SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

Enhancing Nuclear Safety


Research

Publications

On the stability of colocated clustered finite volume simplicial discretizations for the 2D Stokes problem


Journal title : Calcolo
Volume : 44
Issue : 4
Pagination : 219-234
Publication date : 01/12/2007

Document type > *Article de revue

Keywords >

Research Unit > IRSN/DPAM/SEMIC/LIMSI

Authors > EYMARD Robert, HERBIN Raphaèle, LATCHE Jean-Claude, PIAR Bruno

Publication Date > 01/12/2007

Summary

In this paper, we give a new (and simpler) stability proof for a cell-centered colocated finite volume scheme for the 2D Stokes problem, which may be seen as a particular case of a wider class of methods analyzed in [10]. The definition of this scheme involves two grids. The coarsest is a triangulation of the computational domain by acute-angled simplices, called clusters. The control volumes grid is finer, built by cutting each cluster along the lines joining the mid-edge points to obtain four sub-triangles. By building a Fortin projection operator explicitly, we prove that the pair of discrete spaces associating the classical cell-centered approximation for the velocities and cluster-wide constant pressures is inf-sup stable. In a second step, we prove that a stabilization which involves pressure jumps only across the internal edges of the clusters yields a stable scheme with the usual colocated discretization (i.e., with the cell-centered approximation for the velocity and the pressure). Lastly we give an interpretation of this stabilization as a -minimal stabilization procedure-, as introduced by Brezzi and Fortin.


Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok