature (PCT) of the fuel 
during the transient.  
 
In order to evaluate the PCT, we use the best-estimate code CATHARE2 V2.5, a thermal 
hydraulics code developed by CEA, IRSN, EDF and FAMATOME for PWR safety analysis. The 
PCT depends on 42 input parameters whose uncertainties have been estimated by the IRSN and 
CEA experts in thermal hydraulics. In this paper, we try to quantify the influence of each 
uncertain input parameter on the response variability of the numerical model with a global 
sensitivity analysis (SA). Global SA focuses on the output uncertainty over the entire range of 
variations of the input parameters. We propose the famous and powerful Sobol' approach, which 
is a variance-based method, to evaluate how the variance of an input contributes into the variance 
of output. 
 
Toward the objective of assessing uncertainty, it is useful to further analyse the PCT. For 
instance, one would like to trace the sensitivity of the PCT to each input parameter, or to 
determine the situations that result in high temperatures. Such information is difficult to obtain 
using the CATHARE code, because it is quite time-consuming and too time expensive to apply 
directly the global SA methods. Therefore, it is natural to replace the complex computer code 
CATHARE by an approximate mathematical model, called response surface or surrogate model. 
The response surface method is used to build a function which simulates the behaviour of a 
physical or chemical phenomenon, starting from a certain number of experiments and in our case 
for computer case.  
 
This function must be as representative as possible of the computer code, with good prediction 
capabilities and must require a negligible calculation time. Several response surfaces are 
classically used: polynomials, splines, neural networks, kriging,... We propose in this paper the 
kriging approach for the construction of response surface. 
 
This paper is organized as follows. In section 2, we present the approaches for the construction 
of response surfaces and for the sensitivity analysis, and apply them to the modelling of the PCT. 
Results are presented in section 3. Finally, concluding remarks in section 4. 
 
 
2 MODEL FOR THE CONSTRUCTION OF RESPONSE SURFACES 
 
For this section, we will assume that we have obtained the outputs of n runs by the CATHARE 
code. Each run corresponds to a vector of some input parameters values x1,…,xk. We call that 
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vector a point and we denote it by a bold letter x =  (x1,…,xk). The n points corresponding to the 
runs are called an experimental design and will be denoted (x(1),…,x(n)). The CATHARE code 
can be viewed as a function ysim. Denote y(1),…,y(n) the outputs corresponding to the runs: 
y(i) =  ysim(x(i)), i=1,2,…,n. Since we cannot use directly the costly function ysim, we want to use 
the knowledge that we get at (x(1),…,x(n)) to model it the most accurately as possible. This 
problem can be addressed in using an interpolation technique: the kriging method. 
 

2.1 Experimental design 
 
The quality of the response surfaces depends on the choice of the experimental design. This 
explains why there is a huge literature on the topic, mostly devoted to physical experiments. The 
specificities of computer experiments have led to new designs, named Latin hypercube designs 
[3], that ensure little redundancy of design points when some of the input parameters have a 
small effect on the output. Some of them have, in addition, good optimality and orthogonallity 
properties. The optimality property guarantees the estimation quality, and the orthogonallity 
property ensures that the effects of input parameters are distinguishable. For instance, Butler [1] 
shows how to construct Latin hypercube designs with good properties when the model is a 
second order polynomial linear regression (this assumption is currently done by statisticians). 
However, we do not know a similar construction for kriging. We have decided to use the Latin 
hypercube design suggested by Butler [1]. Even if we have no idea about optimality and 
orthogonallity in the kriging case, the results obtained with this design are encouraging. 
 

2.2 Interpolation model: kriging 
 
Doing computer simulations is very different than doing a physical experiment. Firstly, the 
repetition of a computer experiment should always give, theoretically, the same result. In 
addition, the simulator solves some differential equations, and may deduce the value at a point in 
the factors domain from neighbouring values. Therefore, high spatial correlation is expected 
between two near points. These two characteristics have led to the introduction in the 90’s of 
another model with interpolation and spatial correlation properties [4], [5]. Actually, this model 
was initially introduced in dimension 3 in geostatistics by Krige, and is known since as kriging 
model. It can be written as: 
 

( ) ( ) ( )
sim( ) ( ) ( )i i i

h h
h

y f Zβ= +∑x x x ,  1,2,...,i n=  (1) 

 
The mathematical expression is not so far from linear regression, but assumptions on errors are 
very different: Z(x) is a centred (Gaussian) stationary stochastic process with “distance”-
decreasing correlation function. It means that the correlation between Z(x) and Z(y) is a 
decreasing function of the “distance” between x and y. In this paper, we will use the power 
exponential covariance structure, given by: 
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where: 

θ1,…,θk are positive real numbers. 
p1,…,pk are positive real numbers lower or equal to 2 (this condition ensures that all 
covariance matrices are definite positive).  

 
In this modelling, the simulator can be viewed as a particular (deterministic) path of the process. 
Its shape and regularity depend on the parameters of the covariance structure. More precisely the 
θh’s are spatial frequency parameters: a small value in a direction is synonym with low 
frequency. The ph’s are regularity parameters. The nearer ph is to 2, the smoother the response 
surface is. To illustrate this fact, we have drawn in Figure 1 below the paths corresponding to 
three different values of p in dimension 1 (k = 1). In practise, all these parameters are unknown; 
they are estimated by maximizing the model likelihood with simulated annealing method. 
 
Finally, the functions fh’s have to be chosen. But with this model, it seems that the assumptions 
on the correlation structure are “so powerful” that we can choose a constant [2]. Thus, we have 
decided to use the model (3): 
 

( ) ( )
sim( ) ( )i iy Zµ= +x x  (3) 

 

2.3 Optimization: simulated annealing 
 
Simulated annealing [6] found its origins in thermodynamics. This method results from an 
analogy between the physical phenomena of slow cooling of a body in fusion, which leads it to a 
solid state, of low energy. The temperature should be lowered slowly, by marking sufficiently 
long stages so that the body reaches “thermodynamic balance” with each stage of temperature. 
For materials, this low energy appears by obtaining a regular structure, as in the crystals and 
steel. 
 
The analogy exploited by simulated annealing is considering a function f to be minimized like 
function of energy, and a solution x can be regarded as a given state of the matter whose energy 
is f(x). Simulated annealing generally exploits the criterion defined by the algorithm of 
Metropolis [7] for the acceptance of a solution obtained by disturbance of the current solution. 
 
For a given “temperature” T, starting from a current solution x, one considers an elementary 
transformation which would change x into x' . If this disturbance induces a reduction in the value 
of the objective function f, ∆f = f(x') - f(x) < 0, it is accepted. In the contrary case, if ∆f =  f(x') - 
f(x) > 0, the disturbance is accepted all the same with a probability p = exp(-∆f / T). 
 
The controlling parameter T is the “temperature” of the system, which influences the probability 
of accepting a worse solution. With a high temperature, the probability of acceptance of an 
unspecified movement tends towards 1 (almost all the changes are accepted). The algorithm is 
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equivalent then to a random walk in the space of the configurations. This temperature is 
decreased slowly to simulate the process of cooling of materials, and its reduction is sufficiently 
slow so that thermodynamic balance is maintained. 
 
The effectiveness of simulated annealing strongly depends on the choice of its controlling 
parameters, whose adjustment remains very empirical. The principal controlling parameters are 
the law of disturbance of the solution, the initial temperature, the temperature reduction function, 
the criterion of change of stage of temperature, and criteria of stop. 
 
With each iteration i of the algorithm, an elementary modification or disturbance of the solution 
is carried out. In practice, the new candidate is simulated by the means of a random number U 
drawn according to a standard normal law: 
 

Uxx ii ×+=+ λ1  (4) 
 
The choice of the constant λ is of primary importance. Indeed, a strong value (> 1) of this 
coefficient will make it possible to quickly move over the entire range of model inputs. On the 
other hand, a low coefficient (< 0.1) will bring a profit of precision on the optimal solution, 
subject to a sufficient iteration count. 
 
