SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

Clad-to-coolant heat transfer in NSRR experiments


Journal title : Journal of Nuclear Science and Technology
Volume : 44
Issue : 5
Pagination : 723-732
Publication date : 01/05/2007

Summary

The evolution of the clad temperature during a Reactivity Initiated Accident plays a key role in the accidental sequence because it strongly influences the rod mechanical resistance against failure. The present study aimed at quantifying the heat transfer in NSRR experiments. Transient boiling curves were determined by inverse conduction calculations of NSRR experiments in which the clad outer surface temperature had been measured by spot-welded thermocouples. Critical Heat Fluxes (CHFs) as high as 13 MW/m2 have been obtained, highlighting a considerable increase compared to stationary pool boiling conditions. The elevated CHFs are due to the intense transient fluid vaporization at the surface induced by a fast clad heating rate. A transient boiling model has been implemented in the SCANAIR code on the basis of the physical interpretation of the boiling curves. A good agreement between computed and experimental clad temperatures is obtained for high burnup fuel tests as for fresh fuel tests.


Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok