The 12" International Topical Meeting on Nuclear Reacthefmal Hydraulics (NURETH-12) Log Number: XXX
Sheraton Station Square, Pittsburgh, Pennsylven&A. September 30-October 4, 2007.

SENSITIVITY ANALYSIS BY THE USE OF A SURROGATE MODE L IN
LB-LOCA: LOFT L2-5 WITH CATHARE-2 V2.5 CODE

Jérdbme JOUCLA and Pierre PROBST
IRSN
Fontenay-aux-Roses, France
jerome.joucla@irsn.fr; pierre.probst@irsn.fr

Fabrice FOUET
APTUS
Versailles, France
fabrice.fouet-aptus@irsn.fr

ABSTRACT

The revision of the 10 CFR50.46 in 1988 has madsipte the use of best-estimate (BE) codes
in safety demonstration and licensing, provided timzertainties are added to the relevant output
parameters before comparing them with the acceeptarieria. In the safety analysis of the large
break loss of coolant accident, for a BE analysiwas agreed that the 95th percentile estimated
with a high degree of confidence should be lowenthhe acceptance criteria. It appeared
necessary to IRSN, technical support of the Fredafety Authority, to get more insight into
these strategies.

The application of the BE plus uncertainty analyss be made in three steps in a statistical
evaluation: - The definition and the evaluatioruntertainties of the input parameters;

- The modelling and understanding of the outpuapeaters;

- The evaluation of the 95th percentile with a hilgilgree of confidence.

As a general rule the global sensitivity analyst3SA) is done with linear correlation
coefficients. This paper presents a new approagetimrm a more accurate GSA to determine
and to classify the main input parameters. Sucbrindétion is difficult to obtain directly by
Monte-Carlo methodologies using the thermal-hydcawode, because it is rather time-
consuming. Therefore, it is natural to replace ithva simpler model called a surrogate model
too. We suggest Kriging methodology for its constian and the SOBOL methodology for the
GSA.

The paper presents the application of the prewodsscribed methodology on the LOFT (Loss-

of-Fluid Test) loss of coolant experiment L2-5 whgimulated a double-ended offset shear of a
cold leg in the primary coolant system. LOFT L2-&shbeen the subject of the BEMUSE

international problem. The output is the first nmaxim Peak Cladding Temperature of the fuel.

The best estimate code used is CATHAREZ2 V2.5.
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1 INTRODUCTION

The methods using best estimate codes, associdtecdnvevaluation of uncertainties related to
the relevant output parameters, will be used muohenthan ever in safety demonstration for
nuclear power plants (NPP). In order to developeshod of uncertainty propagation and to get
more insight to these methodologies, IRSN chosa, first step, to apply it to the calculation of

the LOFT L2.5 experiment (simulation of a doubleleth offset shear of a cold leg in the
primary coolant system). In our study, we will bainty focusing on the relevant output

parameter which corresponds to the first maximuakpsadding temperature (PCT) of the fuel
during the transient.

In order to evaluate the PCT, we use the best-astimode CATHARE2 V2.5, a thermal
hydraulics code developed by CEA, IRSN, EDF and PAKIME for PWR safety analysis. The
PCT depends on 42 input parameters whose unceztalmve been estimated by the IRSN and
CEA experts in thermal hydraulics. In this papee twy to quantify the influence of each
uncertain input parameter on the response vaiyhli the numerical model with a global
sensitivity analysis (SA). Global SA focuses on theput uncertainty over the entire range of
variations of the input parameters. We proposdaheus and powerful Sobol' approach, which
is a variance-based method, to evaluate how thanaa of an input contributes into the variance
of output.

Toward the objective of assessing uncertaintysituseful to further analyse the PCT. For
instance, one would like to trace the sensitivifytee PCT to each input parameter, or to
determine the situations that result in high terapees. Such information is difficult to obtain
using the CATHARE code, because it is quite timestmning and too time expensive to apply
directly the global SA methods. Therefore, it igunal to replace the complex computer code
CATHARE by an approximate mathematical model, chflesponse surface or surrogate model.
The response surface method is used to build aifumevhich simulates the behaviour of a
physical or chemical phenomenon, starting fromréagenumber of experiments and in our case
for computer case.

This function must be as representative as possiblee computer code, with good prediction

capabilities and must require a negligible calcatattime. Several response surfaces are
classically used: polynomials, splines, neural oeks, kriging,... We propose in this paper the
kriging approach for the construction of respongésse.