The role of the temperature T during the process of simulated annealing is very important. A 
large decrease of temperature is likely to trap the algorithm in a local minimum, whereas a small 
decrease at the beginning of the process will lead to a very slow convergence of the algorithm. A 
compromise is being adapted for the decrease of the temperature to the evolution of the process 
which consists of using a variation logarithmic curve. The logarithmic law of decrease of the 
temperature, which ensures the theoretical convergence of simulated annealing, is as follows: 
 

)1( iLog
Tk +

= α
 (5) 

 
where i is the number of temperature stages carried out, and α  a positive constant. 
 
In practice, we often adopt a geometrical decrease Ti+1 = α Ti, with (0.8 < α < 1), because the 
preceding law induces a prohibitive computing time. For the change of stage of temperature, one 
can simply specify a number of transformations, accepted or not, with the end of which the 
temperature is lowered. 
 

2.4 The response surface 
 
To define the response surface constructed by kriging, we have to add the interpolation 
constraint: y(x(i)) = y(i), 1 ≤ i ≤ n. Then, as for regression, the response surface is the best linear 
unbiased predictor. The derivation of its expression is not straightforward, and can be found in 
[5]. The predictor ypred(x) can be seen as a particular path of the (estimated) kriging process, 
interpolating the experimental points: ypred(x

(i)) = y(i), 1 ≤ i ≤ n. More details and examples can be 
found in [2]. 
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Figure 1.  Examples of paths generated with the stochastic process Z(x) utilizing three different values of the 
regularity parameter: p=2, p=1.2 and p=0.4 

 
 

2.5 Sensitivity analysis: Sobol' approach 
 
Sensitivity analysis (SA) of a model output aims to quantify the relative importance of each input 
model parameter in determining the value of an assigned output variable. Global SA focuses on 
the output uncertainty over the entire range of values of the input parameters. The main idea of 
variance-based methods is to evaluate how the variance of an input or a group of inputs 
contributes into the variance of output. 
 
Among the variance-based global methods, the approach of SOBOL makes it possible to 
estimate the fraction of variance of the response code explained by one of the input parameters. 
The main idea behind this approach is the decomposition of the function of the input parameters 
into summands of increasing dimensionality. It does not make any assumption on the model, but 
requires the independence of the input parameters. 
 
In order to study the impact of the independent input parameters x = (x1,…,xk) on the variance of 
the output y = f(x1,…,xk), we can compare the variance of y namely V(y) with the conditional 
variance of y with xi fixed to its true value xi

*, V(y | xi=xi
*). Unfortunately, in general the true 

values of the input parameters are not known. Therefore, a solution is to study the conditional 
expectation E[V(y | xi)] , whereby it is built into all possible values of xi.  
 
The sensitivity indices of Sobol are given by (see [8] for more details): 
 



JOUCLA J., PROBST P. and F. FOUET NURETH-12 
Sensitivity analysis by the use of a surrogate model with CATHARE Log: XXX 

(7/12) 

)(

)]|([

yV

xyEV
S i

i =  ji
ji

ij SS
yV

xxyEV
S −−=

)(

)],|([
 (6) 

 
The first order sensitivity indices Si measure the main effect of each unknown parameter xj on the 
output y, or the fraction of variance of y due to the variance of xi alone. 
 
The second order indice Sij expresses sensitivity of the model to the interaction between the 
variables xi and xj, (without the individual effects of xi and xj), and so on for the third, and higher 
order effects. 
  
Finally, we define the total sensitivity indice of variable xi which is defined as the sum of its all 
sensitivity indices, its main effect as well as all the higher order effects in which this value 
appears: 
 

 ∑
≠≤≤

+++=
ijkj

kijiT SSSS
i

,1
,...,2,1...  (7) 

 
SOBOL proposes to estimate the sensitivity indices by a method of Monte Carlo which consists 
in simulating input variables and to estimate an integral by a sum of Riemann on these 
simulations ([8]).  
 
