SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

Eurocode 8 design response spectra evaluation using the K-net Japanese database

Pousse, G. , Berge-Thierry, C. , Bonilla, L.F. , Bard, P.-Y.
Journal of Earthquake Engineering
Volume 9, Issue 4, July 2005, Pages 547-574

Document type > *Article de revue

Keywords > earthquakes

Research Unit > IRSN/DEI/SARG/BERSSIN

Authors > BERGE-THIERRY Catherine, BONILLA Fabian

Publication Date > 01/08/2005

Summary

The Eurocode 8 (EC8) currently proposes two standard shapes for the design response spectra. Type 1 spectra are enriched in long period and are suggested for high seismicity regions. Conversely, Type 2 spectra are proposed for low to moderate seismicity areas (like France), and exhibit both a larger amplification at short period, and a much smaller long period contents, with respect to Type 1 spectra. These propositions, however, were constrained using few events mostly recorded on analogical instruments. In the present study, we use the Japanese high quality digital K-net array in order to evaluate the proposed EC8 response spectra. Furthermore, all K-net stations have geotechnical characterisation. We first constructed a database of shallow events, depth less than 25 km, to avoid subduction related records. The database spans six years of seismicity from 1996 until 2003. Thus, 591 events were selected with moment magnitude between 4 and 7.3, recorded at 691 stations, giving a total of 6812 two horizontal components accelerograms. Using these records, we computed spectral ground-motion prediction equations and we used them to review the shape of the proposed EC8 spectra. In particular, we studied the plateau-PGA ratio level, the period interval where this plateau is constant, and site amplification effects. The results show surprisingly that the Type 2 rock better envelope the Japanese data. Another interesting observation is that the K-net data corresponding to all soil classes are rich in short periods around 0.1s. This characteristic has not been observed in other worldwide databases. Normalised empirical predictions show a widening of the plateau as the soil conditions degrade. This suggests that the Type 2 EC8 spectra do not cover enough the long periods for EC8-soil classes C, D and E. Finally, the computed ground-motion prediction equations show that the peak ground acceleration (PGA) is nearly invariant to the soil conditions. Soil effects are mainly seen in the shape and plateau level.

Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok