SharePoint
Aide
Faire avancer la sûreté nucléaire

La Recherchev2

Publications

Etude expérimentale et théorique des mécanismes microphysiques mis en jeu dans la capture des aérosols radioactifs par les nuages


Fermer

Authentification

Email :

Mot de passe :

​Alexis dépée a soutenu sa thèse le 18 décembre 2019 à Clermont-Ferrand.

Type de document >

Mots clés >

Unité de recherche > IRSN/PSN-RES/SCA/LPMA

Auteurs > DEPEE Alexis

Date de publication > 18/12/2019

Résumé

Les particules atmosphériques sont un sujet d’importance dans plusieurs couches de la société. Leur présence dans l’atmosphère est aussi bien une problématique météorologique et climatique qu’un enjeu de santé publique, notamment de par l’accroissement des maladies cardiovasculaires. En particulier, les particules radioactives émises dans l’atmosphère à la suite d’un accident nucléaire peuvent polluer les écosystèmes durant plusieurs années. Le récent accident du Centre Nucléaire de Production d’Électricité de Fukushima Daiichi en 2011 nous rappelle que, même aujourd’hui, le risque zéro n’existe pas. À la suite d’une émission dans l’atmosphère, les particules nanométriques diffusent et s’agglomèrent alors que les particules de plusieurs micromètres sédimentent. Les tailles intermédiaires vont, quant à elles, pouvoir être transportées à l’échelle globale dont le mécanisme principal de rabattement au sol provient des interactions avec les nuages et les précipitations. Afin d’améliorer la connaissance de la contamination des sols consécutive à de tels accidents, la compréhension de la capture des aérosols par les nuages est alors essentielle. Dans ce but, un modèle microphysique est implémenté dans ce travail, considérant les mécanismes microphysiques qui interviennent dans la capture des aérosols par des gouttes de nuage, notamment les forces électrostatiques dès lors que les radionucléides ont pour propriété de fortement se charger. Des mesures en laboratoire sont alors réalisées à l’aide de In-CASE (In-Cloud Aerosols Scavenging Experiment), expérience conçue dans ce travail, afin de comparer le modèle développé aux observations, et ce, toujours à une échelle microphysique où les paramètres d’influence régissant la capture au sein du nuage sont contrôlés. Par ailleurs, des systèmes de charge des particules et des gouttes sont conçus pour soigneusement maîtriser les charges électriques, tandis que l’humidité relative est précisément pilotée. Les nouvelles connaissances de la capture des particules par des gouttes de nuage qui en découlent, concernant entre autres les effets électrostatiques, sont ensuite incorporées au modèle de nuage convectif DESCAM (Detailed SCAvenging Model). Ce modèle à microphysique détaillée décrit un nuage de sa formation jusqu’aux précipitations, permettant d’étudier l’impact des nouvelles données sur le rabattement des particules à méso-échelle. De plus, des modifications sont apportées à DESCAM pour élargir l’étude aux nuages stratiformes qui constituent en France, la majorité des précipitations. À terme, cette étude ouvre la voie à l’amélioration de la modélisation du rabattement atmosphérique des particules, et notamment à la contamination des sols dans les modèles de crise de l’Institut de Radioprotection et de Sûreté Nucléaire.