 
3 RESULTS 
 
In this section, we present results of our approach for the construction of response surface to the 
modelling of the first maximum PCT (see Figure 2), and results of the sensitivity analysis.  
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Figure 2. Temporal evolution of the PCT 
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Actually, this study (kriging and sensitivity analysis) was carried out 2 times: the first time, we 
applied the kriging method with 42 input parameters and we used a coarse Sobol' analysis (with 
N = 50,000 Monte-Carlo iterations) in a prior-design stage to screen out variables that are 
probabilistically insignificant, and the second time to obtain precise results of sensitivity (with 
N = 400,000). Thus, we reduced dimension (and time of calculation) selecting 11 input 
parameters which will be considered in this section (Table I): Initial power, Gap size, Residual 
power, UO2 conductivity, UO2 specific heat, Film boiling, Vapour-wall friction, Interfacial 
friction, Vapour-wall heat transfer, Vapour-wall heat flux, and Bubbles raise velocity.  
 
 

Table I. Uncertainty of input parameters 

 

Input Parameter 
Initial 
power  Gap size Residual 

power 
UO2 

conductivity 

UO2 
specific 

heat 

Film 
boiling 

Uncertainty  [0.97;1.03] [0.8;1.2] [0.9;1.1] [0.8;1.2] [0.8;1.2] [-42;60] 

       

Input Parameter 
Vapour-

wall 
friction  

Interfacial 
friction  

Vapour-
wall heat 
transfer 

Vapour-
wall heat 

flux  

Bubbles 
raise 

velocity 
 

Uncertainty  [0.8;1.9] [0.6;1.8] [0.5;2] [0.15;6.5] [0.4;5]  

 
 
Most of the uncertainty ranges used are estimated by expert judgement. Afterwards, some of the 
uncertainties are also fitted by experimental comparison. The whole fitting of the uncertainty 
ranges against the Cathare code validation matrix experiments requires a lot of resources 
 

3.1 Response surface 
 
To build the response surface considering 11 input uncertain parameters, we used a 121 point 
Latin hypercube design. Its construction was carried out according to the method clarified in [1]. 
The estimated results obtained with simulating annealing approach are presented in Table II. The 
first line gives the parameter number h, and the two lines below the corresponding estimated 
values of the frequency parameters θh and regularity parameters ph.  
 
These unknown parameters are estimated by maximizing the model likelihood with simulated 
annealing method with controlling parameters as follows:  

- law of disturbance of the solution: xi+1 =  xi +  0.01� U, with U a random number in [0;1]; 
- temperature reduction function: Ti+1 = 0.99� Ti , with initial temperature T0 = 2000; 
- criteria of stop: 25,000 iterations. 
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Table II.  Results obtained by kriging 

 

Input Parameter 
Initial 
power  Gap size Residual 

power 
UO2 

conductivity 

UO2 
specific 

heat 

Film 
boiling 

Estimated hθ    0.48 0.11 0.03 0.51 0.58 0.25 

Estimated hp  1.87 2 2 2 2 2 

       

Input Parameter 
Vapour-

wall 
friction  

Interfacial 
friction  

Vapour-
wall heat 
transfer 

Vapour-
wall heat 

flux  

Bubbles 
raise 

velocity 
 

Estimated hθ    0.12 0.07 0.04 0.65 0.21  

Estimated hp  2 2 1.93 1.85 2  

 
 
The kriging model has detected small irregularities of the PCT surface, indicated by estimated 
values of ph slightly inferior to 2, for input variables "Initial power", "Vapour-wall heat transfer", 
and "Vapour-wall heat flux". All estimated values of ph reveal a smooth kriged surface and a 
quite linear physical phenomenon. 
 
