SharePoint
Aide
IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :

ok

Contact us :

ok
En Fr

All our expertise to protect you


Research

Publications

Interactions between sodium carbonate aerosols and iodine fission-products

Ankita Jadon has defended her thesis on July 20th 2018 at St Paul Lez Durance (France)​

Document type > *Mémoire/HDR/Thesis

Keywords >

Research Unit > IRSN/PSN-RES/SAG/LETR

Authors > Ankita Jadon

Publication Date > 20/07/2018

Summary

The safety analysis of Generation IV sodium-cooled fast neutron reactors requires the study of the consequences of a severe accident in case of release into the environment of sodium and the radionuclides it carries (term chemical and radiological source). The global source term therefore depends on both the chemical speciation of sodium aerosols, resulting from the combustion of sodium in the containment, and their interactions with radionuclides. During this thesis, the interactions between sodium carbonate and iodinated gaseous fission products (I2 and HI) were studied at the atomic and macroscopic scales, via a combined theoretical and experimental approach. An analytical expression of the adsorption isotherm has been developed. The relative stability of the sodium carbonate surfaces was determined by ab initio calculations using density functional theory. The reactivity of iodine has been studied for the most stable surfaces and the adsorption isotherms evaluated. In parallel, the kinetics of capture of molecular iodine by sodium carbonate has been determined experimentally for different boundary conditions.

 
The results show an effective capture of the molecular iodine by sodium carbonate at 373 K, varying according to the partial pressure of iodine and the surface of the carbonate sorbent. For the representative conditions of a severe accident, the adsorption sites of the most favorable sodium carbonate surfaces will be mostly bare or doubly occupied depending on the partial pressure of molecular iodine; leading to an equilibrium pressure of less than 2x10-4 bar at 373 K.

Close

Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?

Send

Cancel

Close

WP_IMPRIMER_TITLE

WP_IMPRIMER_MESSAGE

Back

Ok