This paper is organized as follows. In section & present the approaches for the construction
of response surfaces and for the sensitivity amglgsad apply them to the modelling of the PCT.
Results are presented in section 3. Finally, caticturemarks in section 4.

2 MODEL FOR THE CONSTRUCTION OF RESPONSE SURFACES

For this section, we will assume that we have ole@ithe outputs af runs by the CATHARE
code. Each run corresponds to a vector of somet ipptameters values,...,x. We call that
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vector a point and we denote it by a bold lexter(xy,...,). Then points corresponding to the
runs are called an experimental design and wilteeoted(x®,...x™). The CATHARE code
can be viewed as a functiony, Denotey™,... ™ the outputs corresponding to the runs:
YO = yain(x®), i=1,2,...,n Since we cannot use directly the costly functign we want to use
the knowledge that we get &™,...x™) to model it the most accurately as possible. This
problem can be addressed in using an interpolédidmique: the kriging method.

2.1 Experimental design

The quality of the response surfaces depends orchibieze of the experimental design. This
explains why there is a huge literature on thectopiostly devoted to physical experiments. The
specificities of computer experiments have led éw mesigns, nameldatin hypercube designs
[3], that ensure little redundancy of design pointse some of the input parameters have a
small effect on the output. Some of them have,dditeon, good optimality and orthogonallity
properties. The optimality property guarantees e¢kémation quality, and the orthogonallity
property ensures that the effects of input parareetee distinguishable. For instance, Butlgr [
shows how to construct Latin hypercube designs gitbd properties when the model is a
second order polynomial linear regression (thisiaggion is currently done by statisticians).
However, we do not know a similar construction Koiging. We have decided to use the Latin
hypercube design suggested by Butlg). Even if we have no idea about optimality and
orthogonallity in the kriging case, the resultsantéd with this design are encouraging.

2.2 Interpolation model: kriging

Doing computer simulations is very different thaoind) a physical experiment. Firstly, the
repetition of a computer experiment should alwayge gtheoretically, the same result. In
addition, the simulator solves some differentialapns, and may deduce the value at a point in
the factors domain from neighbouring values. Treresf high spatial correlation is expected
between two near points. These two characterisi@s® led to the introduction in the 90’s of
another model with interpolation and spatial catieh properties4], [5]. Actually, this model
was initially introduced in dimension 3 in geosttitis by Krige, and is known since as kriging
model. It can be written as:

Yom(x) = X (X 20¢), 1=12.m ®

The mathematical expression is not so far fromalimegression, but assumptions on errors are
very different: Z(x) is a centred (Gaussian) stationary stochastic egavith “distance”-
decreasing correlation function. It means that toerelation betweerZ(x) and Z(y) is a
decreasing function of the “distance” betweerandy. In this paper, we will use the power
exponential covariance structure, given by:
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K
COV(Z (x),Z(y))= 0 R(x— y)=0° ex{-zﬁh h = % ‘f“] (2)
h=1

where:
01,... Pcare positive real numbers.
P1,...,[ are positive real numbers lower or equal to 2s(tbdondition ensures that all
covariance matrices are definite positive).

In this modelling, the simulator can be viewed gmdicular (deterministic) path of the process.
Its shape and regularity depend on the parametéhe @ovariance structure. More precisely the
Oys are spatial frequency parameters: a small vatue direction is synonym with low
frequency. Thepy's are regularity parameters. The neagiigeis to 2, the smoother the response
surface is. To illustrate this fact, we have drawrkigure 1 below the paths corresponding to
three different values qf in dimension 1K =1). In practise, all these parameters are unknown;
they are estimated by maximizing the model liketittavith simulated annealing method.

Finally, the functiondy’s have to be chosen. But with this model, it seéimas the assumptions
on the correlation structure are “so powerful” theat can choose a consta#}. [Thus, we have
decided to use the model (3):

Ysim(x") = 1+ 2(xV) 3)

2.3 Optimization: simulated annealing

Simulated annealing6] found its origins in thermodynamics. This methabults from an
analogy between the physical phenomena of slowirgpoff a body in fusion, which leads it to a
solid state, of low energy. The temperature shd@dowered slowly, by marking sufficiently
long stages so that the body reaches “thermodynbalance” with each stage of temperature.
For materials, this low energy appears by obtairangegular structure, as in the crystals and
steel.

The analogy exploited by simulated annealing issaering a functiorf to be minimized like
function of energy, and a solutioncan be regarded as a given state of the mattesevbioergy
is f(x). Simulated annealing generally exploits the doterdefined by the algorithm of
Metropolis [7] for the acceptance of a solution obtained byudisince of the current solution.

For a given “temperatureT, starting from a current solutiax one considers an elementary
transformation which would changento x'. If this disturbance induces a reduction in theiga
of the objective functiom, Af = f(x') - f(x) < 0, it is accepted. In the contrary case)if=f(x') -
f(x) > 0, the disturbance is accepted all the same with batitity p = exp(Af / T).

The controlling parameter T is the “temperaturethd system, which influences the probability

of accepting a worse solution. With a high tempeet the probability of acceptance of an
unspecified movement tends towards 1 (almost allctmanges are accepted). The algorithm is
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equivalent then to a random walk in the space ef ¢bnfigurations. This temperature is
decreased slowly to simulate the process of coafngaterials, and its reduction is sufficiently
slow so that thermodynamic balance is maintained.

The effectiveness of simulated annealing strongdpethds on the choice of its controlling
parameters, whose adjustment remains very empifita principal controlling parameters are
the law of disturbance of the solution, the initeinperature, the temperature reduction function,
the criterion of change of stage of temperaturd,@iteria of stop.

With each iteration of the algorithm, an elementary modification ostdrbance of the solution
is carried out. In practice, the new candidatensukated by the means of a random numUber
drawn according to a standard normal law:

Xy =X +AxU (4)

The choice of the constaitis of primary importance. Indeed, a strong valael] of this
coefficient will make it possible to quickly moverar the entire range of model inputs. On the
other hand, a low coefficient (< 0.1) will bringpaofit of precision on the optimal solution,
subject to a sufficient iteration count.

The role of the temperature during the process of simulated annealing is wenyortant. A
large decrease of temperature is likely to trapaigerithm in a local minimum, whereas a small
decrease at the beginning of the process will teadvery slow convergence of the algorithm. A
compromise is being adapted for the decrease dkthperature to the evolution of the process
which consists of using a variation logarithmiceirThe logarithmic law of decrease of the
temperature, which ensures the theoretical connermyef simulated annealing, is as follows:

_ a
T = Log(L+i) ()

wherei is the number of temperature stages carried odtgaa positive constant.

In practice, we often adopt a geometrical decrase= a Ti, with (0.8< a < 1), because the
preceding law induces a prohibitive computing tifRer the change of stage of temperature, one
can simply specify a number of transformations,epted or not, with the end of which the
temperature is lowered.

2.4 The response surface

To define the res!oonse surface constructed by ngjgive have to add the interpolation
constrainty(x") =y, 1 <i < n. Then, as for regression, the response surfatteeibest linear
unbiased predictor. The derivation of its exprassgonot straightforward, and can be found in
[5]. The predictoryyedX) can be seen as a particular path of the (estim&gging process,
interpolating the experimental pointgiedx”) = y”, 1< i < n. More details and examples can be
found in ).
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Figure 1. Examples of paths generated with the stochasticqressZ(x) utilizing three different values of the
regularity parameter: p=2,p=1.2 andp=0.4

2.5 Sensitivity analysis: Sobol' approach

Sensitivity analysis (SA) of a model output aimgjt@ntify the relative importance of each input
model parameter in determining the value of angassl output variable. Global SA focuses on
the output uncertainty over the entire range ofi@alof the input parameters. The main idea of
variance-based methods is to evaluate how the naiaf an input or a group of inputs
contributes into the variance of output.

Among the variance-based global methods, the apprad SOBOL makes it possible to
estimate the fraction of variance of the respormie explained by one of the input parameters.
The main idea behind this approach is the decortippf the function of the input parameters
into summands of increasing dimensionality. It doesmake any assumption on the model, but
requires the independence of the input parameters.

In order to study the impact of the independentiimgarameters = (Xy,...,%) on the variance of
the outputy = f(xs,...,%), we can compare the varianceyohamelyV(y) with the conditional
variance ofy with x; fixed to its true valuei , V(y | x=xi ). Unfortunately, in general the true
values of the input parameters are not known. Tae¥ea solution is to study the conditional
expectatiorE[V(y | X)], whereby it is built into all possible valuesxaf

The sensitivity indices of Sobol are given by (E&€or more details):
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V[E(Y]|x VIE(Y|X ,X.
s = [ECY[x%)] g = [E(Y X J)]_SI_Sj 6)
V(y) V(y)

The first order sensitivity indiceé§ measure the main effect of each unknown paramgeoerthe
outputy, or the fraction of variance gfdue to the variance &f alone.

The second order indic§; expresses sensitivity of the model to the intésacbetween the
variablesx; andx;, (without the individual effects o§ andx;), and so on for the third, and higher
order effects.

Finally, we define the total sensitivity indice wdriablex; which is defined as the sum of its all
sensitivity indices, its main effect as well as thié higher order effects in which this value
appears:

Sfi :SI + ZS” +...+SL2 ,,,,, k (7)

1<j<k, j#i
SOBOL proposes to estimate the sensitivity indlmges method of Monte Carlo which consists
in simulating input variables and to estimate ategmal by a sum of Riemann on these
simulations (§]).

3 RESULTS

In this section, we present results of our apprdaclhe construction of response surface to the
modelling of the first maximum PCT (see Figured)d results of the sensitivity analysis.

1200 — Reference calculation valugs
1100 — Experimental value
1000
£ 900
~ 800 4
£ 700 WVA
600
500
400 ! ! ! ! !
0 20 40 60 80 100
Time (s)

Figure 2. Temporal evolution of the PCT
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Actually, this study (kriging and sensitivity angly) was carried out 2 times: the first time, we
applied the kriging method with 42 input parametand we used a coarse Sobol' analysis (with
N = 50,000 Monte-Carlo iterations) in a prior-desigtage to screen out variables that are
probabilistically insignificant, and the second &irto obtain precise results of sensitivity (with
N = 400,000). Thus, we reduced dimension (and timecaltulation) selecting 11 input
parameters which will be considered in this secfitable 1): Initial power, Gap size, Residual
power, UQ conductivity, UQ specific heat, Film boiling, Vapour-wall frictiorinterfacial
friction, Vapour-wall heat transfer, Vapour-wallaidlux, and Bubbles raise velocity.

Table I. Uncertainty of input parameters
Initial : Residual Uo, vo. Film
Input Parameter Gap size - specific .
power power | conductivity boiling
heat
Uncertainty [0.97;1.03] [0.8;1.2] [0.9;1.1] [0.8;1.2] [0.8;1.2] [-42;60]
Vapour- . Vapour- | Vapour- | Bubbles
Interfacial :
Input Parameter wall - wall heat | wall heat raise
_ friction i
friction transfer flux velocity
Uncertainty [0.8;1.9] [0.6;1.8] [0.5;2] [0.15;6.5] [0.4;5]

Most of the uncertainty ranges used are estimagezkpert judgement. Afterwards, some of the
uncertainties are also fitted by experimental camspa. The whole fitting of the uncertainty
ranges against the Cathare code validation matprm@ments requires a lot of resources

3.1 Response surface

To build the response surface considering 11 inpeertain parameters, we used a 121 point
Latin hypercube design. Its construction was cdraet according to the method clarified ij.[
The estimated results obtained with simulating afing approach are presented in Table Il. The
first line gives the parameter numbgrand the two lines below the corresponding esechat
values of the frequency parametéssind regularity parameteps.

These unknown parameters are estimated by maxignitbi@ model likelihood with simulated
annealing method with controlling parameters ales:

- law of disturbance of the solutiori; = x;+ 0.01x U, with U a random number in [0;1];
- temperature reduction functiofi;; = 0.99X T; , with initial temperatur&d,= 2000;
- criteria of stop: 25,000 iterations.
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Table 1l. Results obtained by kriging
" . uo :
Initial : Residual Uo, 2 Film
Input Parameter Gap size - specific -
power power | conductivity boiling
heat
Estimated &, 0.48 0.11 0.03 0.51 0.58 0.25
Estimated P 1.87 2 2 2 2 2
Vapour- . Vapour- | Vapour- | Bubbles
Interfacial :
Input Parameter wall - wall heat | wall heat raise
- friction i
friction transfer flux velocity
Estimated 6, 0.12 0.07 0.04 0.65 0.21
Estimated pj, 2 2 1.93 1.85 2

The kriging model has detected small irregularivéshe PCT surface, indicated by estimated
values ofpy, slightly inferior to 2, for input variables "Inéi power", "Vapour-wall heat transfer",
and "Vapour-wall heat flux". All estimated valuet g, reveal a smooth kriged surface and a
quite linear physical phenomenon.

The model adequacy is checked by cross validatibn 221 points test sample calculated at
random. We observe on Figure 3 that the pointsnaelé distributed around the first bisectrix,

which shows that there is no prediction bias gteaitept for one outlier (circled) very poorly

forecasted by over than 230°C.
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Figure 3. Comparison of the simulator outputs and the predict®from the kriging model
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3.2 Sensitivity analysis

The response surface constructed by kriging candeel to identify and to classify the most
important parameters and visualize their effect®& p¥esent here results of the sensitivity
analysis of the kriged surface using coefficiemtsTable 1l. Numerical experiments have been
made repeating all indices computations 2 time#f) W= 400,000 Monte-Carlo iterations. Mean
of these 2 estimations are presented in Tablenti&able V.

Table Ill.  Sobol' Indices (First order) for each input parameter
Vapour- Uuo; Vapour- .
uo, <. . Initial
Input Parameter - .| wall heat | specific | Gap size | wall heat
conductivity power
flux heat transfert
Main effect S; 36.2% 16.1% 14.6% 12.7% 4.6% 2.8%
Bubbles | Vapour- . . .
. P Interfacial | Residual Film
Input Parameter raise wall - -
. - friction power boiling
velocity friction
Main effect S; 2.0% 1.9% 1.6% 1.1% 0.5%
Table IV. Sobol' Indices (Second order) for larger interactions
e Bubbles rai - "
UO, specific ubb €s raise UO, conductivity / | Initial power /
velocity /
Input Parameter | heat / Vapour- Vapour-wall heat| Vapour-wall
Vapour-wall o
wall heat flux flux friction
heat flux
Interaction S 1.5% 0.9% 0.7% 0.3%

We can visualize these main effects on Figure &£wlire obtained by averaging the predicted
values of a given parameter over all other parampeté shows a parabolic shape for both

parameters "Initial power" and "Vapour-wall heatxfl, and near-linear shape for all others. The
approach of "scatter plots" is undoubtedly the $@sipsensitivity analysis technique, consists of
generating plots of the points (input parameteigdd response), and confirms the last results of
sensitivity analysis. We present on Figure 5 thattec plots (100,000 points) for parameters

"Initial power" and "Vapour-wall heat flux" and weote the large dispersion especially for the

"Initial power". However, the calculated PCT by Kate have the same tendency as the
calculated PCT by the surrogate model and are by them. It is another mean to check the
good accuracy of the kriged response surface.
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Figure 4. Estimated main efftect (PCT's variation (°C)) for eagtarameter with normalized values in [-0.5; 0.5]
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Figure 5. Scatter plots for "Initial power" and "Vapour-wall teat flux" with normalized values in [-0.5; 0.5]
Blue: 100,000 Monte Carlo calculations; Green: 221 LH®ints

Multidimensional analysis allows us to concludetttige first PCT is sensitive essentially to
input parameters "UOconductivity”, "Vapour-wall heat flux", "U@specific heat", and "Gap
size". The fraction of output variance explainedt first order indices of those 4 parameters is
about 80%. These results are in agreement witlexperts judgements and can lead us to think
that this methodology could be applied to a realear power plants.
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4 CONCLUSIONS

We presented the kriging methodology for the cartsion of response surfaces, and applied it to
the modelling of the Peak Cladding Temperaturéurits out that the kriging technique leads to
accurate results in our case study. The princigpla@ation is that kriging is very flexible, and
can handle situations where the PCT surface is #momne direction, and irregular in another.
We showed a new methodology never used until noglaifal sensitivity analysis applied to the
nuclear application. We coupled the Sobol' approsith a kriged response surface, to quantify
the influence of each uncertain input parametertten response variability of the numerical
model.

In the case of LOFT L2-5, this methodology allowedto classify and quantify the main input
parameters which are the "Y@onductivity", the "Vapour-wall heat flux", the"UGspecific
heat", and the "Gap size" of the fuel. These resaré in agreement with the experts judgements
and can let us think that this methodology could dpplied to real nuclear power plant
calculations.
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