The model adequacy is checked by cross validation with 221 points test sample calculated at 
random. We observe on Figure 3 that the points are well distributed around the first bisectrix, 
which shows that there is no prediction bias at all, except for one outlier (circled) very poorly 
forecasted by over than 230°C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Comparison of the simulator outputs and the predictions from the kriging model 
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3.2 Sensitivity analysis 
 
The response surface constructed by kriging can be used to identify and to classify the most 
important parameters and visualize their effects. We present here results of the sensitivity 
analysis of the kriged surface using coefficients in Table II. Numerical experiments have been 
made repeating all indices computations 2 times, with N = 400,000 Monte-Carlo iterations. Mean 
of these 2 estimations are presented in Table III and Table IV.  
 
 

Table III.  Sobol' Indices (First order) for each input parameter 

 

Input Parameter UO2 
conductivity 

Vapour-
wall heat 

flux  

UO2 
specific 

heat 
Gap size 

Vapour-
wall heat 
transfert  

Initial 
power  

Main effect Si 36.2% 16.1% 14.6% 12.7% 4.6% 2.8% 

       

Input Parameter 
Bubbles 

raise 
velocity 

Vapour-
wall 

friction  

Interfacial 
friction  

Residual 
power 

Film 
boiling 

 

Main effect Si 2.0% 1.9% 1.6% 1.1% 0.5%  

 
 

Table IV. Sobol' Indices (Second order) for larger interactions 

 

Input Parameter 
UO2 specific 

heat / Vapour-
wall heat flux 

Bubbles raise 
velocity / 

Vapour-wall 
heat flux 

UO2 conductivity / 
Vapour-wall heat 

flux  

Initial power / 
Vapour-wall 

friction  

Interaction Sij 1.5% 0.9% 0.7% 0.3% 

 
 
We can visualize these main effects on Figure 4 which are obtained by averaging the predicted 
values of a given parameter over all other parameters. It shows a parabolic shape for both 
parameters "Initial power" and "Vapour-wall heat flux", and near-linear shape for all others. The 
approach of "scatter plots" is undoubtedly the simplest sensitivity analysis technique, consists of 
generating plots of the points (input parameter; kriged response), and confirms the last results of 
sensitivity analysis. We present on Figure 5 the scatter plots (100,000 points) for parameters 
"Initial power" and "Vapour-wall heat flux" and we note the large dispersion especially for the 
"Initial power". However, the calculated PCT by Cathare have the same tendency as the 
calculated PCT by the surrogate model and are bounded by them. It is another mean to check the 
good accuracy of the kriged response surface. 
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Figure 4.  Estimated main efftect (PCT's variation (°C)) for each parameter with normalized values in [-0.5; 0.5] 

 
 

 
Figure 5.  Scatter plots  for "Initial power" and "Vapour-wall heat flux"  with normalized values in [-0.5; 0.5] 

Blue: 100,000 Monte Carlo calculations; Green: 221 LHS points  
 
 
Multidimensional analysis allows us to conclude that the first PCT is sensitive essentially to 
input parameters "UO2 conductivity", "Vapour-wall heat flux", "UO2 specific heat", and "Gap 
size". The fraction of output variance explained by the first order indices of those 4 parameters is 
about 80%. These results are in agreement with the experts judgements and can lead us to think 
that this methodology could be applied to a real nuclear power plants. 
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4 CONCLUSIONS  
 
We presented the kriging methodology for the construction of response surfaces, and applied it to 
the modelling of the Peak Cladding Temperature. It turns out that the kriging technique leads to 
accurate results in our case study. The principal explanation is that kriging is very flexible, and 
can handle situations where the PCT surface is smooth in one direction, and irregular in another. 
We showed a new methodology never used until now of global sensitivity analysis applied to the 
nuclear application. We coupled the Sobol' approach with a kriged response surface, to quantify 
the influence of each uncertain input parameter on the response variability of the numerical 
model.  
 
In the case of LOFT L2-5, this methodology allowed us to classify and quantify the main input 
parameters which are the "UO2 conductivity", the "Vapour-wall heat flux", the"UO2 specific 
heat", and the "Gap size" of the fuel. These results are in agreement with the experts judgements 
and can let us think that this methodology could be applied to real nuclear power plant 
calculations. 
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