IRSN, Institut de radioprotection et de sûreté nucléaire

Search our site :


Contact us :

En Fr

Enhancing Nuclear Safety



Modelling of PWR lower head failure under severe accident loading using improved shells of revolution theory

Journal title : Nuclear Engineering and Design
Volume : 238
Issue : 9
Pagination : 2400-2410
Publication date : 01/09/2008


In the study of severe pressurized water reactor accidents, the scenarios that describe the relocation of significant quantities of liquid corium at the bottom of the lower head are usually investigated from the mechanical point of view. In these scenarios, the risk of a breach and the possibility of a large quantity of corium being released from the lower head exists. This may lead to an out of vessel steam explosion or to direct heating of the containment; both which have the potential to lead to early containment failure. Within the framework of the OECD lower head failure programme, a simplified model based on the theory of shells of revolution under symmetrical loading was developed by IRSN. After successfully interpreting some other representative experiments on lower head failures, the model was recently integrated into the European integral severe accident computer ASTEC code. The model was also used to obtain the thermo-mechanical behaviour of a 900 MWe pressurized water reactor lower head, subjected to transient heat fluxes under severe accident conditions. The main objective of this paper is to present: 1) the full mathematical formulations used in the development of the model, including their matrices and integrals defined by analytical expressions; 2) the two creep laws implemented, one for the American steel SA533B1 and one for the French steel 16MND5; and 3) the various numerical interpretations of experiments using the simplified model. This paper can be considered as a theoretical manual to aid users of the simplified model during modelling of lower head failures under severe accident conditions. One of the applications presented in this paper concerns the determination of a diagram representing the vessel time to failure as a function of the pressure level and the heat flux intensity. This information has been used by IRSN in probabilistic safety assessment and severe accident management analyses.


Send to a friend

The information you provide in this page are single use only and will not be saved.
* Required fields

Recipient's email:*  

Sign with your name:* 

Type your email address:*   

Add a message :

Do you want to receive a copy of this email?